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Abstract. Modeling data obtained from dynamical systems has gained
attention in recent years as a challenging task for machine learning mod-
els. Previous approaches assume the measurements to be distributed on
a grid. However, for real-world applications like weather prediction, the
observations are taken from arbitrary locations within the spatial do-
main. In this paper, we propose TaylorPDENet – a novel machine learn-
ing method that is designed to overcome this challenge. Our algorithm
uses the multidimensional Taylor expansion of a dynamical system at
each observation point to estimate the spatial derivatives to perform
predictions. TaylorPDENet is able to accomplish two objectives simulta-
neously: accurately forecast the evolution of a complex dynamical system
and explicitly reconstruct the underlying differential equation describing
the system. We evaluate our model on a variety of advection-diffusion
equations with different parameters and show that it performs similarly
to equivalent approaches on grid-structured data while being able to
process unstructured data as well.

Keywords: Partial Differential Equations · Dynamic System · Neu-
ralPDE · Taylor Expansion · Deep Learning · Symbolic Neural Network

1 Introduction

Dynamical systems like weather [25,3], chemical reactions [28] or wave propaga-
tion [15] are an essential part of our environment. Analyzing these systems may
lead to knowledge of how they evolve and a better understanding of the sys-
tem itself [24,7]. Dynamic systems are described by ODEs (ordinary differential
equations) with only time derivatives or PDEs (partial differential equations)
containing time and spatial derivatives [16]. These equations play a vital role in
many disciplines and describe the physical laws governing the system.

Modeling dynamic systems has gained attention in recent contributions as
an interesting and challenging topic [15,22,17,27,20]. Dynamic systems are based
on the task of learning the dynamics of an underlying complex system from
sequential data, to finally be able to predict future states.

Available machine learning models require the observations to be structured
on a grid. In this case, convolutional neural networks, dominant for this type of
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Fig. 1: In TaylorPDENet measurements of a system at arbitrary points in space
are used with a Taylor polynomial to estimate spatial derivatives for each point.
These are used with a symbolic regression network to estimate the parameters
of a partial differential equation and perform predictions of future states.

data [20,12], can be used to model the state of the system. However, in real-world
applications, the state of a dynamical system at a specific time is measured at
arbitrary points in space. Data, like weather dynamics [25,3], chemical reactions
[28], and wave propagation [15], can rarely be measured on a grid.

Our objective is to develop a machine learning method able to learn from
non-grid data as we often measure it in reality. To this end, we propose the Tay-
lorPDENet, which is based on the approximation of spatial derivatives with the
Taylor polynomial [13]. TaylorPDENet does not require gridded data and instead

computes the spatial derivatives ∂(q+r)u
∂xq∂yr using arbitrary neighboring points. Our

approach, as summarized in Figure 1, consists of two steps: Firstly, the spatial
derivatives are calculated using the Taylor polynomial evaluated at several neigh-
boring points. Secondly, the differential equation is constructed using a linear
symbolic regressor which assigns coefficients to different terms of the equation.
By learning the coefficients of each spatial derivative in the equation, our model
is able to both accurately forecast future states of the system[10,6] and recon-
struct the underlying differential equation.

We evaluate our model on several 2D advection-diffusion equations [8]:
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with different coefficients αij ∈ R.
Our contributions can be summarized as follows:

1. we propose a novel approach to learning dynamical systems from data based
on Taylor polynomials

2. we show that our model TaylorPDENet is able to perform well on both grid
and non-grid data alike

3. we demonstrate that TaylorPDENet is able to both predict future states of
the dynamical system and extract its governing equation

We make the code containing our model and all experiments publicly available. 1

1 https://github.com/LSX-UniWue/TaylorPDENet

https://github.com/LSX-UniWue/TaylorPDENet
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2 Related Work

Previous work on learning dynamical systems from observations has mainly fo-
cused on grid-structured data. Dulny et al. [10] propose the NeuralPDE model
which combines CNNs with a differentiable method of lines solver to parametrize
the underlying PDEs. Similarly, Ayed et al. [2] propose a hidden-state neural-
based model to forecast dynamical systems using a ResNet to parametrize the
equation. The Finite Volume Neural Network (FINN) [22] is based on the Finite
Volume Method and predicts the evolution of diffusion-type systems by explicitly
modeling the flow between grid points. Li et al. [19] propose the Fourier Neural
Operator which learns the simulations of physical processing using convolutions
in Fourier space.

Another line of research focuses on extracting the differential equation which
describes the evolution of the dynamical system. Long et al. [21] propose the
PDE-Net model which uses learnable convolutional filters to estimate single
derivative terms together with a linear regression layer to reconstruct the coef-
ficients of the equation. An extension of this approach is the PDE-Net 2.0 [20]
which additionally features a symbolic regression network capable of including
non-linear terms in the equations. Raissi et al. [23] propose a physics-informed
deep learning approach that is able to fit the coefficients of a known equation
type using automatic differentiation.

The task of predicting the evolution of a physical system from non-grid struc-
tured data has only recently started gaining attention. Recently Dulny et al. [11]
proposed a benchmark for learning dynamical systems from low-resolution non-
grid observations on which several graph neural network and point cloud [29]
based models were evaluated. Iakovlev et al. [14] use a graph message passing
approach to learn predictions for an advection-diffusion problem, as well as the
heat equation and Burger’s equation from data. The multipole graph neural op-
erator proposed by Li et al. [18] can also be used to learn dynamical systems from
unstructured data, however, the authors only evaluate it on grid observations.

To the best of our knowledge, our proposed approach TaylorPDENet is the
first model capable of simultaneously forecasting the evolution of a dynamical
system while also extracting the differential equations describing its behavior
from non-grid observations.

3 TaylorPDENet

Given measurements of an evolving physical system u : Ω × T → Rd at specific
locations p1, . . .pn within the spatial domain Ω ⊂ R2. The measurements are
available at time points T = {t1, t2, t3, . . . , tτ} for T ⊂ R. In principle, our
approach works with arbitrary spaced time steps, but for simplicity, we assume
ti+1 − ti = const. We denote the known state of the system at a given time
t as u(t) := [u(p1, t), . . . , u(pn, t)] ∈ Rn×d. The system is assumed to evolve
according to an underlying PDE of the form in equation 1. We consider the task
of predicting the evolution of the system (forecasting) as well as reconstructing
the underlying differential equation (reconstruction).
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Our proposed model, TaylorPDENet, is based on the Taylor polynomial [26],
which offers an approximation for functions at a single point in space. We calcu-
late the polynomial for the function u(·, ti) at each point pi and its neighboring
points N (pi) and solve a set of linear equations with the derivatives of the under-
lying PDE model as unknowns [13]. We combine this knowledge with learnable
parameters to conduct an Euler step [4] and compute the future state of the
model.

3.1 Taylor Polynomial Approximation

For a given point p0 ∈ R2 with coordinates x0 and y0 in our measurements u(ti)
we compute the derivatives at p0 using the Taylor approximation.

Theorem 1 (Taylor Approximation [9]). A function of two variables f
whose partial derivatives all exist up to the Qth order within a neighborhood U
of the point (x0, y0) can be approximated by the Qth-degree Taylor polynomial
of f at the point (x, y) in the neighbourhood of (x0, y0) as follows:

f(x, y) = f(x0, y0) + PQ(x, y) + o(hQ+1) (2)

where

PQ(x, y) =

Q∑
q=0

Q−q∑
r=0

(x− x0)
q(y − y0)

r

q!r!
· ∂

(q+r)f

∂xq∂yr
(x0, y0) (3)

and h =
√
(x− x0)2 + (y − y0)2.

We can leverage Theorem 1 to calculate the partial derivatives of a function f at
a given point p0 using available data at K neighboring points p1, . . .pK,pi =
(xi, yi). By expanding the function at the neighboring points pi using the Taylor

approximation and treating the partial derivatives uxqyr = ∂(q+r)f
∂xq∂yr as unknowns

we arrive at K different linear equations of the form:

f(xi, yi)− f(x0, y0) =
∑

q+r≤Q;q,r≥0

α(i)(q, r)uxqyr (4)

with α(i)(q, r) = (xi−x0)
q(yi−y0)

r

q!r! .

Note that the left-hand side of the equation and the coefficients α(q, r) can
be computed with the available data. For the the physical system u(t) as the
function f at a given point in time t and several neighboring points pi, we
construct and solve the following linear equation system:

∆u = AD (5)

where A ∈ RK×K contains all the computed factors α(i)(q, r), D ∈ RK con-
taining the derivatives uxqyr we want to solve for, and ∆u = [u(t)(x1, y1) −
u(t)(x0, y0), . . . , u(t)(xK , yK)−u(t)(x0, y0)] ∈ RK . Note that the method of com-
putation for the derivatives D does not require the data points to be structured
grid-like.
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Fig. 2: Comparison of the forecast done with the PDE-Net and TaylorPDENet
after L = 150 prediction steps. The forecast of the PDE-Net contains artifacts
and the MSE (Mean Squared Error) is several orders of magnitude higher.

To calculate all partial derivatives uxqyr up to order Q, the linear sys-
tem Equation (5) needs to contain as many equations as there are partial deriva-

tives ( (Q+1)(Q+2)
2 ). However, in practice, we find that over-specifying the equa-

tion system leads to numerically more stable results (cf. Section 4.3). For this

reason, we use an ordinary least squares solver to estimate the derivatives D̂ for
a given point p0:

D̂ = min
D∈RK

||AD−∆u||2 (6)

where || · ||2 is the l2 norm.

3.2 Architecture TaylorPDENet

We predict the state of the system one step ∆t into the future by performing
one forward Euler step:

Let u(t) be the state of the system at time t. Then we predict the state at
time t+∆t as:

û(t+∆t) = w0, 0 · u(t) +∆t ·
Q∑

q=0

Q−q∑
r=0

wq, r ·
∂(q+r)

∂xq∂yr
u(t) (q + r ̸= 0) (7)

where the derivatives are estimated with the Taylor approximation at each point.
The learnable weights are denoted as wq, r with q associated with the order of
the derivative in x, and r the derivative in y. The weights thus represent the
parameters of the underlying PDE model and can be easily extracted.

To enable the algorithm to make long-term predictions we perform several
prediction steps sequentially using the output of the previous step as input
for the current. For all prediction steps the weights are shared thus keeping
the coefficients constant during prediction. Given the input data u(t) we up-
date the parameters wq, r by minimizing the error of the L-prediction steps
1
L

∑L
i=1 (u(t+ i ·∆t)− û(t+ i ·∆t))

2
.
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Table 1: Prediction MSE after 150 prediction steps compared with the
PDE-Net 2.0 evaluated on equation (3) (Table 2) with a previously unseen
initial condition. The PDE-Net diverges during forecasting beyond the number
of prediction steps used during training.

Model Steps Reconstruction Forecast

PDE-Net 2.0 20 0.39 inf
TaylorPDENet (ours) 20 2.3 · 10−3 1.7 · 10−6

TaylorPDENet (ours, non-grid) 20 1.8 · 10−3 4.8 · 10−6

Table 2: Learned PDE parameters for equation containing only first-, second-,
or mixed order derivatives. The data is structured on a grid 64× 64 to make it
comparable with the PDE-Net 2.0

Equation (1) ut = +1.500ux +1.500uy

PDENet 2.0 ut = +0.275ux +0.288uy +0.375uxx +0.379uyy +0.378uxy

TaylorPDENet ut = +1.518ux +1.527uy +0.121uxx +0.114uyy +0.250uxy

Equation (2) ut = +0.900uxx +0.330uyy +0.770uxy

PDENet 2.0 ut = −0.155ux +0.132uy +0.269uxx +0.097uyy +0.267uxy

TaylorPDENet ut = +0.000ux +0.000uy +0.903uxx +0.332uyy +0.776uxy

Equation (3) ut = +1.000ux +1.000uy +1.000uxx +1.000uyy +1.000uxy

PDENet 2.0 ut = +0.143ux +0.164uy +0.231uxx +0.227uyy +0.226uxy

TaylorPDENet ut = +1.003ux +1.005uy +1.054uxx +1.057uyy +1.108uxy

4 Experiments

In this section, we test the TaylorPDENet’s performance on grid and non-grid
data, and study the influence of the number of neighbors used in the computation
of the derivatives. For grid data, we further compare the TaylorPDENet to the
existing PDE-Net 2.0 [20,21] as the only state-of-the-art model capable of both
reconstructing the equation and forecasting the system. For non-grid data, we
only report the results of our model calculated on the same equations and number
of observation points, as there are no suitable baselines for this task.

4.1 Data

For our experiments, we generate data by numerically solving a PDE for a given
initial condition with the numerical simulations framework dedalus [5]. The data
is simulated on a grid with periodic boundary conditions of the grid size 64×64.
For our experiments on non-grid data, we use 256 × 256 points, which we later
downsample to 642 points (see Figure 3). The solution is saved with a time
discretization of∆t = 0.1. For our purposes, we generate three types of equations
(see Tables 2 and 3) with only first- (advection), only second- (diffusion), and
all first- and second-order derivatives (advection-diffusion).
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Fig. 3: Forecast after L = 150 prediction steps for a PDE learned from
irregularly spaced data points.

Table 3: Learned PDE parameter for irregularly spaced data points.

Equation (1) ut = +1.500ux +1.500uy

TaylorPDENet ut = +1.520ux +1.522uy +0.126uxx +0.113uyy +0.244uxy

Equation (2) ut = +0.900uxx +0.330uyy +0.770uxy

TaylorPDENet ut = +0.000ux +0.000uy +0.904uxx +0.333uyy +0.771uxy

Equation (3) ut = +1.000ux +1.000uy +1.000uxx +1.000uyy +1.000uxy

TaylorPDENet ut = +1.002ux +1.001uy +1.054uxx +1.053uyy +1.092uxy

4.2 Training and Testing

We use optuna [1] to optimize hyperparameters for the TaylorPDENet as well as
the PDE-Net 2.0 [20]. During training, we use L = 20 prediction steps and set the
maximum order of the derivatives to two. While we use a kernel size of 5×5 for the
PDE-Net 2.0, we use 24 neighbors for the TaylorPDENet. This way both PDE-
Net and TaylorPDENet get access to the same number of neighboring points in
the grid. We evaluate the models on their performance on the forecasting and
reconstruction task by computing the MSE (Mean Squared Error) between the
computed and the correct values.

4.3 Ablation study

We further investigate the influence of the number of neighbors (K ∈ {5, 50}). As
was described in Section 3.1. this overspecifies the equation system and increases
the available data to compute the derivatives. We use equation (3) from Table 3
with 4096 points and L = 20 prediction steps during training and evaluate the
same way as in Section 4.2.

4.4 Results

We have shown the effectiveness of the TaylorPDENet especially on non-grid
data as can be seen in Figure 3. Moreover, the TaylorPDENet works on grid
data as well and is able to reconstruct the equation and accurately predict future
states more than 7× further into the future than during testing as can be seen
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Fig. 4: Reconstruction MSE (red) and forecast MSE (blue) in relation to the
number of neighbors (K) on grid and non-grid data.

in Figure 2. Although we were not able to reproduce any results achieved with
the PDE-Net 2.0 in [20] on our dataset, we compare the TaylorPDENet with the
PDE-Net 2.0 on grid data in Table 1. The latter diverges during testing (Figure 2)
and is not able to reconstruct the equation. The TaylorPDENet on the other
hand reconstructs the equation and performs forecasting for L = 150 prediction
steps with an MSE of 4.8 · 10−6 on non-grid data and with 1.7 · 10−6 a slightly
better performance on grid data. We hypothesize the evenly distributed data
points make it easier to estimate the next step. The error for the reconstruction
task is for both types of data in the same order of magnitude. Results for the
reconstruction can be seen in Table 2. The TaylorPDENet extracts coefficients
that resemble the true coefficients but we also note deviations, especially for
the coefficients for the second-order derivatives that are zero in the original
equation (see Equation (1) in Table 2). We also observe a similar tendency of
the TaylorPDENet on non-grid data (see Table 3).

In the ablation study (Figure 4) we found that once enough K-neighbors
were considered, the forecast MSE does not improve significantly. It can be seen
that in general fewer neighbors are needed for grid data. We hypothesize this is
due to the evenly distributed points on grid data. Moreover, the exactly specified
system with K = 5 does not work as expected because of linear dependencies in
the system of equations.

5 Conclusion and Future Work

In this paper, we have proposed a novel architecture for learning dynamical
systems from non-grid data capable of both forecasting the evolution of the sys-
tem as well as reconstructing the governing equation. We have shown in several
experiments on linear advection-diffusion equations, that TaylorPDENet is ca-
pable of accurately solving both tasks on both grid and non-grid observations.
For gridded data, our model outperforms the other models capable of forecasting
and equation reconstruction. In future work, we intend to extend the approach
to other types of equations. Furthermore, we want to study the influence of noise
and increase the stability and accuracy of the TaylorPDENet.
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