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ABSTRACT
At the present time, sequential item recommendation models are
compared by calculating metrics on a small item subset (target set)
to speed up computation. The target set contains the relevant item
and a set of negative items that are sampled from the full item set.
Two well-known strategies to sample negative items are uniform
random sampling and sampling by popularity to better approximate
the item frequency distribution in the dataset. Most recently pub-
lished papers on sequential item recommendation rely on sampling
by popularity to compare the evaluated models. However, recent
work has already shown that an evaluation with uniform random
sampling may not be consistent with the full ranking, that is, the
model ranking obtained by evaluating a metric using the full item
set as target set, which raises the question whether the ranking
obtained by sampling by popularity is equal to the full ranking. In
this work, we re-evaluate current state-of-the-art sequential rec-
ommender models from the point of view, whether these sampling
strategies have an impact on the final ranking of the models. We
therefore train four recently proposed sequential recommendation
models on five widely known datasets. For each dataset and model,
we employ three evaluation strategies. First, we compute the full
model ranking. Then we evaluate all models on a target set sampled
by the two different sampling strategies, uniform random sampling
and sampling by popularity with the commonly used target set size
of 100, compute the model ranking for each strategy and compare
them with each other. Additionally, we vary the size of the sam-
pled target set. Overall, we find that both sampling strategies can
produce inconsistent rankings compared with the full ranking of
the models. Furthermore, both sampling by popularity and uniform
random sampling do not consistently produce the same ranking
when compared over different sample sizes. Our results suggest
that like uniform random sampling, rankings obtained by sampling
by popularity do not equal the full ranking of recommender models
and therefore both should be avoided in favor of the full ranking
when establishing state-of-the-art.
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1 INTRODUCTION
A crucial part of developing recommender systems is the evaluation
of the model candidates during the process. Online evaluation is
still the best choice for evaluating recommender models [28], but
it is not applicable during the development of a new model (e.g.,
for finding the best hyper-parameter settings). So, offline evalua-
tion remains the best option for the recommender community to
evaluate new models during development. Because recommender
systems must cover increasingly larger areas of application (in
terms of number of items) in recent years, Koren [24] introduced an
evaluation procedure to speed up the process of metric calculation
during evaluation on these larger item sets. Instead of computing
the metrics on the full item set to get a ranking (called full ranking)
for the models, the metrics are computed on a target set, that is a
small subset of items, containing all relevant items and a defined
number of negative (non-relevant) items that are sampled uniform
from the full item set. Many scientific work has adapted the method
by mainly changing the number of negative samples in the target
set (e.g., [10, 12, 21]). Others have changed the process by sampling
the item set based on the popularity of the items [37] to make the
sampling more representative and reliable. It became common prac-
tice to use the sampling not only while training or developing the
model, but also for reporting the performance of the recommender
models [21, 24, 37].

Recently, in [25] the authors formally showed that the expected
values of most utilized metrics for recommender evaluation based
on uniform sampling depend on the rank of the relevant item as-
signed by the model under evaluation. Therefore, the ranking on
the sampled target set can differ from the one on the full item set.
Attempts to correct the metrics were made by Krichene and Ren-
dle [25] and also by Li et al. [26] in respect to the Hit Rate metric.
Since current state-of-the-art models for sequential recommenda-
tion, that use neural networks to extract the user’s preference, have
also been evaluated using these sampling strategies, we aim to
re-evaluate the results of the past years with respect to how their
performance ranking changes under the different sampling options.
Thereby, we want to validate and extend the findings of [25] to
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these types of recommender models. In particular, we focus on
sampling by popularity for target set generation, because its ef-
fects on comparative ranking with other models has not yet been
studied. To that end, we train four neural sequential recommenda-
tion models, namely, GRU [38], a Recurrent Neural Network (RNN),
NARM [27], a RNNwith attention, SASRec [21] and BERT4Rec [37],
both transformer-based models on five commonly used datasets
Steam, Amazon Beauty and Games and Movielens ML-1m and ML-
20m. Using the trainedmodels, we provide a comparative evaluation
of model performance rankings obtained using three different eval-
uation strategies (1) full item set, (2) sampling by popularity and
(3) uniform random sampling. Furthermore, we also investigate
changes in rank for different sizes of the sampled target set. In
summary, our main contributions are:

(1) We are the first, that analyze the effects of sampling the
target set by popularity on the consistency with the full
ranking and the ranking obtained by sampling the target set
uniform random.

(2) We re-evaluate four current state-of-the-art models for se-
quential recommendation on five commonly used datasets to
confirm the previously reported ranking achieved with sam-
pling the target set by popularity and compare this ranking
with the full ranking.

(3) We test, whether sampling the target set uniform random
yields an inconsistent model ranking with the full ranking
as reported by Krichene and Rendle [25] on different models
and datasets compared to them.

(4) We examine experimentally the consistency between the full
ranking and the ranking obtained by sampling on different
target set sizes.

In our experiments we can reproduce the results of the previ-
ously reported rankings of sequential recommender models using
sampling the target set by popularity. However, our results also
show that both rankings obtained by sampling are inconsistent
with the full ranking on all datasets we tested. We thereby affirm
the reported results of Krichene and Rendle [25] for more datasets
and neural sequential recommender models. When varying the
target set size on the datasets, we find that the sampled rankings
are not consistent with the full ranking. Overall, our results sug-
gest that the full ranking should be used when comparing model
performance.

The remainder of this paper is structured as follows: First, we
layout the general setting in Section 2. Thenwe discuss related work
in Section 3 After describing the experimental setup in Section 4,
we present the obtained results of our experiments in Section 5.
Before we conclude the paper in Section 7, we discuss our findings
in Section 6.

2 SETTINGS
In this section we first specify the sequential item recommendation
task. Then we formally introduce the evaluation setup and metrics
we used to score the recommender models. Furthermore, we define
the strategies for sampling a target set, that we investigate in this
paper.

2.1 Sequential Item Recommendation Task
The goal of a sequential item recommendation model is to learn a
user’s preferences based on her history of item interactions (e.g.,
rating a movie) and to recommend new relevant items based on
the accumulated information. Formally, let 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖 |𝐼 |} be
the set of items and 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 |} the set of users. We
construct sequences 𝑠𝑢 = (𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑙𝑠𝑢

) ∈ 𝑆 with length 𝑙𝑠𝑢

and 𝑠𝑢
𝑗
∈ 𝐼 for each user 𝑢.1 A sequential recommendation model

𝑀 : 𝑆 → 𝑅𝑛 , with 𝑅𝑛 being the set of all permutations of the
position list (1, 2, . . . , |𝐼 |), is now tasked with ranking the next item
first in the position list, given a sequence of past interactions. For
later, we define the function head(𝑠, 𝑡) = (𝑠1, 𝑠2, . . . , 𝑠𝑡 ), that returns
the first 𝑡 steps of a sequence 𝑠 and the function set(𝑠), that converts
a sequence 𝑠 to a set containing all items of sequence 𝑠 .

2.2 Dataset Split Strategy
We use the leave-one-out evaluation strategy as is common in most
related work (e.g., [21, 37]). Therefore, for training we extract for
each sequence in 𝑆 the subsequence containing all items except
the two last items: 𝑆train = {head(𝑠, 𝑙𝑠 − 2) | 𝑠 ∈ 𝑆}. The model is
validated on the penultimate item 𝑠𝑙𝑠−1 and later tested on the last
item 𝑠𝑙𝑠 for each sequence in the dataset using the metrics defined
in the next section.

2.3 Evaluation Metrics
We use two common evaluation metrics for evaluating the models.
Given a sequence 𝑠 and relevant target items 𝑖𝑟 = 𝑠𝑙𝑠−1 and 𝑖𝑟 = 𝑠𝑙𝑠
during validation and testing respectively, the hit rate at position k
(HR@k) [34] measures if the relevant item is in the head/top 𝑘 of the
returned ranking of model𝑀 given the sequence 𝑠 = head(𝑠, 𝑙𝑠 − 2)
for validation and 𝑠 = head(𝑠, 𝑙𝑠 − 1) for testing:

HR@k = |{𝑚𝑖 ∈ head(𝑀 (𝑠), 𝑘) | 𝑚𝑖 = 𝑟 }| .2 (1)

Note, that the HR@k is equal to the Recall@k in our setting with
only one relevant item. The second metric we use for our experi-
ments is the Normalized Discounted Cumulative Gain (NDCG) [34],
that can be formalized in our setting as:

NDCG@k =

𝑘∑︁
𝑖=1

𝛿 (𝑀 (𝑠)𝑖 , 𝑟 )
1

log(𝑖 + 1) , (2)

where𝑀 (𝑠)𝑖 is the i-th entry of the ranking and 𝛿 (𝑎, 𝑏) = 1 if 𝑎 = 𝑏

otherwise 0.

2.4 Ranking of Recommendation Models
To rank a set of recommender models, we rank a target set of items
for every sequence in the test set using each model. We calculate
the metrics on the ranked items and then average the values for
each model and rank the models using the mean. In this paper
we investigate three different strategies to create the target set
of items and name the ranking according to the used method to
extract the target set for calculating the metrics: (1) For the full
ranking we calculate the metrics on the target set that is equal to
1Since we only leverage the user information to build the interaction sequence, we
drop the superscript 𝑢 in the following for better readability.
2Because the recommendation model𝑀 returns the item identifiers, we compare these
identifiers with the identifier 𝑟 of the relevant item.
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the full item set. (2) The target set for the uniform ranking consists
of 𝜂 non-relevant items that are uniform random sampled from the
item space and the relevant item 𝑖𝑟 . In this paper, we remove all
items that are part of the sequence 𝑠 from the sampled item space,
because in our setting the user cannot interact with an item twice.
So, the set of items, where we can sample from, for a sequence 𝑠 , is
𝑁 = 𝐼 \ {𝑖𝑟 } \ set(𝑠). (3) The popularity ranking is the same as the
previous ranking except we sample items from 𝑁 using the item’s
popularity.

Further, we adapt the definition of Krichene and Rendle [25]
and define a ranking 𝑅 of a set of recommender models consistent
with ranking 𝑄 of the same models iff the rank of all models in
𝑅 is equal to the rank in 𝑄 . That means, that the metric value of
a recommender model in 𝑅 used to determine the ranking can be
different to the one obtained for determining the rank in ranking
𝑄 , but two obtained ranks of the model must be the same.

3 RELATEDWORK AND BACKGROUND
In this section we give a brief background overview about sequence
recommendation and list the different random sampling evalua-
tion settings used in previous model evaluation. Further we list
other studies that analyze the sampling evaluation methodology
for recommender systems.

3.1 Background
In this subsection we provide some background about sequence
recommender models and the evaluation methodologies used in
previous work.

3.1.1 Sequential Recommendation Models. First work on recom-
mender systems is based on Collaborative Filtering (CF) to model
the user’s interest given her previous interactions with items [33].
All first proposed CF models, like Matrix Factorization [33], ignore
the order of the user’s interactions to learn the user’s preference. To
overcome this drawback, sequential recommendation models were
introduced. For example, Zimdars et al. [42] models the sequence
for the recommendation task for the first time using first-order
Markov Chains. In recent years, models, that leverage different neu-
ral network types for encoding the sequence into a representation,
have been published. Early work used Recurrent Neural Networks
(RNNs) with Gated Recurrent Units (GRUs) [7] or a Long Short-
Term Memory (LSTM) [17] units as the encoder for the sequence.
While Hidasi et al. [16] use GRUs with a ranking loss, Tan et al. [38]
find that GRUs with cross-entropy loss outperforms GRUs without
the ranking loss used in [16]. A Convolutional Neural Network is
used in the work of Tang and Wang [39]. Attention, a mechanism
that improves Natural Language Processing (NLP) tasks like ma-
chine translation [2, 29], was first applied to the sequential recom-
mendation task by Li et al. [27]. Their model NARM uses attention
with a GRU-based RNN network to encode the sequence into a
representation. In [21] the authors propose the SASRec model, that
is only based on attention and encodes the sequence using a unidi-
rectional Transformer network [41]. Sun et al. [37] extend SASRec
by using a bidirectional encoder and adapt the BERT architecture
and the training objective of the model, that is successfully used

for language modelling in the NLP community, for the recommen-
dation setting. At the very time of this writing this model is the
current state-of-the-art for sequence recommendation.3

3.1.2 Negative Sampling for Recommender Model Evaluation. In
this section, we will point to some work that uses random sam-
pling to build the target set for evaluating recommender models.
Koren [24] use for the first time random sampling to build target
sets. The author draws 1000 negative samples at random when eval-
uating different movie recommenders with the Root Mean Squared
Error (RMSE) as metric. In [10] the authors use uniform negative
random sampling with a size of 9 to evaluate their deep learning
model for news, application and movie/tv recommendation using
the Mean Reciprocal Rank (MRR) and HR@1. The current com-
monly used negative sample size of 100 samples was introduced
by [12] to calculate the HR@10 and NDCG@10 for different rec-
ommenders on the ML-1m dataset and a Pinterest dataset. While
the authors of the SASRec model follow the procedure of [21] to
calculate the Hit Rate and the NDCG, the authors of the BERT4Rec
model sample the 100 negative item based on the popularity dis-
tribution of the dataset [37]. In contrast to this, in [20] the authors
apply a different approach and draw 50 negative samples uniform
from the item set and another 50 items by their popularity.

3.2 Related Work
Early work already studied the effects of the evaluation method-
ology while testing CF recommender methods [3]. In this work,
the authors find that the ranking between the tested three matrix
factorization models is inconsistent when evaluating them using
four different methods, including uniform random sampling, on
the Movielens ML-1m dataset. They calculate Recall, Precision and
NDCG as metric to rank the studied models. Later, Steck [36] also
finds differences in model rankings of two matrix factorization mod-
els when using all unrated items or only the observed ratings in the
test set of a user for a rating prediction setup and RMSE as metric.
In [4] the authors conduct studies varying the number of negative
samples while comparing two collaborative filtering models, a k-
Nearest Neighbor (kNN) [8] and a probabilistic Latent Semantic
Analysis (pLSA) [18] recommender model. They find no ranking
inconsistency in the rankings of the two models while testing on
the Movielens ML-1m dataset obtained by metrics like Precision.
More recently, Rendle [31] shows on a constructed sample setting
that evaluation using the uniform sampling is not consistent when
using metrics like HR or NDCG. In [25] the authors extend the work
of Rendle by providing adapted metrics to overcome this problem.
They test the proposed corrected metrics on the ML-1m dataset
using a matrix factorization and two item-based collaborative filter-
ing models [33] and find that the rankings stay consistent starting
with fewer negative samples than without the corrected metrics.
At the same time, Li et al. propose a dataset independent mapping
function for the Hit Rate (HR), to approximate the HR obtained on
the full item set of a model and therefore determine the full ranking
of the considered models [26]. Their experiments conducted with
collaborative filtering methods like MultiVAE [28], a variational
autoencoder, for example, on the ML-1m dataset demonstrate the
3Here, we only consider models that exclusively use the sequence information and
nothing else like, for example, the user or the time of the interaction.
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applicability of their approximation function. Closest to our work,
Cañamares and Castells [5] find that rankings of kNN [6] and im-
plicit matrix factorization [19] on different sampling sizes drawn
from a uniform distribution using a k-fold evaluation on the Movie-
lens 1M dataset and the Yahoo! R3 dataset are inconsistent when
varying the number of negative samples.

To the best of our knowledge this is the first work, that con-
duct studies about the consistency of recommender model rankings
when evaluating the models by sampling negative items by popu-
larity. All previous work has only considered the uniform sampling
approach in their analysis. In addition, we compare the model rank-
ings of current state-of-the-art sequential recommendation models,
instead of simple CF recommendation models like [5, 25, 26, 31],
on different sampling based evaluation methods. Furthermore, we
perform these studies on five datasets commonly used for evalua-
tion instead of just one or two datasets as before to find possible
dependencies of rankings and evaluation methods on the dataset’s
properties. We extend the work of [5], that examine the consistency
of the model rankings when uniform sampling different numbers of
negative items, and use the provided method to perform the same
investigations for sampling by popularity.

4 EXPERIMENTAL SETUP
In this section we describe the experimental setup, including the
recommender models and datasets we used for our analysis. We
also introduce the methods used to analyze the difference in the
obtained model rankings.

4.1 Sequential Item Recommendation Models
For investigating the random sampling evaluation, we use four
state-of-the-art neural sequential recommendation networks. Each
network encodes the sequence 𝒔 using three different sub-layers:
(1) an embedding layer, that embeds each item 𝑠𝑡 in the sequence
using an embedding matrix𝑀 ∈ R |𝐼 |×𝑒 , with 𝑒𝑡 = 𝑀𝑠𝑡 , where𝑀𝑗

is the 𝑗-th row of matrix𝑀 , (2) a sequence encoder, that transforms
the embedded sequence to a representation ℎ ∈ R𝑚 , where𝑚 is the
size of the representation, (3) and an output layer, that projects the
sequence representation back to the item space. In the following
we describe each used model in more detail.

4.1.1 Gated Recurrent Unit (GRU). TheGRUmodel of Tan et al. [38]
uses a Recurrent Neural Network (RNN) layer with Gated Recurrent
Units (GRUs) [7], as the sequence encoder for the sequence. RNNs
encode sequences by learning internal hidden statesℎ𝑡 ∈ R𝑑 , where
𝑑 is the size of the sequence representation, at each sequence step 𝑡 ,
given the current input 𝑒𝑡 and the hidden state of the previous step
ℎ𝑡−1.4 Given𝑊ℎ ∈ R𝑒×𝑑 and 𝑅ℎ ∈ R𝑑×𝑑 as the weight matrices for
the nonlinear transformation of the current input and the previous
state and an activation function 𝑔, the hidden state of an RNN
network is calculated by:

ℎ𝑡 = 𝑔(𝑊ℎ𝑒𝑡 + 𝑅ℎℎ𝑡−1) .5 (3)

RNNs suffer from the problem of vanishing gradients for long
sequences. To overcome this, the GRU memory unit utilizes two
4We omit the output part of the RNN because we do not use this feature in our setting.
5For this equation and all following equations in this paper we omit the bias term of
the neural networks for readability.

gates: (1) The update gate 𝑧 controls how much of the previous state
is passed to the next state(s) and (2) the reset gate 𝑟 , that controls to
which amount the network forgets the past state(s). The state of
recurrent network with GRUs can then be calculated with:

𝑧𝑡 = 𝜎 (𝑊𝑍𝑒𝑡 + 𝑅𝑍ℎ𝑡−1) (4)
𝑟𝑡 = 𝜎 (𝑊𝑅𝑒𝑡 + 𝑅𝑅ℎ𝑡−1) (5)
ℎ𝑡 = (1 − 𝑧𝑡 ) · ℎ𝑡−1 + 𝑧𝑡 · tanh(𝑊𝐻𝑒𝑡 + 𝑅𝐻 (𝑟𝑡 · ℎ𝑡−1)), (6)

where𝑊𝑍,𝑅,𝐻 ∈ R𝑑×𝑒 and 𝑅𝑍,𝑅,𝐻 ∈ R𝑑×𝑑 are the weight matrices
for the nonlinear transformation. We use the last hidden state of
the GRU ℎ𝑙𝒔 as the sequence representation and scale the network
output to the item space using a feed forward network for the
recommendation task: 𝑜 = 𝑊𝑠ℎ𝑙𝒔 with𝑊𝑠 ∈ R𝑛×𝑑 . We train the
model with all subsequences of all sequences and use the cross-
entropy loss to optimize it:

𝐿 = −
∑︁
𝑠∈𝑆

𝑠𝑙𝒔−1∑︁
𝑡=1

log(softmax(𝑜 (head(𝑠, 𝑡)))𝑠𝑡+1 ) (7)

4.1.2 Neural Attentive Recommendation Machine (NARM). The
Neural Attentive Recommendation Machine (NARM) [27] consists
of two different GRUs: (1) a global encoder and (2) a local encoder.
The global encoder is a GRU, that we already defined in the previ-
ous paragraph, thus the output of this encoder is 𝑐𝐺 = ℎ𝐺

𝑙𝒔
∈ R𝑑 .

In contrast, the local encoder learns based on another GRU an at-
tention to all hidden states of the sequence [2, 29]. The output of
the local encoder is defined as 𝑐𝐿 =

∑𝑙𝒔
𝑗=1 𝛼𝑙𝒔 , 𝑗ℎ

𝐿
𝑗
, where ℎ𝐿𝑚 ∈ R𝑑

are the hidden states of the local encoder. The attention score 𝛼𝑙𝒔 , 𝑗
calculates an alignment between the j-th hidden state ℎ𝐿

𝑗
and the

last hidden state ℎ𝐿
𝑙𝒔
using:

𝛼𝑙𝒔 , 𝑗 = 𝑞(ℎ
𝐿
𝑙𝒔
, ℎ𝐿𝑗 ) = 𝑉

⊤𝜎 (𝐴1ℎ
𝐿
𝑙𝒔
+𝐴2ℎ

𝐿
𝑗 ), (8)

where, given a latent space 𝑎 for 𝛼 ,6 𝐴1 and 𝐴2 ∈ R𝑑×𝑎 , 𝑉 ∈ R𝑎 .
For the overall output of the encoder the representations of the
global and local encoder are concatenated to 𝑐 = [𝑐𝐺 ; 𝑐𝐿] and
then transformed with a learn-able weight matrix 𝐵 ∈ R𝑒×2𝑑 . To
scale the output to the item space, NARM uses the transposed item
embedding matrix𝑀 : 𝑜 = 𝐵𝑐𝑀⊤. We train NARM the same way as
the GRU model and also use the same loss.

4.1.3 Self-Attention based Sequential Recommendation Model (SAS-
Rec). The Self-Attention based Sequential Recommendation model
(SASRec) [21] is based on Transformer Networks [41]. Because
Transformer Networks are not recurrent networks they do not
have the information about the position, an additional embedding
𝑃 ∈ R𝑇×𝑑 , where𝑇 is the maximum sequence length of the network
and 𝑑 its embedding and sequence representation size, is added
to learn the position 𝑡 of the item 𝑠𝑡 in the sequence: 𝑒𝑡 = 𝑒𝑡 + 𝑃𝑡 .
SASRec consists of 𝐿 attention layer blocks, that are stacked on top
of each other. Each block at depth 𝑗 is a Multi-Head Self-Attention
layer MH𝑗 followed by a pointwise feed-forward network 𝐹 . For a
Multi-Head Self-Attention layer, a single Self-Attention layer SA𝑗𝑚
is applied 𝐻 times to its input, the results are concatenated and

6In practice the latent space is equal to the hidden space of the RNN encoder (𝑎 = 𝑑).
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transformed using a weight matrix𝑊 𝑗

𝑂
∈ R𝑑×𝑑 :

MH𝑗 (𝑥) = [SA𝑗1 (𝑥); SA
𝑗

2 (𝑥); . . . ; SA
𝑗

𝐻
(𝑥)]𝑊 𝑗

𝑂
. (9)

Each Self-Attention layer linearly projects the input into a smaller
space and then applies a mechanism called scaled-dot attention [41]:

SA𝑗𝑚 (𝑥) = attention(𝑥𝑊 𝑗

𝑄
, 𝑥𝑊

𝑗

𝐾
, 𝑥𝑊

𝑗

𝑉
), (10)

where𝑊 𝑗

𝑄
,𝑊

𝑗

𝐾
,𝑊

𝑗

𝑉
∈ R𝑑×𝑑/𝐻 are linear projection matrices. The

attention function can be seen as a proportional retrieval of values𝑉
given keys𝐾 and queries𝑄 (in the case of self-attention𝐾 = 𝑄 = 𝑉 )
and is defined as:

attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 , (11)

The pointwise feed-forward network F uses a ReLU [30] activation
and two weight matrices𝑊 𝑗

𝐹1
and𝑊 𝑗

𝐹2
∈ R𝑑×𝑑 :

𝐹 𝑗 (𝑥) = ReLU(𝑀𝐻 𝑗 (𝑥)𝑊 𝑗

𝐹1
)𝑊 𝑗

𝐹2
(12)

To stabilize training and to prevent overfitting, a residual connec-
tion [11] is added to both layers 𝑧 of the block. Further, layer nor-
malization [1] and Dropout [35] is applied to the input 𝑥 of the
layers, resulting in:

𝑧 (𝑥) = 𝑥 + Dropout(𝑧 (LayerNormalization(𝑥)) . (13)

SASRec uses the state of the last sequence step 𝑡 of the last layer 𝐿
as the representation of the sequence. To project the presentation
into the item space the model leverages the embedding matrix𝑀
by 𝑜 (𝑥) = 𝐹𝐿

𝑡
(𝑥)𝑀⊤. At training time the network tries to predict

each next sequence step in the sequence 𝒔𝑙𝒔 by taking 𝒔𝑙𝒔−1 as input.
For this learning objective, all attention connection between 𝑄𝑚
and 𝐾𝑛 with𝑚 > 𝑛 are masked to prevent the network to attend to
subsequent items in the sequence. SASRec uses the BPR loss [32]
for optimizing the network. Therefore, it samples a negative item
𝑖𝑡,neg (i.e., an item that was not in the sequence and is not the target)
randomly from the item set for each sequence step. The overall loss
is then:

𝐿 = −
∑︁
𝑠∈𝑆

𝑠𝑙𝒔−1∑︁
𝑡=1

log(𝜎 (𝑜 (head(𝑠, 𝑡)))𝑠𝑡+1)+log(1−𝜎 (𝑜 (head(𝑠, 𝑡)))𝑖𝑡,neg ) .

(14)

4.1.4 BERT4Rec. The BERT4Rec model [37] makes two modifi-
cations to the transformer architecture of SASRec and one to the
training objective. In contrast to SASRec, BERT4Rec allows the
model to attend to all positions of the sequence and uses GELU [13]
instead of a ReLU as activation function for all non-linear feed-
forward networks. Instead of predicting the next item in the se-
quence, BERT4Rec adapts the training objective of the language
model BERT [9], that uses the Cloze task [40] for self-supervised
training. Themodel randomlymasks items in the sequence and then
tries to predict the masked item. Since after training the prediction
is generated by masking the last item in the sequence, the model
additionally sometimes only masks the last item of the sequence
while training. Given the set 𝑇𝑠,mask, that contains the sequence
positions of each masked item in the sequence 𝑠 , the loss of the

Table 1: Statistics about the five datasets after pre-
processing. We report the number of users, items and
actions as well as the average sequence length (A. L.) and
the density.

Dataset #users #items #actions Avg. Length Density

Amazon Beauty 40,226 54,542 0.4m 8.80 0.02%
Amazon Games 29,341 23,464 0.3m 9.58 0.04%
ML-1m 6,040 3,416 1.0m 165.50 4.84%
ML-20m 138,493 26,729 20.0m 144.41 0.54%
Steam 334,537 13,046 4.2m 12.59 0.10%

network is a cross entropy loss:

𝐿 = −
∑︁
𝑠∈𝑆

∑︁
𝑡 ∈𝑇𝑠,mask

log(softmax(𝑜 (𝑠))𝑠𝑡 ) . (15)

4.2 Datasets
We perform all experiments on five frequently used datasets that are
based on user reviews in different domains. The first two datasets
ML-1m and ML-20m7 are based on movie reviews that have been
collected from the non-commercial movie recommendation site
Movielens. While ML-1m only contains about 1 million interactions,
the ML-20m contains about 20 million interactions. Further, we
use datasets consisting of collected product reviews from Amazon
organized into categories.8 We will restrict our experiments to the
twomost widely used categories in related work: Beauty andGames.
The last dataset is comprised of game reviews crawled from the
digital video game distribution service Steam.9

We apply the following common pre-processing steps: First, all
reviews are grouped by users and ordered by timestamp. We treat
a review of an item as an interaction with an item and building on
that the sequence of interactions for each user. Next, we remove all
items and users with fewer than five occurrences from the dataset.
We follow the procedure in [37] and first build statistics for items
and remove items under the threshold and then compute the user
statistics and remove the users accordingly. This is handled differ-
ently throughout the literature. For example, in [21] statistics are
computed on the original dataset and then both users and items
are removed in one pass which leads to a slightly different dataset
after pre-processing. We skip the filtering step forML-20m since the
statistics of the original dataset already closely match the reported
statistics in different papers and application of the filtering yields
large deviations from these reported values. The overall statistics
of all datasets after pre-processing can be found in Table 1.

4.3 Model Training and Verification
In this section we describe the model training. Further, we also
verify that our implemented models achieve similar results to the
previously reported results.10

7https://grouplens.org/datasets/movielens/
8http://jmcauley.ucsd.edu/data/amazon/links.html
9https://github.com/kang205/SASRec
10All code for training and evaluating the models is available at https://professor-
x.de/papers/metrics-sampling-eval/.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/links.html
https://github.com/kang205/SASRec
https://professor-x.de/papers/metrics-sampling-eval/
https://professor-x.de/papers/metrics-sampling-eval/
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Table 2: Performance comparison of our implementations
of GRU, SASRec and BERT4Rec with values from Sun
et al. [37] for the HR@10 metric with popularity sampling
and negative sample size 𝜂 = 100. GRU is compared to the
values of the GRU4Rec+.

Dataset
Source GRU SASRec BERT4Rec

ours [37] ours [37] ours [37]

Amazon Beauty 0.188 0.265 0.241 0.265 0.281 0.303
ML-1m 0.628 0.635 0.656 0.669 0.663 0.697
ML-20m 0.651 0.652 0.706 0.714 0.732 0.747
Steam 0.344 0.359 0.384 0.378 0.414 0.401

4.3.1 Implementation and Training. For the evaluation we imple-
mented all four models using PyTorch.11 Then, we retrain the three
sequence models SASRec and BERT4Rec with the hyper-parameters
reported in [37], or if not reported we used the parameters found in
the corresponding repositories of the papers. For GRU and NARM
we used the hyper-parameter of the corresponding papers. All mod-
els are trained for a maximum of 800 epochs. We use the Adam
optimizer [23] for training the networks and selected the best model
based on the metric HR@10 using the validation split. All config-
urations of the models can be found in the additional material of
this paper.

4.3.2 VerifyingModels. To verify our implementationswe compare
the performance of our models with the reported ones in [37]. Since
NARM was not evaluated on the considered datasets in this paper,
we can not verify our implementation. But we will later show in the
results section that the obtained relative rankings seems plausible.
Furthermore, we compare the results of our GRU implementation
of [38] with the results of GRU4Rec+ [15]. Table 2 shows our results
for HR@10 compared to the results reported in [37] with popularity
sampling and 𝜂 = 100 negative samples. Overall, the results of our
implementations align with previously reported findings for this
evaluation setting, where BERT4Rec is best across the considered
models and SASRec comes in second, and GRU comes in third. Our
GRU implementation is competitive, compared with the reported
values for GRU4Rec+ in [37]. Slight differences in the obtained
metric scores, can be explained by small differences in parameter
initialization due to the use of different neural network frameworks.
From these results we conclude that our implementations match
the originals close enough for a meaningful comparison.

4.4 Ranking Evaluation Methods
To stabilize the obtained results, we run the experiments involving
random sampling 20-times for each model. We report the mean
value over all 20 runs in the results section, but we omit the stan-
dard deviation, since we find that the standard deviation is zero,
when we round it up the last three digits after the decimal point.
To compare two calculated rankings, we use the Kendall’s Tau cor-
relation coefficient [22] to determine how similar two rankings are.
Since we do not have ties in our rankings, we use the Kendall’s

11https://pytorch.org
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Figure 1: Rankings based on HR@10 of the four recom-
mender models GRU, NARM, SASRec and BERT4Rec on the
five considered datasets Amazon Beauty and Game, Movie-
lens ML-1m and ML-20m and Steam. For each dataset we
compare the the full ranking in the middle with uniform
ranking on the left side and the popular ranking on the right
side. The number of negative samples is set to 𝜂 = 100 for
both sampling rankings.

Tau-a, that can be calculated by:

𝜏 =
2(𝑚𝑐 −𝑚𝑑 )
𝑚(𝑚 − 1) , (16)

where 𝑚 is the number of rankings (in our case 4) and 𝑚𝑐 the
number of concordant pairs and𝑚𝑑 the number of discordant pairs.
A pair (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is concordant if either 𝑥1 < 𝑥2 and
𝑦1 < 𝑦2 or 𝑥1 > 𝑥2 and 𝑦1 > 𝑦2, otherwise the pair is discordant.
The values of the Kendall’s Tau correlation range between −1 and
1, where −1 indicates a perfect inversion and 1 a perfect agreement
of the rankings.

5 RESULTS
First, in this section we compare the full ranking of the considered
models with the rankings achieved by sampling by popularity and
uniform sampling. Second, we consider how the number of negative
samples affects the rankings and whether it can be chosen such
that the rankings generated by the random selection strategies are
consistent with the full ranking.

5.1 Full Ranking and Random Sampling
Rankings

In this section we take a look at how well the rankings based on
one of the two sampling strategies approximates the full ranking.
Therefore, we evaluate the model rankings with all three options
(full, uniform and popular) for both metrics HR@10 and NDCG@10.
Additionally, we calculate the Kendall’s Tau correlation (𝜏 ) between
the sampling rankings and the full ranking. For the uniform and
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Table 3: The full, popular and uniform rankings of the four recommender models GRU, NARM, SASRec and BERT4Rec on
the five considered datasets Amazon Beauty and Game, Movielens ML-1m andML-20m Steamwith the corresponding HR@10
metric, that was used to build the rankings. For both sample-based ranking we used 𝜂 = 100 negative samples and we also
report the Kendall’s Tau correlation coefficient 𝜏 with respect to the full ranking in the first column. For each dataset the best
HR@10 (highest) value is marked as bold and second best value is underlined. Additionally, the ranking is visualized with
■ symbols for each dataset independently. The number of ■ symbols corresponds to the achieved rank (fewer symbols are
better).

full popularity uniform

Dataset Model HR@10 rank HR@10 rank 𝜏 HR@10 rank 𝜏

Amazon Beauty

GRU 0.031 ■■■ 0.188 ■■■■

−0.33

0.349 ■■■■

0.00NARM 0.033 ■■ 0.243 ■■ 0.417 ■■■
SASRec 0.036 ■ 0.241 ■■■ 0.420 ■■
BERT4Rec 0.027 ■■■■ 0.281 ■ 0.425 ■

Amazon Games

GRU 0.066 ■■■■ 0.380 ■■■■

0.67

0.596 ■■■■

0.67NARM 0.087 ■ 0.514 ■■ 0.712 ■■
SASRec 0.068 ■■■ 0.451 ■■■ 0.688 ■■■
BERT4Rec 0.082 ■■ 0.518 ■ 0.720 ■

ML-1m

GRU 0.224 ■ 0.628 ■■■

−0.67

0.768 ■■

0.33NARM 0.202 ■■ 0.628 ■■■■ 0.764 ■■■
SASRec 0.185 ■■■ 0.656 ■■ 0.798 ■
BERT4Rec 0.160 ■■■■ 0.663 ■ 0.763 ■■■■

ML-20m

GRU 0.199 ■■ 0.651 ■■■

0.67

0.964 ■■

0.00NARM 0.118 ■■■■ 0.569 ■■■■ 0.952 ■■■■
SASRec 0.137 ■■■ 0.706 ■■ 0.974 ■
BERT4Rec 0.241 ■ 0.732 ■ 0.964 ■■■

Steam

GRU 0.198 ■■ 0.344 ■■■■

0.00

0.829 ■■■

0.67NARM 0.196 ■■■ 0.355 ■■■ 0.840 ■■
SASRec 0.183 ■■■■ 0.384 ■■ 0.826 ■■■■
BERT4Rec 0.215 ■ 0.414 ■ 0.861 ■

popular rankings, we use 𝜂 = 100 negative samples which is used
by recent work [21, 37].

Table 3 shows the obtained three rankings of the four models on
the five datasets with the corresponding metric scores for HR@10
and the corresponding Kendall’s Tau correlation values between
the sampled rankings and the full ranking. Figure 1 visualizes the
difference of the three model rankings for each dataset. As we can
observe from the table, the uniform rankings are not consistent
with the full ranking across all five datasets when comparing the
four models. For example, the inconsistency is especially evident
when considering the Kendall’s Tau correlation coefficient for the
Amazon Beauty dataset, where 𝜏 = 0.00, that is, that there are no
matches in rank between the two rankings. This can also clearly
be seen in Figure 1a. Overall, our findings are in line with the ones
by Krichene and Rendle [25]. Furthermore, from this it can be con-
cluded that the results in [25] obtained on a matrix factorization and
two collaborative filtering models from [33] can be extended to the
more recent state-of-the-art deep learning models. When we now
look at the popularity ranking, we find that this ranking is also not
consistent with the full ranking like the uniform ranking. Indeed
for ML-1m we report 𝜏 = −0.67, which means that the ranking is
almost inverse (see Figure 1c) to the full ranking. After all (when
we exclude NARM, since it was not evaluated on the five consid-
ered datasets) we can confirm the model ranking GRU, SASRec,

BERT4Rec on the datasets Amazon Beauty, ML-1m, ML-20m and
Steam reported by [37] using the popular ranking. But looking at
the full ranking, we can see that the models perform differently
well on the five datasets. For example, when considering the full
ranking the BERT4Rec model outperforms the other methods on
the ML-20m and Steam datasets, but is the model with the worst
HR@10 on the ML-1m and Amazon Beauty datasets. This fact sug-
gests that the model ranking depends on the evaluation method
used (with or without sampling). At last, when we compare both
sampling methods with each other, Table 3 and Figure 1 reveal that
both sampling methods are mostly inconsistent with each other.
The exception is the Amazon Games dataset, where both sampling
methods agree on a ranking, but are still inconsistent with the full
ranking. Due to space limitations, we omit the table for the rank-
ings using NDCG@10 as metric, since we observe overall the same
behavior on all rankings on all datasets when using NDCG@10
instead of HR@10.

To summarize, with our findings we extend previous results, that
uniform rankings are inconsistent with the rankings obtained on the
full item set, to recent state-of-the-art sequential recommendation
methods. Furthermore, we find that the popular rankings are also
inconsistent with the exact ranking when considering 100 negative
samples (𝜂 = 100).
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Figure 2: Rankings of the four recommendermodels GRU, NARM, SASRec and BERT4Rec on the five considered datasets Ama-
zon Beauty and Game, Movielens ML-1m and ML-20m and Steam for different negative sample sizes 𝜂. We vary the negative
sample sizes from 100 to "full", which means that we sample from the full item set, resulting in the full ranking. On the left
side, we plot the uniform rankings and on the right side the popular rankings.

5.2 Influence of Sample Size
Previous work Cañamares and Castells [5] showed that changing
the sample size can have significant effects on the uniform model
rankings. The full ranking can be seen as the boundary case of any
sampled evaluation where 𝜂 is equal to the number of items in the
dataset. In this case we can expect the approximation of the full
ranking to improve with increasing sample size. We calculate both

sampled rankings for different sample size for all datasets and plot
the rank changes in Figure 2 when using HR@10 as the metric.

Overall, we cannot observe many regularities from the plots. The
most striking observation is that increasing the sample size by one
step only changes the rank by one place in most cases, hinting at a
gradual change in recommendation performance with respect to
sample size. Additionally, the volatility of the ranking with respect
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to sample size seems to be highly dataset and, to some degree, sam-
pling strategy dependent. For example, Figure 2b shows that for
Amazon Games almost no changes in rank occur for both sampling
rankings and for most sample sizes the full ranking is achieved.
However, the simple statistics of Amazon Games presented in Ta-
ble 1 do not stand out and we cannot derive an explanation from the
observed dataset properties. In contrast, Amazon Beauty exhibits
a high volatility with frequent ranking changes for both sampling
rankings. Even when almost half of the 54,542 items are sampled
the ranking has not stabilized and still changes compared to the
full ranking. An instance where the behavior is different between
sampling strategies is the Steam dataset in Figure 2e. While uniform
rankings are almost stable across different sample sizes, popular
rankings are more volatile, at least between 𝜂 = 500 and 𝜂 = 2500.
In summary, we cannot clearly identify a safe choice for 𝜂 for one
of the rankings based on sampling nor for the dataset.

6 DISCUSSION AND LIMITATIONS
In our study we trained four recently proposed neural sequential
item recommendation models on five often used datasets and com-
pared three rankings, which use different approaches to sample
items for the target set used for calculating the metrics. First, we
wanted to investigate whether sampling by popularity produces
model rankings that exhibit less inconsistencies regarding the full
ranking and how it compares to uniform random sampling. We
found that both sampling strategies did not produce good approxi-
mations of the full ranking for most datasets, with the noteworthy
exception of Amazon Games. The obtained rankings on this dataset
are for the most sample size consistent with each other. Further
analysis of why this is the case is necessary but that is out of the
scope of this paper. While sampling by popularity with 𝜂 = 100
negative samples produced the model ranking established in re-
cent work [37], the full evaluation showed that BERT4Rec does
not hold state-of-the-art across all the datasets. Our results suggest
that BERT4Rec profits from larger training corpora, since it out-
performs all other models on the two larger datasets ML-20m and
Steam using the full ranking, while it was unable to yield the best
performance on the other, much smaller, datasets. Further experi-
ments (e.g., hyperparameter studies to find maybe different optima
for the metrics calculated on the full item set) must be carried out
to analyse how the ranking of the model is really effected by the
small datasets. Nevertheless, these results call the current way of
establishing state-of-the-art into question. Considering that the
ranking depends on the selection for dataset, 𝜂 and how to sample
the target set for metric calculation and that there is no consistent
choice for 𝜂 that yields rankings consistent with the full ranking,
the only safe choice for comparing models is to use the full item
space as target set, although this may lead to longer runtimes for
model evaluation. Additionally, the results show that the clear pic-
ture, where one model outperforms all others across a range of
datasets does not hold anymore if the full ranking is considered,
at least for the considered datasets and models with their reported
settings, as can be observed from the results for BERT4Rec. At
last, even the full ranking may not be the true ranking, since like
all offline evaluation methods, it tends to underestimate the true

metric score by assuming that unrated items are all non-relevant
for the user [14].

Despite the extensive evaluation across models and datasets, our
study has some limitations. First, we are only comparing recent
neural models based on Recurrent Neural Networks or Transformer
architectures and do not consider Convolution Neural Networks
based models like the one presented in [39] or other collabora-
tive filtering methods or baselines. Therefore, it is possible that
for some classes of models a different conclusion could be drawn.
Another limitation is the choice of datasets. Although the review-
based datasets have been popular in recent publications, there is
a variety of datasets from a range of other domains available, that
might exhibit different characteristics with impact on the sampled
evaluation that were not considered in this evaluation. Finally, we
only used the common leave-one-out dataset split that is often used
with review datasets and did not consider alternative splits like a
split by time.

7 CONCLUSION
In our study we focused on the impact of evaluation through sam-
pling of small item sets on inconsistencies with the evaluation on
the full item set when comparing recently published neural sequen-
tial item recommendation models. While prior research [5] has
studied inconsistencies between the ranking obtained using the full
item set and the ranking obtained by uniform random sampling
mostly on collaborative filtering models, our study extends this
line of research in two key ways. First, we include sampling by
popularity, which is often used in recent work, as a second sam-
pling strategy in our study and find that although it intuitively
better approximates the item distribution in the dataset, it does not
improve the consistency with the ranking obtained on the full item
set. Second, we study recent neural item recommendation models
that can model complex interactions in the item sequences and
the results of our experiments indicate that these models are also
affected by the ranking inconsistencies when using sampling for
the evaluation. Our results strongly suggest that independent of
the dataset, type of sampling or choice of the number of negative
items 𝜂, a sampled evaluation will likely fail to approximate the
ranking gained by considering the full item set correctly. Therefore,
it is a bad choice when comparing the performance of different se-
quential recommender models and cannot help to avoid calculating
the metrics on the full item set.

In future work we want to extend the study to more models
to get better insights into the differences in performance utilizing
the full ranking. Additionally, we can extend the study using dif-
ferent types of datasets. We only used datasets constructed from
user reviews or ratings, but other types of item sequence datasets
exist (e.g., user clicks in online stores), and might exhibit different
characteristics. Also we can study the effectiveness of already ex-
isting robust metrics introduced by Krichene and Rendle [25] on
the evaluated models in this paper and different types of datasets.
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