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Abstract
Climate models are the tool of choice for scientists researching climate change. Like
all models they suffer from errors, particularly systematic and location-specific rep-
resentation errors. One way to reduce these errors is model output statistics (MOS)
where the model output is fitted to observational data with machine learning. In this
work, we assess the use of convolutional Deep Learning climate MOS approaches
and present the ConvMOS architecture which is specifically designed based on the
observation that there are systematic and location-specific errors in the precipitation
estimates of climate models. We apply ConvMOS models to the simulated precipita-
tion of the regional climate model REMO, showing that a combination of per-location
model parameters for reducing location-specific errors and global model parame-
ters for reducing systematic errors is indeed beneficial for MOS performance. We
find that ConvMOS models can reduce errors considerably and perform significantly
better than three commonly used MOS approaches and plain ResNet and U-Net mod-
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els in most cases. Our results show that non-linear MOS models underestimate the
number of extreme precipitation events, which we alleviate by training models spe-
cialized towards extreme precipitation events with the imbalanced regression method
DenseLoss.While we consider climateMOS, we argue that aspects of ConvMOSmay
also be beneficial in other domains with geospatial data, such as air pollutionmodeling
or weather forecasts.

Keywords Neural networks · Climate · Model output statistics

1 Introduction

An important source of information for the prospective effects of climate change are
numerical climate models such as general circulation models (GCMs) and regional
climate models (RCMs). However, these models often exhibit systematic errors and
deficiencies in representations of climate processeswhich limit the quality of the result-
ing projections. Especially the hydrological cycle is subject to uncertainty, amplifying
this problem for precipitation. It is therefore common to apply model output statistics
(MOS), which are statistical post-processing techniques to reduce these errors. MOS
correct the modeled precipitation to correspond more closely to observational data.
With climate change becoming a more and more severe issue, we believe that it is
important for the data mining community to contribute to the global effort towards
assessing and combating climate change by further improving MOS performance
both in the mean and for extreme events. Better MOS allows us to study future climate
conditions and effects of climate change more accurately (Paeth 2011).

Currently used climate MOS approaches typically rely on standard methods from
statistics and machine learning like Linear Regression (Paeth 2011) and Random
Forests (RFs) (Noor et al. 2019). For each location of interest a separatemodel instance
is fitted to reduce errors in precipitation. These models are either local when they use
large-scale atmospheric conditions at that specific location or non-local, when they
also consider conditions at locations nearby.

In this work, we aim to further bridge the gap between climate science and machine
learning by assessing the use of convolutionalDeepLearning climateMOSapproaches
and designing our novel climate MOS architecture ConvMOS which considers the
nature of typical errors present in precipitation estimates of climate models: (i)
location-specific errors stemming from poor grid point representation of land sur-
face characteristics, e.g. topography (Paeth 2011) or great lakes (Samuelsson et al.
2010) and (ii) systematic errors originating from the use of simplified climate pro-
cesses, as is often the case for cloud and rainfall formation (Paeth 2011). To efficiently
reduce both types of errors, ConvMOS—as shown in Fig. 1—combines per-location
model parameters, which learn to reduce errors specific to a location, and global model
parameters, which learn spatial precipitation patterns to effectively reduce systematic
errors in climate model outputs. Our architecture composition studies (Sect. 5.2 and
Appendix A.2) show that such parameter combinations improve climate MOS perfor-
mance in practice. We also consider and evaluate other popular CNN architectures for
climate MOS, namely ResNets (He et al. 2016) and U-Net (Ronneberger et al. 2015).
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Fig. 1 ConvMOS: Systematic and location-specific errors in climate model outputs are reduced with our
Deep Learning architecture that combines global and per-location parameters

We apply the approaches to correcting simulated precipitation of the RCM
REMO (Majewski 1991; Jacob 2001; Jacob et al. 2001) and show that ConvMOS
models reduce errors considerably, providing significantly better performance than
the commonly used MOS approaches local Linear Regression (Eden and Widmann
2014), non-local Principal Component Regression (Eden and Widmann 2014), and
non-local Random Forest (Sa’adi et al. 2017; Noor et al. 2019) in most cases. Addi-
tionally, we find that ConvMOS models typically perform better in comparison to
plain ResNets or U-Net. Our results also show that all considered non-linear Deep
Learning models underestimate the number of extreme precipitation events more than
REMO and linear approaches. To alleviate this, we train ConvMOS models special-
ized towards estimating extreme precipitation events with the imbalanced regression
method DenseLoss (Steininger et al. 2021), showing that such MOS models are bet-
ter at estimating extreme precipitation events. Additional analysis is provided in the
Appendix, where we analyze the training duration of the considered MOS techniques
as well asMOS results over time. For this, we find no clear temporal error trends in our
setting, suggesting that MOS approaches do not necessarily have to be updated over
time. While we validated our approach on climate MOS, we argue that aspects of the
ConvMOS architecture may also be beneficial for other applications with geospatial
data, which is especially common in environmental tasks. Code and REMO data is
available.1

We make the following contributions:

• We present a novel convolutional Deep Learning architecture for climate MOS
ConvMOS, consisting of local and global network modules.

• We show with architecture composition studies (Sect. 5.2 and Appendix A.2) that
the combination of per-location and global model parameters does indeed improve
climate MOS performance.

• We compare ConvMOS to three commonly used climate MOS approaches and
two popular CNN models, finding that our approach performs significantly better
in most metrics.

1 https://github.com/SteiMi/convmosAnearly versionof thisworkwaspresented atNeurIPS2020Tackling
Climate Change with Machine Learning Workshop (Steininger et al. 2020).
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• WeassessConvMOSmodels specialized at estimating extremeprecipitation events
with the imbalanced regressionmethodDenseLoss to allow for improved estimates
for extreme events.

In Sect. 2 we discuss related research. Sect. 3 describes the data we used. We
describe our proposed ConvMOS architecture for climate MOS in Sect. 4. In Sect. 5
wedescribe our experimental evaluation and its results. Sects. 6, and7discuss thiswork
and consider its broader impact, respectively. Finally, Sect. 8 provides a conclusion.

2 Related work

The following introduces related prior work on spatio-temporal modeling, the climate
MOS task considered in this work, and fully convolutional models which are related
to the architecture proposed in this work.

2.1 Spatio-temporal modeling

In this work, we consider a combination of a climate model with machine learning
techniques in order to provide spatio-temporal predictions of precipitation. While this
is a standard approach in this particular domain, there are also other approaches to
spatio-temporal modeling.

One approach is modeling spatio-temporal autocorrelation. Specific techniques
includeLASSO-VAR(Cavalcante et al. 2017), trainingMultilayerPerceptrons (MLPs)
with entropy-based criteria (Ceci et al. 2019), or suitable feature extraction techniques
in conjunction with tree models (Corizzo et al. 2021). There are also models which
combine non-parametric tree models with parametric models for distribution tails in
order to improve forecasting of extreme values (Gonçalves et al. 2021), which is
similar in goal but different in technique to our experiment using a sample weighting
technique for better extreme value estimation in Sect. 5.7.

Spatio-temporal forecasts are also often modeled with Deep Learning in domains
like air pollution prediction, with approaches that combine temporal LSTM (Long
Short-Term Memory) (Hochreiter and Schmidhuber 1997) layers with, for example,
spatial attention (Shi et al. 2021), nearest neighbor approaches (Qin et al. 2019),
or convolutional neural networks (CNNs) (Zhang et al. 2020). This combination of
different model types for spatial and temporal aspects bears some resemblance to
the approach proposed in this work, where local and global model parameters are
combined to model different spatial aspects (location-specific and global, systematic
errors).

The difference between the climate MOS task considered in this work and the
aforementioned spatio-temporal modeling approaches is, that, strictly speaking, we
do not consider climate MOS to be a forecasting task from a machine-learning-view.
The temporal dynamics required for forecasts are entirely handled by the climate
model. A MOS approach does not directly need to forecast future states, but only
adjust the current state provided by the climate model. One may incorporate the time
dimension in climateMOS approaches, but it is uncommon andmay not necessarily be
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beneficial, which is why this work focuses on traditional non-temporal climate MOS.
Nonetheless, spatio-temporal models may benefit from also consider a combination
of global and local parameters for their spatial and maybe even temporal parts in order
to efficiently learn both global, systematic and location- or time-specific patterns.

2.2 Climatemodel output statistics

There are two approaches to climate MOS—distribution-wise and event-wise MOS.
Distribution-wise MOS corrects the simulated variable’s distribution by mapping dis-
tribution characteristics (e.g. means) to the observed distribution. Event-wise MOS
links simulated and observed time series through statistical models, which generally
performs better than distribution-wise MOS (Eden and Widmann 2014). Thus, this
work considers event-wise MOS.

A simple approach used by Eden and Widmann (2014) is local Linear Regres-
sion where an individual Linear Regression is fitted per location of interest, which has
shown towork reasonablywell.Most otherworks propose non-localMOSapproaches,
where for each location the MOS is aware of climatic conditions at nearby locations.
This can lead to a large number of predictors for the MOS, which is why dimen-
sionality reduction techniques, e.g. principal component analysis (PCA), are often
applied (Paeth 2011; Eden and Widmann 2014; Sa’adi et al. 2017; Noor et al. 2019).
Non-local MOS has been done with a range of machine learning models namely
Linear or Principal Component Regression (Paeth 2011; Eden and Widmann 2014),
Random Forests (RFs) (Sa’adi et al. 2017; Noor et al. 2019), Support VectorMachines
(SVMs) (Sa’adi et al. 2017; Pour et al. 2018; Ahmed et al. 2019), and Multilayer Per-
ceptrons (Moghim and Bras 2017).

While these methods have proven to be effective, we believe that there is con-
siderable potential in exploring advanced Deep Learning techniques. Especially
CNNs (LeCun et al. 1998) have shown proficiency in tasks with geospatial data,
where each input “pixel” relates to a geographic location on Earth and provides infor-
mation on the state there like prior precipitation for precipitation forecasts (Shi et al.
2017) or land-usage for air pollution estimation (Steininger et al. 2020). This indicates
potential for novel non-local climate MOS with this type of neural network.

2.3 Fully convolutional networks

A core aspect of the ConvMOS architecture is the use of fully convolutional networks.
These are neural networks that consist solely of convolutional layers.

Fully convolutional networks were first introduced for semantic segmentation of
images in the computer vision domain (Long et al. 2015). They are useful for tasks
where both the input and the output are image-like, meaning that pixels or cells are
arranged in a grid. This is the case in computer vision tasks like semantic segmentation
or instance segmentation (He et al. 2017). A particularly notable fully convolutional
network is U-Net (Ronneberger et al. 2015) that was proposed for biomedical image
segmentation and has been applied to many problems like image-to-image translation
since (Kandel et al. 2020).
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Fully convolutional networks are also suitable for geospatial environmental
machine learning tasks like climate MOS, since the locations of a study area can
be arranged in an image-like grid with the different environmental variables (e.g. pre-
cipitation) being channels of this image. One domain where they have shown good
results is statistical downscaling of climate data by improving its spatial resolution
through fully convolutional super-resolutionCNNs (Vandal et al. 2017;Liu et al. 2020).
Similarly, fully convolutional networks have been used successfully for precipitation
nowcasting, which is short-term forecasting of rainfall (Agrawal et al. 2019). These
positive results for similarly structured data suggests that this model type can also be
beneficial for climate MOS. We believe that their ability to learn spatial patterns is
also well suited for efficiently reducing systematic errors in climate models. Recent
work outside of the climate domain in the related field of post-processing ensemble
weather forecasts has also shown promising results by applying fully convolutional
CNNs and locally connected networks that are not translation invariant (Grönquist
et al. 2021). Thus, using CNNs in combination with per-location model parameters,
which can reduce location-specific errors, is a promising approach for use in climate
MOS.

3 Dataset

For evaluation we use the model and observational data presented next.
Model DataWe use daily data of the regional climatemodel (RCM)REMO (hydro-

static version REMO2015) (Majewski 1991; Jacob 2001; Jacob et al. 2001) for the
period 2000 to 2015. REMO is based on the Europa Modell (Majewski 1991) and
the model physics of the GCM ECHAM4 (Roeckner 1996) with further improve-
ments (e.g. Hagemann (2002); Semmler (2002); Kotlarski (2007)). The reanalysis
ERA-Interim (0.75◦ × 0.75◦) (Dee 2011; Berrisford et al. 2011) is used as forcing
data, providing the lateral boundary conditions. The atmosphere’s vertical resolution
is represented by 27 hybrid levels with increasing distance to the atmosphere’s top.
In lower levels they follow the topography (Teichmann 2010). Our study area spans
over an extended German region with 0.11◦ resolution covering the area from -1.43◦
to 22.22◦ E and 42.77◦ to 57.06◦ N (GER-11). This grid does not have 215 × 130
cells as one would think based on area and resolution but instead 121 × 121 cells
since the grid is not axially parallel to latitudes or longitudes due to REMO’s usage
of rotated coordinates for numerical reasons (Lüthi and Heinzeller 2017). We use 23
MOS predictors (see Table 1), which all stem from REMO except for the elevation
from the GTOPO dataset (0.009◦ × 0.009◦) (DAAC 1996; Gesch et al. 1999). REMO
also uses GTOPO’s elevation.

Observational Data For observational datawe use the gridded dataset E-OBS (Hay-
lock et al. 2008) version 19.0e. It is based on an ensemble of interpolated station data
and is therefore subject to some uncertainty, as station density varies in space and
time (Cornes et al. 2018). Our predictand is E-OBS’s daily precipitation sums at 0.1◦
resolution. Both model and observational data are interpolated bilinearly to the same
0.11◦ grid (Schulzweida 2019).
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Fig. 2 Local network module’s structure. H and W represent study area height and width. P is the number
of predictors. Depiction is not to scale

4 ConvMOS

To explore the combination of global and per-location model parameters with CNNs
as MOS we propose the architecture ConvMOS.

4.1 Idea

The basic idea of ConvMOS is derived from two sources of error in climate models:
First, location-specific errors which often stem from poor grid point representation of
topography. This representation can lead to abrupt topographic elevation, potentially
influencing processes affecting precipitation (Paeth 2011; Eden and Widmann 2014).
Second, systematic errors originating from parameterization, which replaces too com-
plex or too small-scale processes with simpler variants. Cloud and rainfall formation
is based on parameterization, leading to precipitation overestimation over land (Paeth
2011).

To efficiently reduce both types of errors, we propose a model consisting of both
per-location model parameters, which can learn the characteristics of a specific loca-
tion, and global model parameters, which can learn spatial precipitation patterns to
efficiently help reduce systematic errors in climate models. Thus, we define two mod-
ules: local network and global network.

4.2 Local network

The local network module contains individual model parameters for each location in
the study area, allowing it to reduce specific local errors. For ease of integration into the
neural network architecture, we do not use a separate model (e.g. a linear regression)
per location. Instead, we implement this through reshaping and a linearly activated 1D
CNN, as is depicted in Fig. 2. The input at each time of size (predictors, height,width)
is first reshaped so it has the dimensions (height ∗ width, predictors). In conjunction
with setting the kernel size equal to the number of predictors, this allows us to group
the convolution for each input channel (i.e. each location) so that each location is
convolved with its own set of filters for all predictors. Thus, each location has its own
model parameters, in which location characteristics can be encoded. The 1D CNN
output is of shape (height ∗ width, 1) which we reshape to (1, height,width), giving
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Fig. 3 ConvMOS architecture with the composition ConvMOS-gggl, having three global and one local
network module

us the output of the local network module. This output can be interpreted as a grid
with per-location precipitation residuals. This module is not provided with elevation
data as it would be static across all times for each location.

This approach allows us to integrate per-location model parameters seamlessly into
a Deep Learning model. The naive alternative of using separate models per location
is harder to implement concurrently within an Deep Learning architecture running on
a GPU. For Deep Learning libraries such as PyTorch (Paszke et al. 2019), which we
use in this work, our module is simply another convolutional layer. This allows for
efficient training and inference.

4.3 Global network

The global network learns spatial patterns in precipitation and other predictors. This
can be done efficiently with CNNs (Vandal et al. 2017). The module contains a 2D
CNN with four layers which should be well suited for learning useful filters which
can reduce systematic errors across the study area. In addition to the local modules’
predictors, the global network is also provided with elevation data for each location.
In contrast to the per-location model parameters, this information is not static for the
filters of the 2D CNN since the filters are applied for all locations across the study
area. Starting from the first layer, the layers have 4, 8, 16, and 1 filters and kernel sizes
of 9, 1, 5, and 3, respectively. Each convolutional layer has its padding parameter set
to half its kernel size (rounded down to the nearest whole number) which leads to
each layer’s output having the same width and height as its input. All layers use a
stride and a dilation of 1. The first three layers use the ReLU (Nair and Hinton 2010)
activation function while the last layer is activated linearly. As with the local network,
this module also outputs a grid of precipitation residuals.

4.4 Architecture

The ConvMOS architecture consists of sequentially concatenated instances of global
and local network modules. Figure 3 depicts an example of a ConvMOS model.
ConvMOS expects a 3D input with dimensions (predictors, height,width) for each
time step. The data is sequentially passed through the modules (depicted in gray)
where each module adjusts the precipitation input with the goal of reducing the error.
The architecture employs so called “shortcut connections” for eachmodulewhere each
module’s output is added to its precipitation input, which eases training for neural net-
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works (He et al. 2016). In this work, we employ the depicted model with three global
networks followed by a local network module, which is the result of our architecture
composition study described in Sect. 5.2. We call this exact architecture composition
ConvMOS-gggl. The global networks aim to reduce any systematic errors across the
study area. Finally, the local network corrects any specific local errors and makes sure
that the systematic corrections of the global network are not introducing new local
errors. As precipitation cannot be negative we use a ReLU after the final shortcut
connection to force positive values. The architecture is fitted with the Adam opti-
mizer (Kingma and Ba 2014), the mean squared error (MSE) as the loss function, a
learning rate of 0.001, and a batch size of 128. Only errors at locations where obser-
vational data is available were incorporated for the MSE. Training is conducted for
at most 100000 epochs. Early stopping is used to stop training when the validation
MSE is not improving for more than 40 consecutive epochs, preventing considerable
overfitting (Caruana et al. 2001).

5 Experiment

To evaluate ConvMOS models, we apply them to the data described in Sect. 3. After
defining our experimental setup, we evaluate our hypothesis regarding the benefit
of combined per-location model parameters and global model parameters while also
finding ConvMOS’s best architecture composition for use in the experiment. We also
apply standard ResNet and U-Net CNN models in addition to three commonly used
MOS approaches, a local Linear Regression, a non-local Principal Component Regres-
sion approach and a non-local Random Forest method, for comparison and evaluate
them for general and seasonal performance. Thereafter, we assess ConvMOS mod-
els specialized towards estimating extreme precipitation events using the imbalanced
regression method DenseLoss. Additional analysis can be found in the Appendix,
where we analyze the training duration of the considered MOS approaches and eval-
uate MOS results over time, finding no clear temporal error trends which suggests
that—at least for the climate model and timespan considered in this work—MOS
approaches do not necessarily have to be updated over time.

5.1 Experimental setup

We split the 16 years of daily data into a training (2000–2009), a validation (2010),
and a test set (2011–2015). All predictors are standardized based on the training set
so that they have a mean of zero and a standard deviation of one. Target values are
not standardized and metrics are thus also computed on non-standardized data. The
hyperparameter values presented in this work for the local and global network mod-
ules of our ConvMOS architecture were selected based on preliminary tests using the
validation set. For evaluation, we use a number of common MOS metrics, namely
root-mean-squared error (RMSE), normalized RMSE (NRMSE), Pearson Correla-
tion, Skill score (Perkins et al. 2007), R2, and Bias to assess different performance
aspects. NRMSE divides the RMSE for each location in the study area by the dif-
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ference between the maximum and minimum observed precipitation there, which we
then multiply by 100 to receive a percentage. Skill score measures the common area
between the probability density function of the observed precipitation and the simu-
lated precipitation. To this end, data is binned (we use bins of 1 mm width as Perkins
did) and the Skill score is both distributions’ cumulative minimum value of each
binned value. Thus, a perfect Skill score would be 1. R2 describes the proportion of
variance explained by a model with 1 being a perfect score. Models with R2 lower
than 0 fit worse than the data’s mean. The Bias metric is the mean error. A positive
value indicates overestimation of precipitation while a negative value indicates the
opposite. MOS approaches with non-deterministic fitting methods, i.e. ConvMOS,
ResNets, U-Net and the non-local Random Forest, are trained 20 times since per-
formance may differ per fitted instance. All reported mean Correlations use Fisher’s
z-transformation (Silver and Dunlap 1987). When we report significant differences in
the following, we confirmed this with a Wilcoxon signed-rank test (Wilcoxon 1945)
and a significance level of 0.05.

5.2 Architecture composition study

The key idea behind ConvMOS is the combination of per-location model parameters
and global model parameters which is why the architecture allows for different com-
binations of sequentially connected local and global network modules. In order to test
whether this combination is beneficial and to find the best module arrangement we
evaluate a number of composition candidates. We train 20 instances per composition
on the training set and test them on the validation set. To allow for early stopping we
remove the 2009 data from the training set, evaluate the model after each epoch on
this data and stop training when the MSE in 2009 does not improve for more than 40
epochs in a row.

Table 2 shows mean metrics on the validation set for all study area locations avail-
able in observational data (i.e. land points) of each architecture composition sorted by
RMSE. The architecture ConvMOS-gggl shows the best performance, surpassing all
other tested compositions in terms of RMSE,NRMSE, Correlation, andR2. Compared
to ConvMOS-glgl with the second lowest RMSE, ConvMOS-gggl’s RMSE and Bias
are not significantly different but its NRMSE, Correlation and R2 are significantly
better. ConvMOS-gggl’s Skill score is not significantly different from the best model
for that metric (ConvMOS-glll) as well as its Bias, which is also not significantly
different from the model with lowest Bias (ConvMOS-ggl). Overall, we consider
ConvMOS-gggl to provide the best performance, which is why we choose this com-
position for our experiment.We find that, considering the results of ConvMOS-ggl and
ConvMOS-gl, additional global network modules at the model’s front reduces errors
further, presumably since more complex spatial patterns can be learned. ConvMOS-
ggl performs significantly better than ConvMOS-gl in all metrics. ConvMOS-gggl
is significantly better than ConvMOS-ggl only in RMSE, NRMSE, and Correlation.
This suggests diminishing improvements with more global modules. The results also
show that the key idea behind ConvMOS—the combination of per-location and global
model parameters—can indeed improve performance in terms of RMSE, NRMSE,
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Correlation, and R2. The best architecture composition ConvMOS-gggl consists of
a combination of different modules. Furthermore, it performs significantly better in
terms of the aforementioned fourmetrics than the best composition consisting of solely
local or global modules, namely ConvMOS-gggg. Compositions consisting solely of
local modules or global modules typically perform worse than combinations of both.
Additionally, we find that having a local network module as the final module provides
relatively good NRMSE and R2 values. We hypothesize that the global module’s fil-
ters adjust precipitation in a similar way everywhere, leading to low performance for
these metrics in some areas, e.g. when there is only relatively minor precipitation.
An additional architecture composition study with U-Nets as global modules in the
Appendix (see Appendix A.2) further confirms most findings presented here.

5.3 Standard climate MOS approaches

For comparison, we also evaluate standard climate MOS approaches. Similar to prior
work (Paeth 2011; Sa’adi et al. 2017; Noor et al. 2019), we preprocess the standard
MOS methods’ predictors to reduce dimensionality and remove potentially unhelp-
ful information. Like Sa’adi et al. (2017) and Noor et al. (2019) we use supervised
PCA (Bair et al. 2006). For each location, we select the best predictors based on a
univariate regression. Local MOS models choose from 23 predictors for a specific
location while non-local models have another 23 predictors per considered nearby
location (i.e. 11 × 11 × 23 = 2783 predictors when considering locations at most 5
cells away). The number of retained predictors is set according to an exhaustive grid
search at each location that considers choosing the 1 to 30 best predictors with our
validation data. Then, PCA reduces the dimensionality of these predictors, keeping
the first components that explain at least 95 % of the variance (Sa’adi et al. 2017). All
non-Deep-Learning MOS methods described in the following use this preprocessing
scheme.

Local Linear Regression (Lin) For each cell in the study area, a separate Linear
Regression is fitted where simulated precipitation is the predictor and observed pre-
cipitation is the predictand. This approach is local in that each Linear Regression is
unaware of conditions in nearby cells (Eden and Widmann 2014).

Non-local Principal Component Regression (NL PCR) Instead of only using large-
scale conditions at a specific location for a Linear Regression, we provide all available
predictors at each nearby location (at most 5 cells away in either direction) on the grid.
This is feasible with the help of the supervised PCAwhich reduces the dimensionality
of the predictors (Eden and Widmann 2014).

Non-local RandomForest (NL RF) For the non-local RandomForest, we provide all
available predictors of each location ±5 cells away, as with NL PCR. The supervised
PCA applied for preprocessing is also what Sa’adi et al. (2017) and Noor et al. (2019)
used. Each location in our study area has its own RF instance for MOS which uses
scikit-learn’s RF (Pedregosa et al. 2011). Since RF performance depends considerably
on its hyperparameters, we look for optimal values with a random search. For each
cell we train 20 RF instances on the training set with hyperparameter values sampled
randomly from the search space shown in Table 6. Each instance is evaluated on the
validation set. The RF instance with the best R2 is then applied on the test set.
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5.4 Standard deep learning approaches

To further put our results in perspective, we also apply some common Deep Learning
architectures. Suitable architectures allow mapping an input image to a new output
image of the same size since this is structurally similar to our task of mapping an input
climate to a precipitation output with the same spatial dimensions. In our experiment,
we consider two commonly used architectures, namely ResNet (He et al. 2016) and
U-Net (Ronneberger et al. 2015).

ResNet ResNets are popularmodels in computer visionwhich iswhy it is interesting
to see how such a general architecture fares for climate MOS. ResNets are available
with different numbers of layers. In our experiment, we used ResNet18, ResNet34,
ResNet50, and ResNet101. We omit ResNet152 as its memory requirements are too
large for most GPUs available to us when trained on our task and we also found
no performance gains between larger and smaller ResNets anyways. The ResNets are
adapted for our task by changing the number of input features in the first convolutional
layer from 3 to 23 (one per predictor), removing the softmax activation necessary for
classification, and replacing the final fully connected layer with one that maps to 121 x
121 (height x width) outputs. Training is conducted in the same way as for ConvMOS
(i.e. same learning rate, optimizer, early stopping, loss, batch size).

U-Net Another important architecture for image-to-image tasks is U-Net. This
architecture has already shown its proficiency in the related task of post-processing
ensemble weather forecasts (Grönquist et al. 2021). Because of this similarity, we
use their U-Net variant that differs from the standard U-Net in a few aspects: (i) Up-
convolutions are replaced with bilinear interpolation followed by a 3 x 3 convolution
with stride 1 to avoid checkerboard artefacts. (ii) U-Net’s five levels are reduced to
three levels to avoid overfitting. (iii) The number of filters per convolution are halved
as they observed no improved performance with more filters.

Training is conducted in the same way as for ConvMOS (i.e. same learning rate,
optimizer, early stopping, loss, batch size).

We also evaluate the use of this U-Net within the ConvMOS architecture by using it
as a global networkmodule instead of the one presented in Sect. 4.3. For this approach,
we sequentially connect one global network module (here a U-Net) and one local
network module, which is the resulting composition of the architecture composition
study in the Appendix (see Appendix A.2). This is similar to the model proposed
by Grönquist et al. (2021) for their weather forecasting task but with a ConvMOS
local network module after the U-Net instead of their locally connected network. This
approach is denoted as ConvMOS-UNet or short CM-UNet in the following.

5.5 Results

Table 3 shows mean metrics on the test set for all study area locations available in
observational data. All MOS approaches improve all metrics considerably when com-
pared to applying no MOS, except for the Skill score. This suggests that REMO’s
precipitation distribution at land locations is already rather close to that of the obser-
vations with a Skill score of 0.93 and can barely be improved by MOS methods. All
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Table 3 Test set mean metrics for all locations having observational data

Metric
MOS RMSE (mm) NRMSE (%) Cor. Skill R2 Bias (mm)

REMO raw 5.32 15.83 0.49 0.91 −28.24 0.31

Lin 3.51 8.03 0.58 0.47 0.33 −0.03

NL PCR 3.37 7.80 0.62 0.81 0.36 0.02

NL RF 3.39 ± 0.00 7.82 ± 0.00 0.61 0.82 0.36 ± 0.00 0.03 ± 0.00

ResNet18 3.03 ± 0.01 7.04 ± 0.03 0.71 0.60 0.47 ± 0.01 −0.06 ± 0.07

ResNet34 3.06 ± 0.02 7.10 ± 0.04 0.71 0.61 0.46 ± 0.01 −0.07 ± 0.09

ResNet50 3.04 ± 0.01 7.05 ± 0.03 0.71 0.61 0.47 ± 0.00 −0.10 ± 0.10

ResNet101 3.03 ± 0.02 7.04 ± 0.04 0.71 0.64 0.47 ± 0.01 −0.04 ± 0.08

U-Net 2.97 ± 0.02 8.37 ± 0.12 0.74 0.82 −5.60 ± 0.88 −0.03 ± 0.08

CM-UNet 2.92 ± 0.01 7.01 ± 0.11 0.74 0.70 0.13 ± 0.22 0.01 ± 0.10

ConvMOS 2.93 ± 0.02 6.77 ± 0.05 0.73 0.89 0.51 ± 0.02 −0.10 ± 0.05

Bold values indicate the best value
Values rounded to two decimal places. Std. dev. for Correlation (always 0.00) and Skill score (between 0.00
and 0.03) omitted for brevity

Deep-Learning-based MOS approaches perform better than standard approaches in
terms of RMSE, NRMSE, Correlation and R2, except for U-Net’s NRMSE as well
as U-Net’s and CM-UNet’s R2. We find that U-Net and, to a lesser extent, CM-UNet
struggle at some locations as can be seen in the Appendix’ Fig. 7 for NRMSE. These
low performance locations typically have very low precipitation, with which these
models in particular have issues. The two ConvMOS models combining local and
global model weights—CM-UNet and ConvMOS—tend to perform best. CM-UNet
provides significantly better RMSE than all other approaches except for ConvMOS.
CM-UNet’s correlation is also significantly better than all other MOS methods except
for U-Net, while ConvMOS is also only closely behind. For NRMSE, Skill score, and
R2, ConvMOS is significantly better than all other MOS approaches. This indicates
that ConvMOS-based approaches can estimate precipitation more accurately than all
considered comparison methods. ConvMOS’s Skill score is close but still reduced
slightly by 0.02 compared to REMO’s. ConvMOS shows less Bias than REMO but
it seems to have a tendency to underestimate precipitation as most approaches do.
CM-UNet tends to show the lowest Bias. We also ran this experiment with precipita-
tion as the only climate predictor as some prior work has done (Eden and Widmann
2014; Noor et al. 2019) but found all considered methods to perform worse without
additional predictors.

Figure 4 visualizes RMSEs for all locations with observational data across the study
area for all assessed approaches using each method’s best instance with regard to test
RMSE. Similarly as in Table 3, all MOS methods can reduce errors from the original
REMO output. Especially precipitation in the Alps and other mountainous regions is
improved considerably. We find that CNN approaches tend to provide lower errors
compared to other MOS methods in general but also for seemingly difficult areas. All
standardMOS approaches show a bright yellow spot near the border between Italy and
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Fig. 4 RMSE of precipitation in mm for the test set across the study area.NoteREMO raw has cells with far
larger RMSE than 10 mm but we limited the colorbar’s extent for better visibility of general performance

Slovenia indicating high error and difficulty there, that is less pronounced for CNN
models. In the observational E-OBS data for this area we noticed that there tends to be
higher precipitation during the test time frame compared to the training time frame.
We hypothesize that especially the standard MOS approaches have difficulties due to
this shift in the precipitation distribution there.

Figure 5 depicts the daily precipitation distributions on the test set for all locations
with observational data for E-OBS’s observed precipitation, REMO’s precipitation,
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Fig. 5 Daily precipitation distributions on the test set. The 12 bins are 50mm wide, starting at 0mm. The
y-axis (number of events) is scaled logarithmically and the x-axis (precipitation) is compressed over 200
mm for brevity

and the outputs of each MOSmethod’s best model instance (i.e. lowest test RMSE). It
shows that REMO often simulates considerably more precipitation than ever observed
despite the good mean Skill score per location, showing the weaknesses of its hydro-
logical cycle. All MOS approaches underestimate the number of high precipitation
events (≥ 50 mm). NL RF and all Deep Learning models are particularly conservative
about their estimates, showing considerably fewer events with more than 100mm than
both linear MOS approaches and E-OBS. This indicates room for improvement when
considering relatively rare extreme precipitation events with non-linear MOS.

5.6 Seasonal results

To assess whether the MOS approaches fitted with training data covering entire years
exhibit seasonal anomalies, we also evaluate them per season. Table 4 shows the mean
RMSE per season on the test set for all study area locations available in observational
data. The seasons are DJF (December–February), MAM (March–May), JJA (June–
August), and SON (September–November).

The seasonal results show that all MOS methods reduce errors across the year.
REMO seems to have more problems estimating precipitation during summer and
autumn (i.e. JJA and SON) for this study area which also results in larger RMSE of
MOS outputs in these seasons. As with the overall RMSE, CM-UNet and ConvMOS
are providing the best RMSEacross the seasonswith similarly low standard deviations.
ConvMOS is slightly better in themore difficult JJA and SON seasonswhile CM-UNet
is best during DJF andMAM. This difference is statistically significant for all seasons.
All Deep Learning models that do not combine local and global weights are better
than the standard approaches but worse than ConvMOS and CM-UNet. NL PCR and
NL RF have similar performance and both tend to perform better than Lin.
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Table 4 Seasonal RMSE in mm for all locations with observational data

Season
MOS DJF MAM JJA SON

REMO raw 4.59 4.50 6.28 5.13

Lin 2.64 3.04 4.22 3.74

NL PCR 2.44 2.89 4.20 3.48

NL RF 2.48 ± 0.00 2.94 ± 0.00 4.18 ± 0.00 3.51 ± 0.00

ResNet18 2.14 ± 0.03 2.62 ± 0.01 3.77 ± 0.01 3.18 ± 0.02

ResNet34 2.18 ± 0.03 2.64 ± 0.01 3.79 ± 0.03 3.22 ± 0.02

ResNet50 2.13 ± 0.02 2.62 ± 0.01 3.77 ± 0.01 3.19 ± 0.02

ResNet101 2.13 ± 0.03 2.61 ± 0.02 3.77 ± 0.02 3.18 ± 0.02

U-Net 2.11 ± 0.02 2.54 ± 0.02 3.68 ± 0.03 3.09 ± 0.03

CM-UNet 2.06 ± 0.02 2.51 ± 0.01 3.64 ± 0.02 3.04 ± 0.02

ConvMOS 2.09 ± 0.02 2.52 ± 0.01 3.63 ± 0.02 3.04 ± 0.02

Bold values indicate the best value
Values rounded to two decimal places. “DJF” is December–February, “MAM” is March–May, “JJA” is
June–August, “SON” is September–November

5.7 Focusing on extreme precipitation estimation

Our results show that non-linear models underestimate the number of extreme pre-
cipitation events more severely than REMO and linear approaches (see Fig. 5).
These events can have negative effects on society and the environment like
floods (Kundzewicz 2003), impact on plants (Zeppel et al. 2014) or increased dis-
ease spread (Chen et al. 2012). As such, it can be of interest to train models that
perform particularly well for estimating the number and intensity of extreme events.
Thus, we adapt ConvMOS-gggl to improve extreme precipitation estimation as it is
among the best models in our experiment. In the following, we consider daily precip-
itation of at least 50 mm as extreme which is also the threshold at which the German
Meteorological Service gives out a stage 3 precipitation warning for very dangerous
weather (Deutscher Wetterdienst 2021).

One technique for training regression models with more emphasis on performance
for rare data points in comparison to common data points is DenseLoss (Steininger
et al. 2021). It estimates the target variable’s density function from the training data
points and gives each training data point a weight based on each sample’s target value
density. These weights are higher for samples in relatively rare parts of the target
value range (i.e. extreme precipitation samples) in comparison to samples from more
common parts of the target value range (i.e. precipitation closer to 0 mm). A sample’s
weight influences howmuch the error of that sample influencesmodel training, leading
to models better suited for estimating rare data points such as samples with extreme
precipitation. The magnitude of weighting differences between samples with different
rarity is configured through α. Through preliminary tests on the validation set, we
found α = 1.0 to provide the lowest RMSE for extreme samples which is why we set
α to one. DenseLoss’ minimal weight threshold ε is set to 10−6 as in the original paper.
We modify the early stopping procedure to consider the validation MSE of extreme
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samples only and train 20 instances of ConvMOS with DenseLoss, which we call
ConvMOS-DL in the following. DenseLoss shifts the model’s focus towards extreme
precipitation events due to which we expect model performance for non-extreme sam-
ples to degrade to some extentwhile extreme data points are estimatedmore accurately.

To asses performance for extreme precipitation events, we split all samples into two
bins, evaluating all occurrences of at least 50 mm separately from those with lower
precipitation in the test set. The test set contains 12240 extreme and 21331874 non-
extreme samples. Due to the rarity of extreme events we can not calculate meaningful
meanmetrics per cell but instead report meanmetrics over all samples of a bin. In addi-
tion to the RMSE, we also evaluate howwell a model can distinguish between extreme
and non-extreme samples. To this end, we calculate a recall per bin and the balanced
accuracy, which is defined as the mean of the extreme and non-extreme recalls. We
consider a prediction accurate if it is lower than 50 mm for non-extreme samples and
at least 50 mm for extreme samples. Table 5 shows RMSE and recall for REMO’s
raw output, ConvMOS, and ConvMOS-DL for non-extreme and extreme samples as
well as the models’ balanced accuracies. As expected, ConvMOS performs better in
terms of both metrics for non-extreme data points in comparison to ConvMOS-DL
and REMO raw, while the model using DenseLoss is still better than the raw REMO
output. For extreme precipitation events, we see significantly better performance with
ConvMOS-DL compared to ConvMOS. ConvMOS-DL can correctly identify on aver-
age 20.99%of the extreme sampleswhile ConvMOSonly identifies 11.94%correctly.
REMO raw is closer to ConvMOS-DL’s recall on extreme samples with 20.03 % but
has considerably higher RMSE. When considering balanced accuracy, we find that
ConvMOS-DL can distinguish best between extreme and non-extreme samples while
REMO is similarly skilled in this aspect. Improved prediction of extreme values with
DenseLoss can also be seen in a histogram, where the distribution is visibly closer
to the observed precipitation (see Appendix). All in all, we find that DenseLoss can
be used to train climate MOS models better suited for the analysis of extreme pre-
cipitation. Such models provide lower general performance but can distinguish better
between extreme and non-extreme events while also showing lower errors for extreme
precipitation events.

6 Discussion

In thiswork,we have shown that convolutional climateMOSand especiallyConvMOS
models can improve the quality of precipitation data significantly. However, we also
found that especially non-linear approaches tended to performpoorly for the estimation
of extreme precipitation events. We were able to alleviate this by training models
specialized for extreme events with DenseLoss but ideally we could train models
that perform well for both extreme and non-extreme precipitation events. Approaches
to consider in the future for this may be uncertainty quantification methods which
explicitly model uncertainty and, thus, may provide estimates that better follow the
desired distribution (Abdar et al. 2021). It remains to be seen whether such techniques
help the estimates’ distribution to become closer to the real distribution while keeping
metrics like RMSE at similarly low or even lower levels as reported here.
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The MOS methods evaluated in this work only consider the spatial but not directly
the temporal aspect of this task. The climate state at a particular time is dependent on
the previous states and in our case only the climate model takes this into account. It
is possible that including information of earlier time steps within the climate MOS
models can help improve performance even further. It would therefore be interesting
to consider this for future work.

As usual with machine learning techniques, it is often important to set suitable
hyperparameters to achieve decent performance with a specific estimator. While it is
feasibly possible to optimize the hyperparameters even for each location individually
with the NLRF baseline, it is considerably more complex to tune Deep Learning mod-
els due to the enormous number of hyperparameters to consider and the dependencies
between hyperparameters (e.g. CNN kernel sizes affect the output tensor shape, which
can affect the structure of all following layers). For this reason, we only conducted
limited hyperparameter tuning for ConvMOS and CM-UNet (e.g. architecture compo-
sition studies) and no tuning for the baseline ResNet and U-Net architectures. While
the performance for all Deep Learning approaches and especially the ResNets and
U-Nets may be further improved to some extent, this does not affect the main point
of this work, namely that a combination of global and location-specific model param-
eters is beneficial as shown in both architecture composition studies. We furthermore
believe that using pre-defined ResNets and U-Nets from prior work is an interesting
baseline as these are likely models a practitioner would use, especially if the hardware
and time is not available for more involved hyperparameter searches when conducting
a climate study.

In contrast to reducing errors with climate MOS after running a climate model, a
different approach to improving climate data is to directly reduce the source of errors
in climatemodels. Uncertainties in climatemodels are primarily caused by the approx-
imation of complex, high resolution processes through so-called parametrizations. To
this end, there is work on learning better parametrizations with Deep Learning tech-
niques, but they are not good enough yet to be used in practice (Rasp et al. 2018).
Until these problems are solved, climate MOS methods like those considered in this
work can be used as an effective tool for correcting climate model outputs.

7 Broader impact

The experiments conducted in this work consider climate MOS specifically and show
that ConvMOS’s combination of global and local model parameters are beneficial
for the estimation quality. However, we believe that other domains may also benefit
from aspects of ConvMOS’s architecture. Location-specific parameters allow for the
implicit encoding of a location’s special characteristics during training, which we
suspect to also be beneficial for other domains with geospatial data, where models
like CNNs with their global model parameters are generally used on their own. Such
data is common in environmental machine learning tasks like air pollution modeling
or weather forecasting. For example, air pollution forecasting approaches like the one
proposed by Zhang et al. (2020) use a CNN-based spatial feature extractor where each
input “pixel” corresponds to a specific location that has its specific characteristics.
We believe that the combination of the existing CNN-based model for the efficient
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extraction of spatial features with a model containing per-location weights is likely to
improve the overall model, as it is now able to encode location-specific characteristics
that may be important for air pollution modeling.

Within the climate domain, this work provides a powerful new tool with ConvMOS.
We hope to promote the application of ConvMOS through our publicly available code.
This allows researchers conducting climate studies to apply our technique in order to
provide them with more accurate data.

Besides the methodological and practical impact, we hope to foster more interest
with our work in the data mining and machine learning community towards novel
contributions for environmental tasks. Environmental issues like climate change are
among the most pressing issues of our time and we believe that our community can
provide important contributions for understanding, mitigation, and adaption of and to
these processes, as is laid out in more detail in Rolnick et al. (2022).

8 Conclusion

In this work, we assessed convolutional Deep Learning climate MOS approaches
and presented our ConvMOS architecture that is built specifically to reduce location-
specific errors as well as systematic errors in climate model outputs. We applied
ConvMOS models to the output of the RCM REMO in order to reduce errors in its
simulated precipitation. In our architecture composition study, we showed that the
combination of per-location model parameters and global model parameters is benefi-
cial for MOS performance. Furthermore, our MOS approach is able to improve daily
precipitation data considerably while also providing significantly better performance
than three commonly used MOS approaches and plain ResNet and U-Net models in
most cases. We also showed that issues of non-linear Deep Learning MOS for esti-
mating extreme precipitation events can be alleviated by training models specialized
for extreme events with the imbalanced regression method DenseLoss. Improvements
in MOS allow for more accurate climate data especially at high spatial resolutions
which allows us to better assess the effects of climate change. While ConvMOS is
designed with climate MOS in mind, we believe that the architecture’s combination
of location-specific and global model parameters can also be beneficial for other tasks
with geospatial data (e.g. air pollution modeling, weather forecasting), which opens
interesting opportunities for future work.
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A Appendix

Fig. 6 Daily precipitation distribution on the test set for E-OBS’s observations, the estimates of REMO,
ConvMOS, and ConvMOS-DL. The 12 bins begin at 0mm and are 50mm wide. The y-axis (occurrences)
is scaled logarithmically

Table 6 RF hyperparameter search space. “HP” stands for hyperparameter

HP Range HP Range HP Range

n_estimators 10–2000 min_samples_split 2–10 max_depth 10–110

max_features 0.01–1.0 min_samples_leaf 1–10 bootstrap T or F

A.1 Model training time

ApplyingMOS can provide more accurate climate data but it comes with an additional
time burden due to the MOS’s training procedure. To quantify this time burden fairly,
we fit each MOS approaches five times on the same hardware—in contrast to the
cluster of heterogeneous hardware used in the main experiment—and measure the
training time.

All DeepLearningmodels (i.e. ResNets, U-Nets, CM-UNet, ConvMOS) are trained
on a single Nvidia RTX 2080 TI GPU (Graphics Processing Unit), which is relatively
affordable consumer hardware in comparison to expensive data center GPUs. These
models are implemented in PyTorch 1.7.1 (Paszke et al. 2019) with CUDA 11.0.
The other models (i.e. Lin, NL PCR, NL RF) are fitted using 15 cores of an AMD
Epyc 7502P processor, which is not a standard consumer but a more expensive data
center CPU (Central Processing Unit). These non-GPU models are implemented in
Scikit-learn 0.23.2 (Pedregosa et al. 2011).

Table 7 shows themean training duration in hours perMOS approach in this training
duration experiment. Both NL RF and NL PCR stand out with relatively long training
duration. As with Lin, NL RF and NL PCR fit one model per location, which is time
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Fig. 7 Mean test NRMSEs per location. U-Net and CM U-Net show high NRMSE on mostly low-
precipitation locations in contrast to all other models

Table 7 Mean training duration in hours per MOS approach

MOS Train duration [h] Hardware MOS Train duration [h] Hardware

Lin 0.03 ± 0.00 CPU ResNet50 0.49 ± 0.05 GPU

NL PCR 58.16 ± 25.33 CPU ResNet101 0.62 ± 0.05 GPU

NL RF 93.32 ± 1.47 CPU U-Net 0.42 ± 0.03 GPU

ResNet18 0.38 ± 0.03 GPU CM-UNet 0.44 ± 0.05 GPU

ResNet34 0.49 ± 0.04 GPU ConvMOS 1.14 ± 0.25 GPU

consuming for large study areas like the one used here with 121 × 121 locations.
However, NL RF’s and NL PCR’s long training times are mostly due to supervised
PCA. NL RF takes longer than NL PCR due to the higher model complexity and the
per-location hyperparameter tuning, which we employ for optimal performance (see
Sect. 5.3). All Deep Learning approaches are trained in under two hours. ConvMOS’s
training duration is comparatively long and shows high variance. Regardless, there is
no large practical difference between these Deep Learning approaches with regard to
training duration since all train relatively quickly. All in all, we consider these training
times—except for NL PCR and NL RF—minor in comparison to the time needed for
the climate simulations of the climate model, which usually takes multiple days. The
Deep Learning approaches are faster in settings with large study areas while providing
better performance, as seen in this work’s main experiment.

A.2 Architecture composition study for CM-UNet

ConvMOS’s architecture composition study shows that a combination of local and
global modules is beneficial.We further confirm this and optimize CM-UNet’smodule
composition by conducting the architecture composition study again with U-Net as
the global module (CM-UNet). The experimental setup is the same except for the
different global modules and the batch size of 64 instead of 128 due to GPU memory

123



ConvMOS: climate model output statistics...

Ta
bl
e
8

M
ea
n
va
lid

at
io
n
m
et
ri
cs

pe
rC

M
-U

N
et
co
m
po
si
tio

n
so
rt
ed

by
R
M
SE

(l
ef
t<

ri
gh

t)
,r
ou

nd
ed

to
th
re
e
de
ci
m
al
pl
ac
es
.“
M
od

.”
is
m
od

ul
es
,“
C
or
.”
is
C
or
re
la
tio

n,
“g
”/
“l
”

is
gl
ob
al
/lo

ca
ln

et
w
or
k.

R
M
SE

,B
ia
s
in

m
m
.N

R
M
SE

in
%

M
od
.

R
M
SE

N
R
M
SE

C
or
.

Sk
ill

R
2

B
ia
s

M
od
.

R
M
SE

N
R
M
SE

C
or
.

Sk
ill

R
2

B
ia
s

gl
3.
26

4
8.
85

8
.7
51

.8
42

0.
47

5
−0

.0
09

gl
g

3.
30

3
9.
52

2
.7
49

.8
30

−0
.4
16

0.
05

6

gg
ll

3.
26

9
8.
88

3
.7
50

.8
36

0.
46

1
0.
01

9
gl
gg

3.
30

6
9.
77

7
.7
50

.8
27

−1
.0
48

0.
07

2

gl
ll

3.
26

9
8.
82

3
.7
51

.8
45

0.
50

1
0.
00

2
lg
gg

3.
30

7
10

.2
11

.7
49

.8
27

−2
.4
58

0.
03

8

gg
lg

3.
27

0
9.
37

2
.7
51

.8
33

−0
.2
90

−0
.0
01

g
3.
31

0
10

.9
18

.7
53

.8
32

−5
.7
74

0.
04

0

gl
l

3.
27

1
8.
85

6
.7
51

.8
39

0.
48

4
0.
04

0
lg
g

3.
31

3
10

.2
62

.7
49

.8
23

−2
.5
90

0.
01

3

gg
gl

3.
27

2
9.
02

9
.7
51

.8
42

0.
33

7
0.
02

2
gg

3.
31

3
10

.8
94

.7
53

.8
26

−5
.4
79

0.
03

9

gg
l

3.
27

2
8.
97

8
.7
51

.8
32

0.
39

3
0.
05

0
lg

3.
32

0
10

.2
79

.7
47

.8
21

−2
.6
79

0.
03

7

gl
gl

3.
27

4
9.
02

9
.7
51

.8
34

0.
34

5
0.
02

0
llg

g
3.
32

7
10

.1
58

.7
44

.8
21

−2
.0
73

0.
04

8

lg
ll

3.
27

7
8.
96

8
.7
49

.8
33

0.
40

5
0.
02

7
gg

g
3.
32

9
10

.9
57

.7
52

.8
24

−5
.5
29

0.
07

9

lg
l

3.
27

7
9.
09

2
.7
49

.8
37

0.
25

5
−0

.0
10

llg
3.
33

9
10

.1
02

.7
43

.8
27

−1
.8
77

0.
00

5

lg
gl

3.
28

6
9.
18

2
.7
48

.8
34

0.
15

6
0.
02

7
lll
g

3.
34

3
9.
99

7
.7
41

.8
32

−1
.5
32

−0
.0
04

llg
l

3.
29

9
9.
17

7
.7
45

.8
33

0.
21

3
0.
01

9
lll
l

3.
78

7
10

.0
50

.6
48

.7
95

0.
37

5
0.
18

8

gg
gg

3.
30

1
10

.8
88

.7
54

.8
30

−5
.5
86

0.
01

4
lll

3.
78

9
10

.0
53

.6
48

.7
94

0.
37

4
0.
19

0

lg
lg

3.
30

2
9.
67

4
.7
47

.8
24

−0
.7
62

0.
03

4
ll

3.
79

3
10

.0
63

.6
47

.7
92

0.
37

3
0.
19

6

gl
lg

3.
30

3
9.
55

0
.7
48

.8
29

−0
.5
07

0.
04

1
l

3.
80

2
10

.0
86

.6
43

.7
83

0.
37

0
0.
20

0

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
va
lu
e

123



M. Steininger et al.

limitations with compositions consisting of three or four U-Nets. We do not expect
the change in batch size to affect the comparison considerably.

Table 8 shows validation set mean metrics for all locations with observational data
of each CM-UNet architecture composition sorted by RMSE. The composition CM-
UNet-gl provides the lowest RMSE as well as Correlation, Skill score, and Bias that
are not significantly different to the composition with the best value in the respective
metric. While it is not best in NRMSE and R2, we choose this composition for our
experiments due to its low RMSE and it being among the best compositions with
regard to the other metrics. Again, we find that the combination of per-location and
global model parameters can improve performance in terms of RMSE, NRMSE and
R2, where CM-UNet-gl provides significantly better performance in comparison to
the best composition consisting solely of global or local modules, namely CM-UNet-
gggg. Compositions without both global and local modules typically perform worse
than combinations of both. An exception are Correlations, where CM-UNet-gggg
performs best significantly but performs subpar especially for NRMSE and R2. This
study confirms again that a local network as the final module provides relatively good
NRMSE and R2.

A.3 Estimation quality over time

This work considers MOS where temporal climate dynamics are entirely modeled by
the climate model. Daily precipitations are adjusted disregarding time. SinceMOS use
training data from a certain time range, it is interesting to consider error trends with
increasing distance to this time period. Distributions produced by climate models may
change over time, possibly leading to issues forMOS.We investigate this by analyzing
the test set performance over time.

Figure 8 visualizes daily RMSE of precipitation over the test set time range for
REMO, ConvMOS, and NL PCR, smoothed with a moving average window of 14

Fig. 8 RMSE of precipitation in mm for the test set across the study area over time. The graph is smoothed
using a moving average window of 14 days
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Table 9 Test set mean RMSE in mm per year for all locations having observational data. Values rounded
to two decimal places

Year 2011 2012 2013 2014 2015
MOS

REMO raw 4.93 5.20 5.45 5.72 4.86

Lin 3.41 3.32 3.55 3.80 3.31

NL PCR 3.26 3.20 3.44 3.67 3.11

NL RF 3.27 ± 0.00 3.19 ± 0.00 3.45 ± 0.00 3.70 ± 0.00 3.15 ± 0.00

ResNet18 2.93 ± 0.02 2.83 ± 0.02 3.08 ± 0.02 3.31 ± 0.01 2.85 ± 0.02

ResNet34 2.97 ± 0.02 2.87 ± 0.02 3.11 ± 0.02 3.34 ± 0.02 2.86 ± 0.02

ResNet50 2.92 ± 0.02 2.84 ± 0.01 3.08 ± 0.02 3.31 ± 0.02 2.86 ± 0.02

ResNet101 2.92 ± 0.03 2.84 ± 0.02 3.07 ± 0.02 3.32 ± 0.02 2.84 ± 0.02

U-Net 2.87 ± 0.03 2.78 ± 0.02 3.00 ± 0.02 3.21 ± 0.02 2.80 ± 0.02

CM-UNet 2.82 ± 0.02 2.73 ± 0.02 2.96 ± 0.02 3.17 ± 0.01 2.76 ± 0.02

ConvMOS 2.82 ± 0.02 2.75 ± 0.01 2.96 ± 0.02 3.18 ± 0.02 2.76 ± 0.02

Bold values indicate the best value

Table 10 Test set mean RMSE
relative to REMO’s RMSE in %
per year for all locations having
observational data. Values
rounded to percentages

Year 2011 2012 2013 2014 2015
MOS

REMO raw 100 100 100 100 100

Lin 69 64 65 67 68

NL PCR 66 62 63 64 64

NL RF 66 ± 0 61 ± 0 63 ± 0 65 ± 0 66 ± 0

ResNet18 59 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet34 60 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet50 59 ± 0 55 ± 0 57 ± 0 58 ± 0 59 ± 0

ResNet101 59 ± 1 55 ± 0 56 ± 0 58 ± 0 58 ± 0

U-Net 58 ± 1 53 ± 0 55 ± 0 56 ± 0 58 ± 1

CM-UNet 57 ± 0 53 ± 0 54 ± 0 55 ± 0 57 ± 0

ConvMOS 57 ± 0 53 ± 0 54 ± 0 56 ± 0 57 ± 0

Bold values indicate the best value

days to reduce noise. It shows that MOS RMSE mostly follows REMO’s RMSE but
on a lower level. We find no noticeable trend in RMSE for the models depicted, as
well as the otherMOS approaches.We come to the same conclusion when considering
Table 9, which shows the absolute RMSEper year for allMOS approaches andREMO,
and Table 10, which shows the relative RMSE per year for each MOS approach
as percentages of REMO’s RMSE. Especially the latter table shows for all MOS
techniques only small RMSE fluctuations of at the very most 5 % relative to REMO’s
RMSE, suggesting that MOS error trends follow REMO’s error trends.

While the limited timespan available does not allow for a conclusive answer regard-
ing error trends for longer timespans, the data does suggest that timedifference between
training data and test data may have no or only a minor influence on errors. Neverthe-
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less, when considering longer timespans than five years, the climate model output’s
distribution may change to such an extent, that there may be a noticeable effect. We
suggest to analyze this in climate studies that apply MOS in order to detect potential
issues with distributional shifts.

Fig. 9 Test RMSE in mm per location and season (DJF is December, January, and February; MAM is
March, April, andMay; JJA is June, July, and August; SON is September, October, and November). REMO
has larger RMSEs than 10mm but the colorbar’s extent is limited to better show general performance
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A.4 Seasonal results over the study area

Seasonal results are visualized in Fig. 9 for REMO’s raw output, ConvMOS, and
NL PCR, which is overall the best standard MOS approach in terms of RMSE. We
show the same model instances as in Fig. 4. During all seasons, we find REMO’s
largest errors in mountainous regions like the Alps. This also shows in the RMSE
of both ConvMOS’s and NL PCR’s output where these areas often continue to have
more pronounced errors. The season with the largest error JJA shows more evenly
distributed large RMSE values across the study area compared to the other seasons,
resulting also in comparatively large RMSE in the MOS outputs. The relatively large
overall RMSE values of season SON concentrate in the Alps and the Mediterranean
coast, while RMSE for cells north of the Alps seem similar to those during seasons
DJF and MAM. Matching the findings of Table 4, we tend to see lower RMSE with
ConvMOS in comparison to NL PCR. For example, the latter has more difficulties
in reducing the large errors near the border between Italy and Slovenia and we also
often see slightly larger RMSEs north of the Alps in comparison to our approach.
These results show that ConvMOS can be better than standard MOS approaches at
improving precipitation estimates regardless of the season.
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