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Abstract
Air pollution in urban areas has become a major issue and has attracted significant public attention. As a consequence, many citizens have
started campaigns for measuring the air quality of their personal environment using mobile devices. In this study, we adapt HypTrails
— a Bayesian method for comparing hypotheses about human trails — in order to investigate mobility patterns from such campaigns. In
particular, we derive an approach to apply HypTrails to continuous, temporally dense navigation paths as is characteristic for GPS tracks.
This allows us to directly study the behavioral processes of participants. We showcase our method on the citizen science campaign APIC (the
AirProbe International Challenge) yielding promising results: We find differing mobility patterns of users in restricted and unrestricted
environments, and extend previous work by showing that roads and road types play an important role explaining the observed paths. This
gives first insights into movement patterns of urban air quality exploration. Ultimately, we believe that our approach can help to better
interpret data collected in the context of participatory sensing campaigns, and to develop new theories about the motivational processes of
volunteers.

1 INTRODUCTION
Air pollution in urban areas has become a major issue and has at-
tracted significant public attention [5, 8]. As a consequence, many
citizens have started campaigns for measuring the air quality of
their environment [1, 7]. While most such initiatives are based on
static measurement stations, some campaigns also use mobile sen-
sorboxes that allow citizens to freely explore urban areas on a large
scale. One of these campaigns was the AirProbe International Chal-
lenge (APIC) which was held as part of the EU project EveryAware1.
APIC was a participatory sensing campaign mapping air quality in
the form of black carbon measurements across four different cities.
Due to its mobile nature, it provides the unique opportunity for
studying human navigation behavior in the context of exploring
air pollution in various urban environments.

In [10] Sirbu et al. have studied mobility patterns in the context
of APIC focusing on aspects relevant to participatory sensing cam-
paigns, i.e., activity and coverage (see Figure 1 for an illustration).
They found that better spatial and temporal coverage is obtained
when volunteers are assigned to specific mapping areas, compared
to when no restrictions are imposed. Additionally, when allowed
to measure freely, they (i) measure higher pollution levels, and (ii)
exhibit differing exploration behavior.

In this study, we also investigate the mobility patterns from the
APIC challenge. However, instead of focusing on aggregate statis-
tics like activity and coverage, we directly study the behavioral
processes of the participants. Specifically, we propose a novel ap-
proach to apply HypTrails [9] — a Bayesian method for comparing
hypotheses about human trails — to continuous, temporally dense
navigation paths as are characteristic for GPS tracks. This allows
us to directly study the behavioral processes of participants in a
hypothesis-driven way. We apply this method to the APIC data and

1http://everyaware.eu, accessed: December 2017
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confirm the differing mobility patterns of users in restricted and
unrestricted campaigns, and show that roads and road types play
an important role explaining the observed paths. This illustrates
the applicability and versatility of our method while at the same
time giving first insights into the exploration patterns of mobile
urban air quality sensing.

Overall, we believe that our method paves the way to build
more advanced user models, to better interpret data collected in
the context of participatory sensing campaigns, and to develop new
theories about the motivational processes of volunteers.

2 BACKGROUND AND DATA
2.1 HypTrails
HypTrails is a framework [9] that allows to formulate and compare
hypotheses about human navigation behavior. Such hypotheses
usually stem from theory, domain experts, previous experiments,
or human intuition and can incorporate a large variety of back-
ground information. For example in this work, we investigate the
idea that participants of a mobile air quality campaigns follow spe-
cific road types depending on the current campaign restrictions.
Formally, hypotheses are encoded as transition probability matrices
on a discrete state space within a first-order Markov chain frame-
work. They are then compared based on the marginal likelihood
Pr(D |H ,κ) which represents the probability of the observed data
D given a specific hypothesis H and a concentration factor κ. The
concentration factor κ represents a measure of how sure the user
is that a hypothesis is correct. To establish if one of the hypotheses
is better than another we compare the marginal likelihood (the
higher, the better) across a range of concentration factors (scaled
by the number of states). For more details we refer to [2, 9].

2.2 Navigation data
In the following, we first introduce the APIC challenge from which
the navigation data stems. Afterwards we describe howwe generate
trails from this data which we analyze in this work.

http://everyaware.eu
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Kassel (b) Turin

Figure 1: Urban air quality exploration patterns. These heatmaps represent spatial and temporal coverage during an air quality measurement campaign
with mobile sensorboxes for Kassel and Turin (cf. [10]). For each city the left image represents measurements taken while users were restricted to measure in
a specific area (phase 2) while the right image shows unrestricted exploration (phase 3). Red dots represent strongly covered areas.

The APIC challenge. The data we use in this work stems from the
APIC challenge and is freely available2. The APIC challenge was
aimed at studying the behavior and perceptions of citizens involved
in monitoring air quality, during a large scale international test
case. This was organized simultaneously in four cities: Antwerp
(Belgium), Kassel (Germany), London (UK) and Turin (Italy). The
campaign consisted of three phases, during which volunteer par-
ticipants were asked to either take part in a web game (phase 1-3)
for quantifying their perception on air pollution, or use a sensing
device (sensorbox [4]) to measure and explore air pollution (black
carbon (BC) concentrations) in their daily life (phase 2-3). In this
study, we only focus on the actual measuring activities thus skip-
ping information on the web game (for more information on APIC
please see [10]): In phase 2 the measurements started in a prede-
fined area for each of the cities. In phase 3 measurements were
continued, however, without restrictions on the area to be mapped.

The APIC challenge has successfully involved 39 teams of vol-
unteers across the four cities. Using the EveryAware platform [3],
6,615,409 valid geo-localized data points were gathered during the
second and third phase of the challenge (the sensorbox collects one
data point per second). Phase 2 was held from the 4th to the 17th of
November 2013 and phase 3 took place from the 18th of November
to the 1st of December.
Trails. In order to derive “clean” trails from these data points, we
apply several pre-processing steps: We only keep measurements
with a valid value for GPS accuracy and where the accuracy is better
than 10m. Then we group the measurements by device id and sort
them by their recording time to attain one trail for each sensorbox.
In order to ensure correctly functioning sensorboxes which take one
measurement per second, we split these trails whenever the time
difference (> 2sec), the distance (> 100m), or the speed (> 50km/h)
between two consecutive measurements is greater than a respective
threshold.

Then, we generate a discrete state space — which is required to
apply the HypTrails approach [9]. In particular, we employ a 200m
by 200m grid based on the bounding boxes3 listed in Table 1. Note
that we leave out Antwerp and London because they do not provide

2https://www.kde.cs.uni-kassel.de/everyaware/dumps/airprobe, accessed: March 2018
3These bounding boxes are based on the corresponding woeid ids on the town level.
For example: https://www.flickr.com/places/info/725003

Table 1: Bounding boxes used for discretizing city areas.

min lon. min lat. max lon. max lat.
Turino 7.6017 45.0080 7.7336 45.1326
Kassel 9.3454 51.2533 9.5650 51.3617

enough data to derive decisive results (cf. Section 3.1). We map the
points of each trail to the corresponding grid cells and then remove
all self-transitions in order to focus on actual exploration rather
than static processes. Afterwards we filter all trails which contain
only a single entry.

2.3 Road network
For the hypotheses in Section 3, we use the road network of each city.
We extract these networks from OpenStreetMap4 for each city sep-
arately. The corresponding data was downloaded from bbike.org5.
Using this data we extract roads from the osm_world_line table
and only retain entries where the field name, i.e., the name of the
road (required for matching roads across cells as described in Sec-
tion 3), and the field highway, which defines the type of the road,
are not null.

3 HYPOTHESES
We formulate several hypotheses modeling different aspects of nav-
igation processes. To this end, we define transition functions P̄
which are normalized by source state si to form transition proba-
bility matrices as required by HypTrails.
The uniform hypothesis and adjacency. The uniform hypoth-
esis P̄uniform(sj |si ) = 1 provides a “random” baseline every other
(informed) hypothesis should be able to outperform. However, since
our measurements are continuous (one sample per second), and
we are using a state space with 200m by 200m grids, it is highly
unlikely that transitions will occur to cells farther away than one
cell. Consider for example the gray cell in Figure 2a as the current
cell. Only the cells in its immediate vicinity are candidates to navi-
gate to. Thus, we also define the adjacency hypothesis modeling
this aspect. In particular we define adji (j) to return 1 when the cell

4https://www.openstreetmap.org/
5http://download.bbbike.org/osm/bbbike/, file date: 10.08.2017

https://www.flickr.com/places/info/725003
https://www.openstreetmap.org/
http://download.bbbike.org/osm/bbbike/
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(b) Comparison of baseline hypotheses

Figure 2: Hypotheses on AirProbe data. In (a) we illustrate how a road
network (e.g. from OpenStreetMap) is used to derive hypotheses which we
compare using the HypTrails method. It shows a geo-spatial grid over a
road network. The bold lines are residential roads, and the thin lines are
footways. The number in each cell represents the count of the roads which
also pass the current (grey) cell, i.e., zeros are left out. In this scenario be
build hypotheses about behavioral processes (cf. Section 3). For example,
assuming a preference to follow roads, the higher the road count, the more
likely it is for participants to move from the current cell to the cell with
that number. Also, participants may prefer residential roads over footways
which we also explore in our hypotheses. In this context, (b) additionally
shows the performance of two baseline hypotheses illustrating that limiting
transitions to adjacent cells (adjacency) is a more plausible baseline than
a completely uniform hypothesis (uniform) in a scenario with continuous,
temporally dense trails.

sj is one of the adjacent cells of cell si (see the eight white cells
in Figure 2a), and 0 otherwise. Then the adjacency hypothesis is
defined as

P̄adjacency(sj |si ) = adji (j) (1)

Road counts.We further hypothesize that users move according
to the road network in a city. That is, given the current cell, we
belief that the user will follow some road to one of the adjacent
cells. We model this as follows: For each cell we extract the roads

present in that cell. Then, given the names of the roads Ri of cell
si , we count the number of roads ri, j of all the adjacent cells sj
which are also in cell si , i.e., ri, j =

∑
x ∈Ri∩Rj 1. This represents

the intuition that the more the roads between the source cell si
and destination sj overlap, the more likely a user will move to sj .
For an illustration, see Figure 2a: The cell below the top-right cell
contains three roads also present in the grey source cell. Thus, a
citizen will more likely go to that cell rather than to the top-right
cell containing only one road also present in the (grey) source cell.
We formally define the corresponding hypothesis as:

P̄roads(sj |si ) = ri, j · adji (j) (2)

Footway and residential preference. With regard to phase 2
(users are restricted to a limited area) and phase 3 (no spatial restric-
tions) of APIC, we hypothesize that there is difference in navigation
behavior as hinted at in [10]. To address these characteristic prop-
erties, we investigate whether the type of the road users prefer to
follow changes between the different phases. In this case study, we
specifically focus on residential roads, as mostly found in cities, and
footways, which are exclusively reserved for pedestrians and bicycle
drivers.6 Note however, that footways often are found alongside
roads, including major roads.

To model a preference for a specific road type, we weigh the
different roads individually. Starting with the residential category,
let residential(x) be 2 if x is a road of the category residential
and 1 otherwise. Then, we define the weighted sumwresidential

i, j =∑
x ∈Ri∩Rj residential(r ) to represent the likelihood to move from

cell si to sj , where the residential roads are twice as important as all
other road types. Consider, for example, Figure 2a where residential
roads are bold and footways are thin. Usingwresidential

i, j instead of
ri, j , the weight of the cell below the top-right cell would be four
instead of three. Formally, we define the hypothesis preferring
residential roads as

P̄residential(sj |si ) = w
residential
i, j · adji (j) (3)

The hypothesis P̄footway(sj |si ) is defined analogously.

3.1 Results
In the following, we compare the hypotheses introduced in Section 3
on the data from phase 2 and phase 3 of the APIC challenge. Note,
that we only report results on Turino and Kassel. For the other
cities (Antwerp and London), the general tendencies are the same
but due to the smaller amount of data available for these cities,
the results are not decisive with regard to the interpretation table
of Kass and Raftery [6]. In contrast, the interpretations we report
in the following are all backed by decisive differences.
Baselines. We first compare the baselines — defined by P̄uniform
and P̄adjacency — based on the data from phase 2 in Turin (see
Figure 2b). As expected, we observe that — in a continuous setting
— it is appropriate to restrict transitions to adjacent cells. That is,
P̄adjacency outperforms P̄uniform by a large margin.
Roads. Next, we evaluate the performance of weighting the proba-
bility of a transitions to an adjacent cells by the number of common
6 OpenStreetMap defines road categories residential and footway using the
highway property. Also see: http://wiki.openstreetmap.org/wiki/Key:highway (ac-
cessed: 19.08.2017).

http://wiki.openstreetmap.org/wiki/Key:highway
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(a) Turino: restricted navigation (phase 2)
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(b) Turino: unrestricted navigation (phase 3)
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(c) Kassel: restricted navigation (phase 2)
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(d) Kassel: unrestricted navigation (phase 3)

Figure 3: Comparison of navigation hypotheses on the APIC data. We compare several hypotheses about human navigation during the two phases of
APIC. Generally, we observe that the hypothesis assuming that participants follow roads explains the data better than assuming random navigation (adjacency).
We also find that refined information about street types (residential roads or footways) can improve on the unweighted roads hypothesis. Furthermore, we
observe different preferences for one or the other road type dependent on the phase of the campaign and its objectives. This is in line with our findings in
previous work [10] where we have observed different user behavior in the two phases (cf. Section 2.2).

roads with the source cell. The results are shown in Figure 3. On
both cities and both phases this hypothesis (P̄roads) shows large
improvements on the baseline P̄adjacency. This indicates the gen-
eral tendency of users to navigate according to the properties of
the underlying street network so that more “links” between cells
correspond to more people moving to that cell.

Residential roads and footways. Finally, we study the preference
for residential roads and footways. We first concentrate on Turino
(Figures 3a and 3b). In phase 2, we observe a clear improvement of
the hypothesis preferring residential roads compared to weighting
all roads equally (P̄roads) or preferring footways (P̄footway). This
corresponds to the focused exploration of down-town Turino as
visualized in Figure 1. What is hardly visible, is that P̄roads slightly
(but decisively) outperforms the hypothesis preferring footways
(P̄footway). In contrast, in phase 3, the preference of residential roads
cannot explain the navigation behavior of the users as well as the

previously outperformed hypotheses (P̄roads, P̄footway). Here, how-
ever, the footway hypothesis (P̄footway) slightly (but not decisively)
outperforms the unweighted roads hypothesis (P̄roads). This shows,
that indeed, the navigation behavior between the two phases differs
significantly with regard to the preference of residential roads.

Similar results can be observed for Kassel. That is, we observe
the same tendencies for phase 2 where the general trend to follow
residential roads is stronger than for Turino. In phase 3, things are
slightly different. In particular, both, the residential and footway
hypotheses outperform the unweighted roads hypothesis. Never-
theless, as for Turino, the footway hypothesis explains the data
better than the residential hypothesis.

Comparing the different cities and the different phases two trends
are apparent:

(i) A preference for residential roads or footways can improve
on the unweighted roads hypothesis.
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(ii) Residential roads are preferred in phase 2 while footways
explain the navigation behavior better in phase 3.

The former shows that road types generally carry information with
regard to navigation preferences, and the latter indicates situational
dependencies with regard to the overall goal and strategies of the
users. This is in line with the findings in [10] where differing user
behavior was observed in phase 2 and 3. One explanation for this
may lie in the focus of each phase (cf. Section 2.2): In phase 2 users
focused on the city centers trying to cover as much space as possible.
Thus, they followed the most common streets in these areas, namely
the residential roads. When they were allowed to measure where
theywanted to, the focus on the city center decreased, thus reducing
the navigation on residential roads. See Figure 1 for a comparison
of the respective coverage. The good performance of footways in
Kassel (whereas in Turin there where hardly significant differences)
may be due to the fact at the users mostly measured air quality
while commuting and inherently using large roads which often have
an attached footway in Kassel. Further studies will be necessary
to clarify the corresponding details. Such work may explore for
example the preferences for primary, secondary, and tertiary roads
instead of footways in the third phase.

4 CONCLUSION
In this work, we introduced a method to apply HypTrails for study-
ing the underlying processes of exploration patterns in the context
ofmobile participatory sensing campaigns. In particular, we adapted
HypTrails to temporally dense navigation paths in a continuous
geo-spatial setting as is characteristic for GPS tracks. To illustrate
our approach, we applied this novel method to data from the APIC
challenge. The corresponding experiments yield promising results:
We show that roads and road types play an important role explain-
ing the observed paths. In addition, the results confirm a difference
in navigational characteristics depending on the geo-spatial con-
straints defined by the APIC challenge as also found in [10].

Overall, this study provides a novel method for understanding
behavioral processes in the context of geo-spatial navigation paths.
In particular, our approach can be used to build user models, to bet-
ter interpret data in the context of participatory sensing campaigns,
and to develop and compare new theories about the motivational
processes of volunteers.

For future work, it may be interesting to extend the transition
models as applied in this work, for example, by further investigat-
ing the influence of the road network in the context of the data
provided by OpenStreetMap, or by formulating heterogeneous hy-
potheses to explain the overall behavior of users during the APIC
campaign [2]. Finally, by employing data from other participatory
sensing campaigns as well as subjective information from users
may provide the necessary background information to formulate
and compare hypotheses that enable further insights into human
navigation behavior as well as their incentives and goals in the
context of environmental studies.
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