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ABSTRACT2

With complexity of artificial intelligence systems increasing continuously in past years, studies3
to explain these complex systems have grown in popularity. While much work has focused on4
explaining artificial intelligence systems in popular domains such as classification and regression,5
explanations in the area of anomaly detection have only recently received increasing attention6
from researchers. In particular, explaining singular model decisions of a complex anomaly7
detector by highlighting which inputs were responsible for a decision, commonly referred to as8
local post-hoc feature relevance, has lately been studied by several authors. In this paper, we9
systematically structure these works based on their access to training data and the anomaly10
detection model, and provide a detailed overview of their operation in the anomaly detection11
domain. We demonstrate their performance and highlight their limitations in multiple experimental12
showcases, discussing current challenges and opportunities for future work in feature relevance13
XAI for anomaly detection.14
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1 INTRODUCTION

Within the last years, artificial intelligence (AI) systems have transformed from simple and interpretable16
decision systems to complex and highly opaque architectures that are commonly comprised of millions of17
parameters (Arrieta et al., 2020). With increasing deployment of these highly performing opaque AIs in18
practice, many application areas have identified a need for explaining the reasoning of complex AI systems.19
Motivations for explaining these systems range from reducing manual inspection efforts in domains such20
as medicine (Tjoa and Guan, 2021), to legal requirements for AIs that significantly affect users (Goodman21
and Flaxman, 2017). As a result, explainable AI (XAI) has become a popular area of research. While the22
field itself has a longer history with several early applications (Setiono and Leow, 2000; Féraud and Clérot,23
2002; Robnik-Šikonja and Kononenko, 2008), a lot of research has been conducted in the last six years to24
provide explanations mainly for common AI tasks such as classification and regression problems (Arrieta25
et al., 2020). In the area of anomaly detection, research on explainability has taken off more recently,26
motivated through use in critical security applications such as intrusion and fraud detection (Antwarg27
et al., 2021), and the desire to decrease manual investigation efforts by domain experts that inspect found28
anomalies (Sipple and Youssef, 2022).29
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With the increasing interest on explaining anomaly detection within recent years, first works have started30
to categorize this emerging research field. While Sejr and Schneider-Kamp (2021) discuss the process of31
explaining anomaly detection from a user perspective, Nonnenmacher et al. (2022) aggregate anomaly32
detection XAI work that was specifically designed for tabular data. Panjei et al. (2022) and Yepmo et al.33
(2022) both provide a general overview of the field of anomaly XAI that categorizes the general types34
of explanations that may be used to explain anomaly detectors, splitting XAIs by the granularity of their35
given outputs. Panjei et al. (2022) discuss explanations that return a ranking of found anomalies, XAIs36
that find causal interactions of outliers, and methods that find relevant features. They focus largely on37
white box models that find characteristics of outliers in big data. Yepmo et al. (2022) provide an illustrated38
introduction to four general types of anomaly explanations, e.g. ones that return relevant features or39
decision rules, and name representative approaches. The authors discuss limitations of the general types40
of explanations only at a high level, without distinguishing between different approaches. In contrast, we41
focus on reviewing one specific type of anomaly explanation in-depth. This focused view allows us to42
construct a fine-grained systematic categorization of different algorithmic approaches and investigate each43
algorithm in detail. Our review highlights low level limitations of XAI algorithms in anomaly detection44
that constitute relevant areas for future work.45

In this work, we provide an in-depth review of approaches that produce explanations commonly referred46
to as local post-hoc feature relevance XAIs (Arrieta et al., 2020) in the field of anomaly detection. While a47
variety of XAIs exist that yield different types of explanations as output, feature relevance XAIs explain the48
decision process of anomaly detection models through highlighting relevant input features, providing as49
output a relevance score for each input feature. They constitute the currently most used type of explanation50
in anomaly detection (Yepmo et al., 2022). Applying feature relevance XAIs in a local fashion, i.e. per data51
point, results in highlighting relevant input features that lead an anomaly detection model to identifying a52
singular data point as an anomaly, in contrast to XAIs that provide a global explanation of general model53
behavior. This provides additional information regarding a singular found anomaly to manual investigators54
and reduces their inspection efforts. Further, in contrast to ante-hoc approaches that describe inherently55
explainable anomaly detectors such as simple linear models, post-hoc XAIs describe dedicated XAI56
approaches that are applied to already fully trained anomaly detectors, allowing the use of highly complex57
and well performing model architectures without constraining their complexity during model training. The58
resulting sub-field of local post-hoc feature relevance XAI, which we will refer to in abbreviated form as59
feature relevance XAI in the remaining paper, has recently received increasing attention within the domain60
of anomaly detection. We systematically review approaches from this sub-field that have been applied to61
anomaly detection in the remaining paper.62

We provide a structured characterization of the reviewed approaches in Figure 1, where we group63
approaches based on their reliance on training data on one hand, and on the anomaly detection architecture64
on the other hand. This categorization leads from completely model-agnostic XAI approaches that utilize65
additional assumptions and information obtained through training data, to model-specific XAIs that heavily66
rely on the model structure to obtain feature relevance explanations. Additionally, we identify two groups67
of hybrid approaches that access both the model and information regarding the underlying data. While68
perturbation-based approaches restrict their model access purely to allowing inference on data that may69
be augmented according to data assumptions, gradient-based approaches require access to the first order70
derivatives of differentiable anomaly detection models. We provide an in-depth introduction to these groups71
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Figure 1. Overview of the reviewed feature relevance approaches in anomaly detection, structured by their
use of information from data and from the underlying anomaly detection model.

of approaches, and demonstrate their limitations and challenges in multiple showcases to outline future72
research directions of feature relevance XAI in anomaly detection.173

The remainder of the paper is structured as follows: Section 2 formally introduces the tasks of anomaly74
detection and feature relevance explanations, as well as the data, model architectures, and performance75
metrics we use in our showcases. Section 3 covers data-specific approaches that possess no access to76
the anomaly detection model, instead generating their explanations through training data. Section 477
introduces perturbation-based approaches that generate explanations through repeatedly querying the78
anomaly detection model with altered, so called perturbed data points. Section 5 includes gradient-based79
approaches that require differentiability of the anomaly detection model and utilize gradients that contain80
knowledge of the inner model structure to obtain explanations. Section 6 presents model-specific approaches81
that are developed for specific model architectures and take full advantage of the model structure to generate82
their explanations. In Section 7 we conclude by discussing the overarching limitations of feature relevance83
explanations in anomaly detection and highlighting future research areas within the domain.84

2 METHODOLOGY

Before we review existing feature relevance XAI approaches, we briefly define the tasks of anomaly85
detection and feature relevance XAI, as well as give a brief overview of the data, anomaly detection models,86
and XAI evaluation metrics we use to showcase XAI approaches and their limitations throughout this study.87

2.1 Anomaly Detection88

Anomaly detection, as laid out by Chandola et al. (2009), describes the task of identifying anomalous89
behavior in data that contains well-defined normal behavior. For data points x ∈ X ⊆ Rd of dimensionality90
d, anomaly detection is the identification of anomalous data points through a model m(x), where m(x)91
may be modeled as a binary classification, a probabilistic estimation of anomalies, or as a regression task92
that assigns each point an anomaly score. In this work, we view anomaly detection as regression task93
m(x) : X → [0, inf[ with lower scores representing normal data and higher scores for anomalies.94

While anomaly detection at a high level is only a subset of classification or regression, the unique95
challenges in anomaly detection arise from specific data characteristics: only the normal behavior in96

1 Code for our showcases is available at https://professor-x.de/feature-relevance-AD
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anomaly detection is well-defined and normal data is typically readily available, but anomalies may vary97
greatly in behavior with only a small number of anomalies that are known during training. As a result,98
proposed approaches typically focus on the well-defined normal data to be able to identify potentially99
unseen types of anomalous behavior, e.g. through encircling observed normal behavior in one-class100
support vector machines (Schölkopf et al., 2001), assessing the density around data points in kernel density101
estimation (Terrell and Scott, 1992), or learning a reconstruction of the normal behavior with autoencoder102
neural networks (Goodfellow et al., 2016).103

2.2 Feature Relevance Explanations104

Local post-hoc feature relevance explanations explain the model prediction m(x) for a specific input x105
through assigning a score to each input feature, creating an explanation f(x,m) ∈ Rd that reflects how106
much each input feature influenced the final prediction according to model m. In the domain of anomaly107
detection, feature relevance explanations are commonly applied to anomalous data points, and focus on108
highlighting the relevant features that lead the anomaly detection model to identify the data point as an109
anomaly (Yepmo et al., 2022).110

2.3 Data111

While there is no shortage of datasets for anomaly detection, most of these do not include ground truth112
explanations for anomalies. Since this ground truth enables an otherwise challenging direct comparison113
and quantitative judgment of explanations generated by XAI approaches, we select two datasets for the114
showcases conducted in this review that offer these ground truth explanations: MVTec (Bergmann et al.,115
2019) and ERP (Tritscher et al., 2022a).116

MVTec (Bergmann et al., 2019) is an anomaly detection dataset for industrial visual fault detection. The117
dataset contains 15 texture and object classes with the training set for each category containing only normal118
images, e.g., without defects, and the test set containing images with defects and without defects. The119
defects are annotated with manually created ground truth pixel maps, with binary indications of pixels that120
are part of the defect. The dataset has been previously used to evaluate feature relevance XAI approaches121
by Ravi et al. (2021), although their evaluations are limited to qualitative inspections of results. To instead122
generate quantitative results of XAI performance, we use the ground truth anomaly segmentation maps as123
ground truths for explanations. For our showcases, we focus on the grid class from the dataset that contains124
264 high resolution images of normal wire mesh for training and 57 images with different faults and ground125
truth for testing. We choose this class as it has the highest detection accuracy of the used anomaly detection126
model. This limits the influence of poor model performance on the quality of the obtained explanations,127
which we motivate further in Section 2.4.128

ERP (Tritscher et al., 2022a) is a synthetic enterprise resource planning (ERP) dataset generated by using129
a serious game within a real ERP system (Léger et al., 2007). The data includes financial documents from130
a simulated production company, where different financial fraud scenarios have been committed within131
the simulation. Additionally, the provided fraudulent data points come with ground truth features that are132
indicative of the fraud case according to auditing experts, which we utilize as ground truth explanations.133
For analysis in this work, we rely on the joint machine-learning ready data provided by Tritscher et al.134
(2022a) that focuses on the financial accounting data. We utilize their run normal 2 that contains 32337135
data points of purely normal operation for training the anomaly detector and evaluating explanations on the136
86 different fraud cases contained in their run fraud 3. We choose these runs following the experimental137
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setup of Tritscher et al. (2022b), again using fraud 3 as the dataset with highest performance of the used138
anomaly detection model and the corresponding normal behavior of normal 2.139

2.4 Models140

To showcase XAI algorithms on the introduced data, we select an anomaly detection model with high141
detection performance through common metrics such as AUC-PR and AUC-ROC scores from literature142
for each dataset. We specifically require high performance from our anomaly detectors to not obscure the143
quantitative XAI evaluation. With poorly performing models a miss match of ground truth and explanation144
may be caused by the model, and not just the XAI approach, preventing the result from reflecting the XAI145
performance.146

For the MVTec image dataset, Kauffmann et al. (2020b) train kernel density estimation (Rosenblatt, 1956),147
deep support vector data description (Ruff et al., 2018), and autoencoder neural networks (Goodfellow et al.,148
2016) on MVTec data. While their models show high anomaly detection performance, further analyzes by149
the authors reveal that their models and model ensembles use spurious correlations in the data, which may150
skew a quantitative XAI evaluation. Wang et al. (2021) propose a student-teacher neural network that is151
designed for segmenting anomalous regions within the MVTec images. The network incorporates a teacher152
network that consists of three pre-trained feature extraction layers from the popular ResNet-18 architecture153
(He et al., 2016) and a randomly initialized student that possesses the same network architecture as the154
teacher and is trained to mimick the pre-trained teacher on normal training data. While the resulting155
student-teacher architecture directly outputs image segmentation maps with highlighted anomalous regions,156
it can be adapted to image-level anomaly detection through adding a mean pooling step to the final output.157
This creates a well-performing image-level anomaly-detector that is capable of finding anomalies within158
the MVTec data both on an image- and a pixel-level and can be used as a test-bed for the investigated XAIs.159

For the ERP dataset, Tritscher et al. (2022b) conduct a hyperparameter study of multiple anomaly160
detectors on the data, finding architectures that yield good results on the dataset. For our showcases, we161
select their second best performing model, the autoencoder neural network (Goodfellow et al., 2016)162
architecture, with their found hyperparameters as they show that their best performing one-class support163
vector machine (Schölkopf et al., 2001) exhibits an erratic decision process that may influence a quantitative164
XAI evaluation and autoencoder networks are commonly studied in the domain of explainable anomaly165
detection Ravi et al. (2021); Antwarg et al. (2021); Müller et al. (2022).166

2.5 Evaluation Metrics167

To showcase the performance of different feature relevance XAI approaches, we utilize the binary ground168
truth explanations contained in the datasets that denote for each input feature whether the feature was169
indicative of the underlying anomaly (1) or part of normal behavior (0). To generate quantitative results170
with this type of ground truth explanation, a performance metric for comparing ground truth with generated171
explanations is required.172

Hägele et al. (2020) use the well known area under the receiver operating characteristic (ROC) as metric173
for their feature relevance evaluation on medical image data. As ROC scores are calculated using the true174
positive rate over increasing threshold values, early true positives are more impactful to the resulting area175
under the curve. When applied to feature relevance, this corresponds to a stronger focus on finding truly176
relevant features within the top scoring features of a given explanation. This is an intuitive metric, as177
anomaly detectors do not need to identify all anomalous features within an anomaly, but may sufficiently178
detect the anomaly by focusing heavily on few features that are indicative of the anomalous behavior.179
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To complement the ROC score, we also report cosine similarity (COS) as used for feature relevance180
evaluation by Kauffmann et al. (2020b), which reflects the similarity of the found feature relevance181
explanations to the entire ground truth. Intuitively, this corresponds to how well an obtained explanation182
finds all truly anomalous features. This metric also holds interesting properties in the the case of non-binary183
ground truths, since COS respects the magnitudes of the ground truth feature relevance.184

Both metrics can be calculated for each data point individually, and can then be aggregated across185
multiple anomalous data points. In this work, we therefore report mean and standard deviation of the186
resulting metrics across all anomalies.187

3 DATA-SPECIFIC EXPLANATIONS

Data-specific explanations identify relevant feature values of anomalies entirely through training data188
without any access to the anomaly detection model. The anomalies themselves are found by an anomaly189
detection model, effectively making data-related explanations post-hoc XAIs. However, these approaches190
act independently of the anomaly detection model and identify relevant features in given anomalies entirely191
through their own assumptions.192

3.1 Contextual Outlier Interpretation193

Contextual Outlier INterpretation (COIN) (Liu et al., 2018), to our knowledge currently the only data-194
specific post-hoc feature relevance XAI approach, explains an anomalous data point x found by an anomaly195
detection model m by determining how much it’s input features are responsible for separating x from196
training data Xtrain. As a first step, COIN extracts context data points C from the normal data within197
Xtrain that are close to x in feature space through nearest neighbors such that nn(x,Xtrain) = C. Since198
several distinct types of normal behavior might exist in the data, COIN then uses clustering cl(C, c) = Cc to199
separate the context data points C into individual groups c with similar behavior. For each of these groups,200
a decision boundary separating Cc from the anomaly x is learned via a linear support vector machine s201
(Boser et al., 1992) with loss Ls(x, Cc) and an L1 regularization term Ω(s) through202

Sc(x) = argmin
s

Ls(x, Cc) + Ω(s). (1)

Letting wc ∈ Rd denote the weights of the resulting linear support vector machine Sc for context group203
c, the relevance of individual feature values within x are then obtained through the weights of the SVM204
through205

fc(xi) = abs(wc,i)/γc,i , (2)

where γc,i denotes the average distance between data points in Cc for the ith feature. To obtain the final206
feature relevance scores of anomaly x, the feature relevance scores of individual context groups are207
averaged. This results in the following process for feature relevance explanations:208

fCOIN (xi,Xtrain) = (1/|nn(x,Xtrain)|)
∑
c

|cl(nn(x,Xtrain), c)| · fc(xi). (3)

3.2 Limitations209

Data-specific feature relevance XAIs explain found anomalies purely from the data domain, and are210
therefore applicable without any access to the anomaly detection model. Due to this complete separation211
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of anomaly detection model and explanation approach, the XAI needs to build its feature relevance212
explanations purely relying on given data. As observed in the introduced COIN framework, this requires213
additional assumptions regarding the data in multiple steps during the explanation process. Since COIN214
relies both on a nearest neighbors algorithm to identify the local context data points around a given215
anomaly, and on clustering to separate multiple distinct types of normal behavior in the data, this requires216
the definition of a meaningful distance function within the data. Obtaining reasonable assumptions regarding217
the distance metric for a given dataset is a non-trivial task, effectively requiring the construction of an218
additional, well-performing, distance-based anomaly detection system to obtain high quality explanations219
for a given dataset. As a result, if such a well-performing distance-based anomaly detection system is220
not available, e.g. in domains where distance-based anomaly detectors perform poorly in general, an221
application of the COIN framework may yield poor results due to it’s internal reliance on the construction222
of an additional anomaly detector.223

4 PERTURBATION-BASED EXPLANATIONS

In contrast to data-driven approaches that only access the final decision of an anomaly detection model224
m(x) for a given anomalous data point x, perturbation approaches allow free access of the model decision225
function m on arbitrary data points. While this does not provide direct knowledge on the structure of the226
anomaly detection model, effectively treating m as a black box, it provides an opportunity to probe the227
model behavior. Perturbation approaches use the access to the anomaly detection function m by repeatedly228
constructing synthetic data points x′ through altering the given anomalous data point x, and probing the229
anomaly detection model’s reaction to the alterations by applying the model to the synthetic data points230
through m(x′).231

To obtain relevance scores for individual features, this probing procedure is used to remove features and232
feature combinations from the anomaly x and measure the model’s reaction to the presence and absence233
of features. Perturbation approaches alter an anomalous data point x = [x1, x2, . . . , xd] of dimensionality234
d by determining a set of features K ⊆ {1, 2, . . . , d} to keep, and subsequently deleting, i.e. perturbing,235
the KC remaining features not in K from data point x, where KC denotes the complement of K (i.e.236
KC = {1, 2, . . . , d}\K). This perturbation procedure is used by several XAIs repeatedly on a single data237
point x to gather information on the behavior of the machine learning model when specific feature values238
within x are removed, allowing them to identify single features and feature groups that determine the model239
output. Since a large amount of machine learning models are not capable of handling missing values, the240
construction of perturbed data points is commonly achieved not through deletion but through replacing the241
values in KC with additional reference data r ∈ Rd through h(x, r,K) = [ xK , rKC ].242

4.1 Local Interpretable Model-Agnostic Explanations243

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) generates explanations244
for model decisions on single data points x through the perturbation procedure. LIME generates a synthetic245
dataset X ′ around anomaly x through s : Rd,Rd → X ′ by perturbing x with reference data r and sampling246
the features to perturb from a uniform distribution such that247

s(x, r) = X ′ ∼ U({h(x, r,K), K ⊆ {1, 2, . . . , d}}). (4)

These synthetic data points are then weighted through a proximity measure πx that indicates the proximity248
of the synthetic points to the original data point x to explain. Using this synthetic data, an explanation is249
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then obtained through the parameters of a linear and therefore interpretable model with linear coefficients250
w ∈ Rd and bias b ∈ R, that is trained to mimick the original model m on the synthetic data points X ′251
in the proximity πx through a loss function L(m,w, b,X ′, πx). This linear model is regularized through252
a complexity measure Ω(w), which enforces simple and readily interpretable linear coefficients w. As a253
result, LIME generates explanations for a data point x by linearly approximating the original model m in254
the local proximity πx through255

(W (x,m, r), B(x,m, r)) = argmin
(w,b)

L(m,w, b, s(x, r), πx) + Ω(w). (5)

This results in a local linear model with one linear coefficient for each input feature. As a result, the linear256
coefficients show the relevance of each feature in the local vicinity of X ′ and can be taken directly as257
feature relevance explanations through258

fLIME(x,m, r) = W (x,m, r). (6)

Ravi et al. (2021) directly apply LIME on the anomaly detection MVTec dataset with a brief qualitative259
demonstration of results. Further, Zhang et al. (2019) apply LIME on multiple anomaly detection datasets260
from the security domain that focus on intrusion and malware detection. While LIME yields both positive261
and negative contributions to the model output, Zhang et al. (2019) only retain contribution signals that262
cause an increased anomaly score. They also introduce an additional, optional loss term based on KL263
divergence that allows for determining the desired distribution of output explanation scores.264

4.2 Shapley Value Explanations265

The Shapley value (Shapley, 1997), a well-known result from cooperative game theory, describes a unique266
solution to fairly distributing cooperatively achieved gain among n cooperating players by measuring the267
achieved gain of partial coalitions. The solution provided by Shapley uniquely satisfies desirable fairness268
properties such as permutation in-variance of coalitions and zero gain for players not included in the269
coalition, among others. The Shapley value ϕi for a single player i represents the gain generated by player i270
and can be computed through iteratively measuring the gain of all coalitions without player i in comparison271
to the same coalition with player i included, giving272

ϕi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (7)

for the set of all players N = {1, 2, . . . , n} and a function v(S) to compute the gain of a coalition S.273

Applying Shapley values to the domain of feature relevance explanations, as done by Lundberg and Lee274
(2017), is achieved by viewing the features of x as players, building coalitions through perturbations, i.e.275
through keeping and replacing features, and computing the gain as the outcome of applying the model on276
the synthetic data point from the coalition, giving277

fShapley(xi,m, r) =
∑

K⊆N\{i}

|K|!(d− |K| − 1)!

d!
(m(h(x, r,K ∪ {i}))−m(h(x, r,K)). (8)
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Table 1. Mean and standard deviation of perturbation XAI performance comparing to ground truth
explanations over all anomalies for ERP and MVTec data respectively.

(A) ERP
XAI ROC COS
noise 22.7 (7.0) -28.7 (5.3)
noise×input 52.3 (13.0) -27.2 (8.2)
LIME 75.7 (3.9) 28.6 (8.3)
SHAP 74.4 (17.1) 32.3 (25.1)

(B) MVTec
XAI ROC COS
noise 50.2 (1.8) 6.3 (2.7)
noise×input 32.3 (10.7) -4.5 (5.5)
LIME 56.6 (9.2) 10.9 (13.7)
SHAP 64.5 (19.9) -5.3 (2.8)

Since computing the true Shapley value as feature relevance is prohibitively resource-intensive for278
reasonably sized numbers of features d, multiple approaches exist for estimating Shapley values. As the279
predominant work in XAI, SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) shows that280
proposing slight alterations to existing XAI approaches can yield approximate Shapley value explanations.281
For their approach ”kernel-SHAP”, the authors adapt the perturbation framework of LIME, showing that282
LIME is capable of recovering an approximation of Shapley values using the following choices of proximity283
kernel πx and regularization term Ω(g) when fitting LIME’s linear approximation model in Equation (5):284

πx =
d− 1( d

K

)
·K · (d−K)

, Ω(g) = 0 (9)

For datasets with high dimensionality d and a known hierarchy between dimensions (e.g. local dependencies285
in images), ”partition-SHAP” extends this approach to groups of features through the game-theoretic286
extensions to Owen values (Owen, 1977) and achieves faster run times as a result.287

Shapley value explanations are some of the most used approaches in anomaly detection, with multiple288
applications on reconstruction-based anomaly detectors such as autoencoder neural networks (Ravi et al.,289
2021; Antwarg et al., 2021; Tritscher et al., 2022b; Müller et al., 2022). While Ravi et al. (2021); Tritscher290
et al. (2022b) apply Shapley value estimation directly on the final anomaly score of the reconstruction-based291
anomaly detection model, Antwarg et al. (2021) first identify the features with highest reconstruction errors292
and apply kernel-SHAP directly on the most deviating features. Müller et al. (2022) further extend this293
approach to categorical one-hot encoded data by averaging over groups of one-hot encoded features.294

4.3 Showcase and Limitations295

4.3.1 Showcase of perturbation approaches296

To be able to discuss the application of perturbation approaches to anomaly detection and showcase297
the resulting limitations in detail, we first demonstrate the performance of the two previously introduced298
approaches LIME and SHAP using their default parameter settings on the datasets MVTec and ERP299
described in Section 2.3. While we use kernel-SHAP for all applications of SHAP on ERP data, we use the300
authors’ partition-SHAP implementation for the large image dataset of MVTec to maintain computational301
feasibility. We compute feature relevance explanations on all anomalies in the respective test datasets and302
compare the resulting explanations to ground truth using the ROC score and cosine similarity as discussed303
in Section 2.5. Additionally, to ease interpretablility of results, we introduce two random baselines that304
include explanations sampled from random uniform noise, as well as a multiplication of random uniform305
noise with the anomalous input itself (noise×input). Table 1A shows that both LIME and SHAP are capable306
of highlighting relevant features on ERP data, demonstrating considerably higher scores then random noise.307
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(A) Image from the ImageNet classification dataset (B) Perturbed image using mean reference r

(C) Anomalous MVTec image x (D) ground truth anomalies in x (E) x′ using mean reference r

Frontiers 1

Figure 2. Demonstration of perturbation with mean reference r in classification (A-B) and anomaly
detection (C-E). In classification, mean reference is capable of completely removing the class signal ’dog’
in image B. In anomaly detection, replacing all areas that contain anomalies (highlighted in image D) with
mean reference r introduces new anomalous signals in the resulting data point in image E.

On the image data of MVTec in Table 1B, however, both approaches perform poorly on all metrics with308
only small improvements over the random baselines.309

4.3.2 Limitation: choice of reference values r310

One key aspect of perturbation-based explanation approaches is the choice of reference data r for311
removing signal and representing missing information, which is a non-trivial question that is still unsolved312
in current research (Ancona et al., 2019). Common references that stem from well researched tasks such as313
image classification include replacing feature values with zero values or averages obtained from training314
data (used by LIME and SHAP as default in Table 1). We demonstrate this on an image of a dog in315
Figure 2A, taken from the well known ImageNet classification dataset (Russakovsky et al., 2015). When316
classifying a dog within the image, perturbing features through mean values from data as reference r (here317
calculated from the ImageNet validation split as demonstration), intuitively removes any signal present318
in the replaced features that might be indicative of the dog (see Figure 2B). As a result, mean values are319
capable of removing the relevant signal on perturbed input features in this setting.320

Within the domain of anomaly detection, however, these fixed reference values might introduce unwanted321
signals into the data. We demonstrate this on an anomalous data point from the MVTec test dataset that322
contains a bent wire anomaly in an otherwise normal wire mesh (Figure 2C). The anomalous inputs323
according to the ground truth explanations are highlighted in Figure 2D. Replacing a region that covers324
all anomalous inputs with mean values from the MVTec training data may still yield an anomalous data325
point x′ that does not represent the well-defined normal behavior of a wire mesh (see Figure 2E). Even326
though all inputs that contain anomalous entries have been replaced from the initial anomaly, the resulting327
image may still be declared as anomaly by the model and therefore prevent XAI approaches from finding328
the relevant anomalous inputs.329
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(A) Anomalous MVTec image x (B) nearest neighbor as r (C) x′ with nearest neighbor as r

Frontiers 1

Figure 3. Demonstration of perturbation with nearest neighbor in normal train data as reference r: while r
is visually closer to the anomaly x than the mean of training data from Figure 2E, the perturbed point x′
still shows highly anomalous characteristics on the replacement borders.

4.3.3 Finding optimal reference values r in anomaly detection330

To alleviate this issue, reference values r have in the past been chosen in the context of the data point x,331
e.g. through finding nearest neighbors to x within normal training data that is both similar to x and lies332
within the normal data manifold (Takeishi and Kawahara, 2020). While this can indeed produce normal333
data points after perturbation for some groups of retained feature values K (e.g. when replacing all values334
within x), for some values of K the combination of anomalous data point x and it’s nearest neighbor might335
still introduce further unwanted anomalies as visualized in Figure 3.336

To achieve better perturbation-based explanations, Takeishi and Kawahara (2020) propose to find r337
dynamically dependent on the data point x and features to keep K. To additionally ensure that the perturbed338
features make the resulting data point more normal, Takeishi and Kawahara (2020) generate the synthetic339
data point x′opt by minimizing the model output in the local neighborhood Nx of the original data point340
while constraining the features in K to their original values in x, giving341

x′opt = argmin
x̂∈Nx

m(x̂) s.t. x̂i = xi,∀i ∈ K. (10)

Takeishi and Kawahara (2020) further relax this generation procedure by searching for a local minimum of342
Equation (10) instead through343

x′lopt = argmin m(x̂) + γ · dist(x, x̂) (11)

using a distance function dist : Rd ×Rd → R, which may be minimized through constrained optimization344
with the constraints x̂i = xi,∀i ∈ K. To further reduce the computational overhead required for synthetic345
data generation on data points with reasonably low dimensionality (d < 500), they additionally propose to346
only carry out optimizations using Equation (11) while keeping single features individually (i.e. setting347
|K| = 1) and constructing synthetic data points through348

x′i =


xi if i ∈ K

1
|K|+1 ·

(
x′lopt(∅) +

∑
i∈K x′lopt({i})

)
else.

(12)

349
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Table 2. Mean and standard deviation of SHAP performance for ERP and MVTec data when using mean
of training data (mean), zero vector (zeros), nearest neighbor in training data (NN), and optimized data
points (lopt) as reference r.

(A) ERP
r ROC COS
mean 74.4 (17.1) 32.3 (25.1)
zeros 82.1 (14.2) 58.2 (16.3)
NN 56.0 (15.1) 16.8 (38.0)
lopt 88.6 (11.2) 66.1 (20.5)

(B) MVTec
r ROC COS
mean 64.5 (19.9) -5.3 (2.8)
zeros 67.8 (19.9) -2.8 (3.4)
NN 66.8 (15.5) -3.3 (3.5)
lopt 57.7 (21.4) 4.4 (8.3)

To demonstrate the effect of these different choices of reference values, we conduct an additional350
showcase using SHAP with different reference values r. Next to the mean of training data (mean), we351
demonstrate SHAP’s performance when using the zero vector as reference (zeros), which is another352
common choice in classification and regression settings. We also evaluate nearest neighbors of the normal353
training data (NN) as choice of reference, and integrate the approach of Takeishi and Kawahara (2020)354
into SHAP (lopt). For the lower dimensional ERP dataset we integrate the approach of Equation (12) into355
kernel-SHAP. For the larger dimensional MVTec dataset we integrate Equation (11) into partition-SHAP.356
Observing the results in Table 2, we notice that while zero values yield good explanations on ERP data the357
optimization procedure of Takeishi and Kawahara (2020) is capable of further improving results. For the358
image dataset MVTec, however, only minor increases on some performance metrics are observed, with the359
overall explanations still very poorly correlating with the ground truth.360

Investigating the generated data points x′lopt for the MVTec data in detail reveals that this approach361
produces many adversarial examples, i.e. examples that appear normal to the anomaly detection model,362
but do not truly conform to the characteristics of normal behavior. We demonstrate this behavior on363
our previously used anomaly x in Figure 4. Here, optimization yields a data point x′lopt that is visually364
indistinguishable from x, with actual differences between the points enlarged in Figure 4C. This adversarial365
behavior indicates that the method relies on areas where the decision boundary of the underlying anomaly366
detection model m is not capable of generalizing and falsely associates data points with anomalous367
characteristics within the normal data.368

As the generation of adversarial samples might skew the resulting explanations, future research might369
gain improvements over the work of Takeishi and Kawahara (2020) by specifically tuning the optimization370

(A) Anomaly x keep darker area K (B) x′lopt after Equation (1) (C) difference: (x− x′) · 100

x′lopt = argmin m(x̂) + γ · dist(x, x̂) (1)

Frontiers 1

Figure 4. Perturbation with Equation (11) on MVTec: when perturbing x while keeping the dark area
K shown in A, Equation (11) generates data point x′lopt that is visually indistinguishable from x (B). We
visualize the amplified change in pixel values in C.
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process to find plausible inputs, which is a common technique used within the research area of counterfactual371
explanations (Guidotti, 2022). Additionally, the procedure of Takeishi and Kawahara (2020) introduces a372
large computational overhead for perturbation approaches that take thousands of sampled x′ values for373
each data point x to explain. Further improving the performance aspects of this procedure is therefore374
another promising area of research.375

5 GRADIENT-BASED EXPLANATIONS

In contrast to model-agnostic XAI approaches that base their explanations entirely on the input x and376
output of the investigated model m(x), gradient-based approaches leverage the gradient of the model377

output with respect to the input
∂m(x)

∂x
as additional information, therefore requiring investigated models378

to be differentiable with regards to their input and assuming that the model parameters are available during379
inference.380

5.1 Saliency381

Simonyan et al. (2014) established the use of the gradient of the output with respect to the input as a382
way to interpret backpropagation-based anomaly detectors. For their feature relevance explanations on383
image classification, which they refer to as saliency maps, they take the absolute gradient of the output384
with respect to the input, using the maximum gradient value for each pixel over all color channels in the385
case of rgb images:386

fSaliency(x,m) = |∂m(x)

∂x
| (13)

Beyond the utilization of the raw gradient, many applications also include a multiplication of the signed387
gradient values with the original input to achieve a less noisy feature relevance output (Shrikumar et al.,388
2016), leading to an approach commonly referred to as gradient×input:389

fgradient×input(x,m) =
∂m(x)

∂x
· x (14)

Nguyen et al. (2019) employ Saliency to obtain gradient-based feature relevance explanations for390
variational autoencoder networks on anomaly detection in NetFlow data, and further cluster the obtained391
feature relevance explanations to identify characteristics of anomalies.392

5.2 Integrated Gradients393

Sundararajan et al. (2017) note that Saliency approaches break a desirable sensitivity property that394
explanation approaches ought to satisfy: when only a single feature is changed within a data point, and395
this change alters the model’s prediction, the feature should obtain a non-zero contribution. Since Saliency396
may violate this property in areas where the gradients are zero (e.g. around saturated activation functions),397
Sundararajan et al. (2017) propose a path-based approach. For a given data point x, they propose to use a398
reference data point r and define a smooth function giving interpolated data points on the straight-line path399
between x and r as γ(x, r, α) : Rd,Rd, [0, 1] → Rd. Gradients are then calculated for these synthetic data400
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points, and an overall feature relevance explanation accumulated through a path integral401

fIG(x,m, r) =

∫ 1

α=0

∂m(γ(x, r, α))

∂γi(x, r, α)

∂γi(x, r, α)

∂α
dα , (15)

with
∂m(x)

xi
as the gradient of m at x along dimension i. The resulting approach, called Integrated402

Gradients (IG), yields feature relevance values that sum to the difference of the model output at the data403
point to be explained and the output at the reference point.404

Sipple (2020) apply IG on anomaly detectors trained through negative sampling by choosing the nearest405
neighbors of data points in Euclidean space as reference r. Sipple and Youssef (2022) motivate the use406
of IG in anomaly detection from a human perspective and apply IG to real world data while sampling407
reference points r from clustered normal data.408

5.3 Layerwise Relevance Propagation409

Instead of utilizing the gradient directly for feature relevance attribution, Layerwise Relevance410
Propagation (LRP) (Bach et al., 2015) utilizes deep Taylor expansion Montavon et al. (2017) to build411
feature relevance explanations within neural networks.412

Consider a neural network that consists of L subsequent layers with uli being the ith intermediate neuron413
in layer l ∈ {1, 2, . . . , L− 1}, and where u1 = x denotes the input layer and uL denotes the output layer.414
LRP then computes a relevance value Rl

i for each neuron uli within the network. To obtain the relevance415
values for the input layer that correspond to feature relevance explanations fLRP (x,m) = R1, LRP first416
assigns the relevance of the last network layer to the final model output (RL = uL = m(x)). Then, the417
entire relevance is propagated to the previous layer recursively while maintaining the same total relevance418
in each layer (

∑
iR

l
i =

∑
j R

l+1
j for all i neurons in layer l and all j neurons in layer l + 1), called the419

conservation property of LRP. The actual propagation of relevance to a neuron i of the previous layer is420

realized through a Taylor expansion around a manually chosen root point ũ(j)i with421

Rl
i =

∑
j

∂Rl+1
j

∂uli
|
ũ
(j)
i

· (ui − ũ
(j)
i ). (16)

While it has been shown that under specific parameter choices LRP is equivalent to the gradient×input422
approach in Equation (14) (Shrikumar et al., 2016), advantages of this approach are the possibility to423
manually choose the order of Taylor expansion for each layer, which allows the approach to go beyond the424
first order approximations of gradients when needed. Additionally, the root point ũ also needs to be chosen425
manually for each layer, such that the conservation property of LRP is retained.426

Amarasinghe et al. (2018) apply LRP in its standard setting on the task of detecting denial of service427
attacks, but model the task as direct classification using feed forward neural networks instead of anomaly428
detection architectures. As a direct application on anomaly detection architectures, Ravi et al. (2021) use a429
standard variant of LRP that is equivalent to gradient×input on autoencoder neural networks trained on the430
MVTec dataset. To appropriately adjust LRP to the task of anomaly detection, Kauffmann et al. (2020b)431
propose specific propagation rules for common neural network layers in anomaly detection, and introduce432
a unifying framework that transfers existing anomaly detectors into neural network representations that use433
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Table 3. Mean and standard deviation of gradient XAI performance comparing to ground truth explanations
over all anomalies for ERP and MVTec data respectively.

(A) ERP
XAI ROC COS
noise 22.7 (7.0) -28.7 (5.3)
noise×input 52.3 (13.0) -27.2 (8.2)
Saliency 50.4 (15.9) 6.0 (18.8)
gradient×input 88.1 (13.0) 63.7 (18.5)
IG 78.8 (14.9) 35.6 (20.7)
LRP 65.3 (20.5) -22.0 (13.9)

(B) MVTec
XAI ROC COS
noise 50.2 (1.8) 6.3 (2.7)
noise×input 32.3 (10.7) -4.5 (5.5)
Saliency 72.4 (5.0) 22.1 (8.0)
gradient×input 76.5 (4.4) 25.2 (8.7)
IG 64.1 (6.4) 13.5 (7.4)
LRP 65.0 (7.1) 1.8 (3.4)

layers for which LRP rules are defined. Through this transfer procedure, they show that LRP is applicable434
to a wide range of anomaly detectors.435

5.4 Showcase and Limitations436

5.4.1 Showcase of gradient-based approaches437

To discuss the limitations of the introduced gradient-based approaches in detail, we again first showcase438
their performance in their default configuration, using the mean of training data as reference point r for IG439
and employing the parameter choices of Kauffmann et al. (2020b) for LRP. The resulting explanations in440
Table 3 compared to our random noise baselines show that all approaches are capable of finding relevant441
features. Especially the gradient×input approach shows strong performance on both datasets. While the442
multiplication with input appears necessary on the ERP data, the raw gradient of the Saliency method443
reaches comparable performance on the MVTec image data. IG performs well on ERP data but struggles444
on the MVTec image dataset in its default configuration, and LRP shows low performance on both datasets.445

5.4.2 References r for path-based approaches446

While the results of the raw gradients in the Saliency and gradient×input methods are in line with447
observations that the gradient signal does indeed yield explanation properties (Simonyan et al., 2014),448
many works in the past identified that these explanations are noisy and insensitive to specific signals (e.g.449
when gradients vanish due to saturated activation functions) (Shrikumar et al., 2016; Sundararajan et al.,450
2017). One of the proposed solutions, summing gradients along a path to avoid regions where gradients451
are zero as done in IG, again requires a reference data point as hyperparameter. According to the authors,452
this reference should be chosen to remove signal (Sundararajan et al., 2017), opening up gradient based453
approaches to the same issues as perturbation-based approaches with regards to finding a specific reference454
value that is devoid of anomaly signal, as discussed in Section 4.3.455

To show the impact of the choice of reference r on path-based explanations, we demonstrate the effect456
of both established references from image classification such as the mean of training data (mean) and the457
zero vector (zeros), as well as the anomaly detection specific choices of nearest neighbors (NN) and the458
optimization scheme in Equation (12) (lopt) which we introduced in Section 4.3. While results in Table 4459
show decent performance of IG when using the mean and zeros references from image classification, the460
nearest neighbor reference performs poorly on the ERP data. The optimization scheme of Takeishi and461
Kawahara (2020) on the other hand indeed improves performance considerably, yielding very high XAI462
performance scores on all metrics for both datasets.463
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Table 4. Mean and standard deviation of IG performance on ERP and MVTec data with varying reference
point r.

(A) ERP
r ROC COS
mean 78.8 (14.9) 35.6 (20.7)
zeros 84.4 (14.0) 58.2 (20.1)
NN 54.9 (13.3) 16.5 (37.4)
lopt 90.8 (11.9) 65.8 (21.7)

(B) MVTec
r ROC COS
mean 64.1 (6.4) 13.5 (7.4)
zeros 67.5 (6.3) 17.8 (8.1)
NN 70.5 (5.4) 21.0 (9.1)
lopt 96.2 (2.4) 34.5 (10.5)

Despite the strong performance, however, an inspection of the created reference points in Figure 5 again464
shows that this procedure creates adversarial reference points that might skew explanations away from465
truly meaningful characteristics learned by the model. As seen in Figure 5B, references created through466
Equation (12) are visually indistinguishable from the original data point in Figure 5A and still retain their467
anomalous segments (previously highlighted in Figure 2D). While the changed feature values in r, which468
we visualized in an amplified form in Figure 5C shows that changes were indeed made in the vicinity of469
the three anomalous segments within anomaly x, the interpretation of explanations that result from using470
adversarial reference points r that contain normal behavior only for the anomaly detector but not for a471
human observer is unclear.472

5.4.3 Architectural limitations of Layerwise Relevance Propagation473

The alternative approach of LRP avoids the use of reference data points. However, the demonstrated474
results of Table 3 showed poor performance of LRP compared to other gradient-based approaches. Reasons475
for this behavior may be found in the architectural limitations of the LRP framework: while Kauffmann476
et al. (2020b) propose LRP rules that allow it’s application on many established differentiable anomaly477
detection models, the LRP framework is not capable of distributing relevance in scenarios where one478
layer has multiple input layers. To model common anomaly detection architectures such as autoencoder479
networks, where the anomaly score is usually extracted from a distance between the input layer and the480
reconstruction layer of the autoencoder, Kauffmann et al. (2020b) model the input layer as constant in the481
distance calculation. While this is a necessary assumption to retain the relevance conservation property482
of LRP, experimental results on the ERP autoencoder show that performance suffers significantly by not483
assigning a gradient to the input layer, causing LRP to generate considerably lower explanation scores484

(A) Anomaly x (B) r after Equation (1) (C) difference: (x− r) · 100

x′lopt = argmin m(x̂) + γ · dist(x, x̂) (1)

Frontiers 1

Figure 5. Generating reference r through Equation (11) on MVTec: similar to the perturbation issues
described in Section 4.3, Equation (11) generates reference points r that are visually indistinguishable from
x (A and B). We again visualize the amplified change in pixel values in C.
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Table 5. Results of LRP on the ERP autoencoder when keeping the distance layer input constant as in
(Kauffmann et al., 2020b) and when allowing a gradient flow. Performance improves significantly when
breaking the conservation property and allowing gradient flow.

xai variant ROC Cos
lrp constant 65.3 (20.5) -22.0 (13.9)
lrp gradient 88.0 (12.8) 62.2 (19.2)

in comparison to other gradient-based approaches in Table 3A. Removing this assumption and applying485
the LRP variant of Kauffmann et al. (2020b) on the ERP autoencoder while retaining the gradient in the486
distance calculation significantly improves performance as shown in Table 5, but violates the relevance487
conservation property of LRP. As a result, while LRP successfully avoids the use of a reference data point, it488
is not readily applicable to common architectural choices such as distance calculations or skip connections.489
Further research into correctly distributing attribution according to the LRP properties between multiple490
layers that each possess a gradient with respect to the input is therefore desirable.491

6 MODEL-SPECIFIC EXPLANATIONS

Aside from the previously introduced approaches that operate either entirely model-agnostic or only492
require a differentiable anomaly detector, multiple works have been proposed to generate feature relevance493
explanations for specific anomaly detection architectures. In contrast to the previously discussed approaches494
these methods heavily exploit the structure of the underlying anomaly detector to generate feature relevance495
explanations.496

6.1 Depth-based Isolation Forest Feature Importance497

Carletti et al. (2020) introduce Depth-based Isolation Forest Feature Importance (DIFFI) as an explanation498
approach for the well known isolation forest Liu et al. (2008) algorithm. Isolation forest is an unsupervised499
algorithm that uses the concept of isolation to identify anomalies using an ensemble of decision trees.500
The decision trees are generated by randomly splitting the training data until all training points are fully501
separated. Anomalies are then detected by measuring how fast they arrive on the leaf nodes of the learned502
trees, noting that points that are quickly isolated at random carry anomalous characteristics that allowed for503
the isolation. To generate feature relevance scores for single data point decisions made by isolation forests,504
Carletti et al. (2020) utilize this intuition by traversing a learned tree to the data point and assigning the505
inverse height of the data point within the tree as relevance to all features that were used as split criteria506
along the path to the data point. This process is repeated for all trees and feature relevance scores are507
summed, attributing the isolation of an individual data point to the used splitting features along all paths.508
Finally, all features are weighted by their inverse occurrence along all paths to counteract an effect on the509
explanations through the random selection during training of the isolation forest.510

Kartha et al. (2021) extend this approach to additionally factor in the imbalance of trees before and after511
a split criterion, giving more relevance to features that truly isolated the data point to be explained instead512
of relying purely on the height of the split criterion in the tree.513

6.2 Principal Component Analysis-based Anomaly Detection514

Takeishi (2019) presents an approach to extract feature relevance explanations from an anomaly detector515
based on probabilistic principal component analysis (PCA) (Tipping and Bishop, 1999). This detector learns516
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a linear encoding e : X → Z of data points X ⊆ Rd into a latent space Z ⊆ Rp with dimensionality p < d517
where the data X is decomposed into its eigenvectors and only the p dimensions with highest eigenvalues518
are retained. Points are then reconstructed through an additional linear decoding function d : Z → X and a519
score of outlierness is obtained through the reconstruction error of applying the transformation through520
||x− d(e(x))||2 for a given data point x.521

On this linear anomaly detector, Takeishi (2019) obtains feature relevance explanations through Shapley522
values as described in Section 4.2. While the perturbation approaches of Section 4.2 use reference data r to523
assess the detection output in absence of different features, Takeishi (2019) avoids the use of reference data524
through calculating the probabilities of removed feature entries directly using the probabilistic component525
of the anomaly detector.526

6.3 Neuralization527

Kauffmann et al. (2020a) introduce a ”neuralization” step for explaining the outputs of one-class support528
vector machines (OC-SVM) Schölkopf et al. (2001). In contrast to other model-specific approaches, they529
do not explain the OC-SVM model directly but introduce a specific transfer procedure, neuralization,530
that converts a fully trained OC-SVM into a neural network representation, allowing the subsequent531
application of gradient-based explanation approaches such as the works discussed in Section 5. Their532
proposed procedure transfers the final outlier scoring function learned by the OC-SVM to a two-layer533
neural network that mimicks the behavior of the OC-SVM. Through this conversion they are able to apply534
an LRP-style XAI approach as introduced in Section 5.3 to generate feature relevance explanations. The535
authors further apply this ”neuralization” approach to the anomaly detection approach of kernel density536
estimation (Rosenblatt, 1956) in subsequent work (Kauffmann et al., 2020b).537

6.4 Limitations538

The development of highly model-specific XAI approaches bears significant potential in multiple areas.539
While the close connection to the model architecture might allow for improved computational efficiency540
over model-agnostic approaches (Carletti et al., 2020), the exploitation of model characteristics is also541
a promising way to circumvent current issues of feature relevance XAI approaches such as the choice542
of reference data as demonstrated by Takeishi (2019) on PCA. Finally, mapping fully trained anomaly543
detection models to alternative representations as done by Kauffmann et al. (2020a) is a promising procedure544
that allows the re-use of XAI approaches that have been identified as reliable in the domain.545

While the continuous development of model-specific explanations approaches can therefore provide546
numerous benefits to the domain of feature relevance XAI in anomaly detection, the main limitation of this547
type of approach is the restriction to the specific anomaly detection model. In areas where explainability is548
considered as a requirement of anomaly detectors, this may limit the performance of available detectors549
in cases where a model-specific explanation framework is not available for the best performing anomaly550
detection architecture. Especially on ERP data, hyperparameter studies of Tritscher et al. (2022b) show551
isolation forests and PCA-based anomaly detection to perform considerable worse than other architectures,552
which limits the application of model-specific XAI approaches such as DIFFI or the Takeishi (2019) method553
for explaining anomaly detection of PCA. Beyond potential limitations of anomaly detection performance,554
the promising procedure of Kauffmann et al. (2020a), who map anomaly detectors to different architectures,555
also comes with the limitations of the XAI approach that is applied after the mapping, requiring not only556
the mapping itself but also an XAI approach that is capable of producing reliable explanations on the557
resulting mapped architecture.558
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7 DISCUSSION

In this work, we reviewed XAI approaches that explain single decisions of anomaly detectors by559
highlighting which features are most anomalous. We systematically structured these feature relevance XAI560
approaches by their access to training data and anomaly detector. We introduced the feature relevance561
approaches and their existing adaptations to anomaly detection in detail, and showcased their current562
limitations.563

We showed that the many highly performing XAI approaches employed in anomaly detection require the564
manual selection of a reference data point. This proves problematic in anomaly detection as commonly used565
choices for reference data from other domains such as classification do not transfer to anomaly detection.566

One approach that addresses this problem by finding optimal reference data through optimization567
considerably improves XAI performance in our showcase, but suffers from generating adversarial data568
points that fall outside the training data manifold. As this issue is commonly investigated within the research569
area of counterfactual explanations (Guidotti, 2022), incorporating techniques to avoid these adversarial570
data points during optimization constitutes a promising area for future work.571

As another approach to circumvent issues that arise from reference data points in anomaly detection, we572
discussed model-specific XAIs that use the model architecture to avoid the use of reference data entirely.573
While this is a promising solution to avoid common issues with reference data, this area of research requires574
specific design decisions for individual anomaly detectors. Therefore, developing model-specific XAI575
approaches to ensure that state-of-the-art architectures can be explained without the use of reference data is576
an interesting research direction.577

Finally, once reliable XAI approaches are found within the anomaly detection domain, the extension of578
conversion procedures that transfer trained anomaly detectors such as one-class support vector machines or579
kernel density estimation to a more easily interpretable framework becomes a promising research area that580
allows the transfer of reliable XAI approaches to state-of-the-art architectures.581
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