
Flow-based Network Traffic Generation using
Generative Adversarial Networks

Markus Ringa,∗, Daniel Schlörb, Dieter Landesa, Andreas Hothob

aFaculty of Electrical Engineering and Informatics, Coburg University of Applied Sciences,
96450 Coburg, Germany

bData Mining and Information Retrieval Group, University of Würzburg, 97074 Würzburg,
Germany

Abstract

Flow-based data sets are necessary for evaluating network-based intrusion de-

tection systems (NIDS). In this work, we propose a novel methodology for gener-

ating realistic flow-based network traffic. Our approach is based on Generative

Adversarial Networks (GANs) which achieve good results for image generation.

A major challenge lies in the fact that GANs can only process continuous at-

tributes. However, flow-based data inevitably contain categorical attributes

such as IP addresses or port numbers. Therefore, we propose three different

preprocessing approaches for flow-based data in order to transform them into

continuous values. Further, we present a new method for evaluating the gener-

ated flow-based network traffic which uses domain knowledge to define quality

tests. We use the three approaches for generating flow-based network traffic

based on the CIDDS-001 data set. Experiments indicate that two of the three

approaches are able to generate high quality data.

Keywords: GANs, TTUR WGAN-GP, NetFlow, Generation, IDS

∗Corresponding author
Email addresses: markus.ring@hs-coburg.de (Markus Ring),

daniel.schloer@informatik.uni-wuerzburg.de (Daniel Schlör),
dieter.landes@hs-coburg.de (Dieter Landes), hotho@informatik.uni-wuerzburg.de
(Andreas Hotho)

Preprint submitted to Computer & Security November 21, 2018

1. Introduction

Detecting attacks within network-based traffic has been of great interest in

the data mining community over decades. Recently, Buczak and Guven [1] pre-

sented an overview of the community effort with regard to this issue. However,

there are still open challenges (e.g. the high cost of false-positives or the lack5

of labeled data sets which are publicly available) for the successful use of data

mining algorithms for anomaly-based intrusion detection [2, 3]. In this work,

we focus on a specific challenge within that setting.

Problem Statement. For network-based intrusion detection (NIDS), few

labeled data sets are publicly available which contain realistic user behavior and10

up-to-date attack scenarios. Available data sets are often outdated or suffer from

other shortcomings. Using real network traffic is also problematic due to the

missing ground truth. Since flow-based data sets contain millions up to billions

of flows, manual labeling of real network traffic is difficult even for security

experts and extremely time-consuming. As another disadvantage, real network15

traffic often cannot be shared within the community due to privacy concerns.

However, labeled data sets are necessary for training supervised data mining

methods (e.g. classification algorithms) and provide the basis for evaluating

the performance of supervised as well as unsupervised anomaly-based intrusion

detection methods.20

Objective. Large training data sets with high variance can increase the

robustness of anomaly-based intrusion detection methods. Therefore, we intend

to build a generative model which allows to generate realistic flow-based network

traffic. The generated data can be used to improve the training of anomaly-

based intrusion detection methods as well as for their evaluation. To that end,25

we propose an approach that is able to learn the characteristics of collected

network traffic and generates new flow-based network traffic with the same

underlying characteristics.

Approach and Contributions. Generative Adversarial Networks (GANs)

[4] are a popular method to generate synthetic data by learning from a given30

2

set of input data. GANs consist of two neural networks, a generator network

G and a discriminator network D. The generator network G is trained to

generate synthetic data from noise. The discriminator network D is trained

to distinguish generated synthetic data from real world data. The generator

network G is trained by the output signal gradient of the discriminator network35

D. G and D are trained iteratively until the generator network G is able to fool

the discriminator network D. GANs achieve remarkably good results in image

generation [5, 6, 7, 8]. Furthermore, GANs have also been used for generating

text [9] or molecules [10].

This work uses GANs to generate complete flow-based network traffic with40

all typical attributes. To the best of our knowledge, this is the first work that

uses GANs for this purpose. GANs can only process continuous input attributes.

This poses a major challenge since flow-based network data consist of continu-

ous and categorical attributes (e.g. IP addresses or port numbers). Therefore,

we analyze different preprocessing strategies to transform categorical attributes45

of flow-based network data into continuous attributes. The first method simply

treats attributes like IP addresses and ports as numerical values. The sec-

ond method creates binary attributes from categorical attributes. The third

method uses IP2Vec [11] to learn meaningful vector representations of cate-

gorical attributes. After preprocessing, we use Improved Wasserstein GANs50

(WGAN-GP) [12] with the two time-scale update rule (TTUR) proposed by

Heusel et al. [13] to generate new flow-based network data based on the public

CIDDS-001 [14] data set. Then, we evaluate the quality of the generated data

with several evaluation measures. The proposed approach is able to generate re-

alistic flows but does not consider the temporal dependencies of flow sequences.55

As a consequence, this approach can be used to generate additional training

data for intrusion detection methods which process flows individually like [15],

[16] or [17] and for all approaches which operate on data sets with no times-

tamps like KDD CUP 99 (e.g. [18]) or NSL-KDD (e.g. [19]). However, it can

not be used to generate additional training data for approaches which operate60

on time windows or sequences of flows like [20] or [21].

3

The paper has several contributions. The main contribution is the generation

of flow-based network data using GANs. We propose three different preprocess-

ing approaches and a new evaluation method which uses domain knowledge to

evaluate the quality of generated data. In addition to that, we extend IP2Vec65

[11] such that IP2Vec is able to learn similarities between the flow attributes:

bytes, packets and duration.

Structure. The next section of the paper describes flow-based network

traffic, GANs, and IP2Vec in more detail. In section 3, we present three dif-

ferent approaches for transforming flow-based network data. An experimental70

evaluation of these approaches is given in section 4 and the results are discussed

in section 5. Section 6 analyzes related work on network traffic generators and

GANs applied to the domain IT security. A summary and outlook on future

work concludes the paper.

2. Foundations75

This section starts with analyzing the underlying flow-based network traffic.

Then, GANs are explained in more detail. Finally, we explain IP2Vec [11] which

is the basis of our third data transformation approach.

2.1. Flow-based Network Traffic

We focus on flow-based network traffic in unidirectional NetFlow format [22].80

Flows contain header information about network connections between two end-

point devices like servers, workstation computers or mobile phones. Each flow

is an aggregation of transmitted network packets which share some proper-

ties [23]. Typically, all transmitted network packets with the same source IP

address, source port, destination IP address, destination port and transport pro-85

tocol within a time window are aggregated into one flow. NetFlow [22] aggre-

gates all network packets which share these five properties into one flow until an

active or inactive timeout is reached. In order to consolidate contiguous streams

the aggregation of network packets stops if no further packet is received within

4

Table 1: Overview of typical attributes in flow-based data like NetFlow [22] or IPFIX [23].

The third column provides the type of the attributes and the last column shows exemplary

values for these attributes.

Attribute Type Example

1 date first seen timestamp 2018-03-13 12:32:30.383

2 duration continuous 0.212

3 transport protocol categorical TCP

4 source IP address categorical 192.168.100.5

5 source port categorical 52128

6 destination IP address categorical 8.8.8.8

7 destination port categorical 80

8 bytes numeric 2391

9 packets numeric 12

10 TCP flags binar/categorical .A..S.

a time window of α second (inactive timeout). The active timeout stops the90

aggregation of network packets after β seconds, even if further network packets

are observed to avoid unlikely long entries.

Table 1 shows the typical attributes of unidirectional NetFlow [22] data.

NetFlow are heterogeneous data which consists of continuous, numeric, cate-

gorical and binary attributes. Most attributes like IP addresses and ports are95

categorical. Further, there is a timestamp attribute (date first seen), a con-

tinuous attribute (duration) and numeric attributes like bytes or packets. We

define the type of TCP flags as binary/categorical. TCP flags can be either

interpreted as six binary attributes (e.g. isSYN flag, isACK flag, etc.) or as

one categorical value.100

2.2. GANs

Discriminative models classify objects into predefined classes [24] and are

often used for intrusion detection (e.g. in [18], [25], or [26]). In contrast to

discriminative models, generative models are used to generate data like flow-

5

Figure 1: Architecture of GANs.

based network traffic. Many generative models build on likelihood maximiza-105

tion for a parametric probability distribution. As the likelihood function is often

unknown or the likelihood gradient is computationally intractable, some mod-

els like Deep Boltzmann Machines [27] use approximations to solve this prob-

lem. Other models avoid this problem by not explicitly representing likelihood.

Generative Stochastic Networks for example learn the transition operation of110

a Markov chain whose stationary distribution estimates the data distribution.

GANs avoid Markov chains estimating the data distribution by a game-theoretic

approach: The generator network G tries to mimic samples from the data distri-

bution, while the discriminator network D has to differentiate real and generated

samples. Both networks are trained iteratively until the discriminator D can’t115

distinguish real samples from generated samples any more. Beside computa-

tional advantages, the generator G is never updated with real samples. Instead,

the generator network G is fed with an input vector of noise z. The genera-

6

tor is trained using only the discriminator’s gradients through backpropagation.

Therefore, it is less likely to overfit the generator G by memorization and re-120

production of real samples. Figure 1 illustrates the generation process.

Goodfellow et al. say that: ”another advantage of adversarial networks is

that they can represent very sharp, even degenerate distributions” [4] which is

the case for some NetFlow attributes. However, (the original) vanilla GANs [4]

require the visible units to be differentiable, which is not the case for categorical125

attributes like IP addresses in NetFlow data. Further, vanilla GANs are sensi-

tive to parameter tuning and their loss function often does not correlate with the

quality of the generated data. Gulrajani et al. [12] show that Wasserstein GANs

(WGANs), besides other advantages, are capable of modeling discrete distribu-

tions over a continuous latent space and that their loss function correlates with130

the quality of generated data. In contrast to vanilla GANs, WGANs [8] use

the Earth Mover (EM) distance as a value function replacing the classifying

discriminator network with a critic network estimating the EM distance. While

the original WGAN approach uses weight clipping to guarantee differentiability

almost everywhere, Gulrajani et al. [12] improve training of WGANs by using135

gradient penalty as soft constrain to enforce the Lipschitz constraint. One re-

search frontier in the area of GANs is to solve the issue of non-convergence [28].

Heusel et al. [13] propose a two time-scale update rule (TTUR) for training

GANs with arbitrary loss functions. The authors prove that TTUR converges

under mild assumptions to a stationary local Nash equilibrium.140

For those reasons, we use Improved Wasserstein Generative Adversarial Net-

works (WGAN-GP) [12] with the two time-scale update rule (TTUR) from [13]

in this work.

2.3. IP2Vec

2.3.1. Motivation of IP2Vec145

IP2Vec [11] is inspired by Word2Vec [29, 30] and aims at transforming IP

addresses into a continuous feature space Rm such that standard similarity

measures can be applied. Ring et al. [11] show that IP2Vec is able to transform

7

IP addresses to semantic vector representations Rm based on their network

behavior. The vector representations in [11] are used to distinguish clients from150

servers and infected hosts from non-infected hosts. Since the results from [11]

are promising, we want to investigate the suitability of IP2Vec for our work.

IP2Vec transforms IP addresses to vector representations Rm using available

context information from flow-based network traffic. IP addresses which appear

frequently in similar contexts will be close to each other in the feature space Rm.155

More precisely, similar contexts imply to IP2Vec that the devices associated to

these IP addresses establish similar network connections. Figure 2 illustrates

the basic idea.

Figure 2: Idea of IP2Vec.

Arrows in Figure 2 denote network connections from three IP addresses,

namely 192.168.20.1, 192.168.20.2, and 192.168.20.3. Colors indicate different160

services. Consequently, IP2Vec leads to the following result:

sim(192.168.20.1, 192.168.20.2) > sim(192.168.20.1, 192.168.20.3), (1)

where sim(X,Y) is an arbitrary similarity function (e.g. cosine similarity) be-

tween the IP addresses X and Y . IPVec considers IP addresses 192.168.20.1

and 192.168.20.2 as more similar than 192.168.20.1 and 192.168.20.3 because

the IP addresses 192.168.20.1 and 192.168.20.2 refer to the same targets and165

use the same services. In contrast to that, the IP address 192.168.20.3 targets

8

different servers and uses different services (SSH-Connections).

2.3.2. Model

IP2Vec is based upon a fully connected neural network with a single hidden

layer (see Figure 3).170

Figure 3: Architecture of the neural network used by IP2Vec.

The features extracted from flow-based network traffic constitute the neural

network’s input. These features (IP addresses, destination ports and transport

protocols) define the input vocabulary which contains all IP addresses, destina-

tion ports and transport protocols that appear in the flow-based data set. Since

neural networks cannot be fed with categorical attributes, each value of our175

input vocabulary is represented as an one-hot vector. The length of the one-

hot-vector is equal to the size of the vocabulary. Each neuron in the input and

output layer is assigned a specific value of the vocabulary (see Figure 3).

Let us assume the training data set contains 100,000 different IP addresses,

20,000 different destination ports and 3 different transport protocols. Then, the180

size of the one-hot vector is 120,003 and only one component is 1, while all others

are 0. Input and output layers comprise exactly the same number of neurons

which is equal to the size of the vocabulary. The output layer uses a softmax

classifier which indicates the probabilities for each value of the vocabulary that

it appears in the same flow (context) as the input value to the neural network.185

The softmax classifier [31] normalizes the output of all output neurons such that

9

Table 2: Generation of training samples in IP2Vec [11]. Input values are highlighted with

cyan background and expected output values are highlighted with gray background. The

following abbrevations are used: src IP addr. (source IP address), dst IP addr. (destination

IP address), dst port (destintion port), proto (transport protocol).

input value output value

src IP addr. dst IP addr. dst port proto → src IP addr. dst IP addr.

src IP addr. dst port

src IP addr. proto

src IP addr. dst IP addr. dst port proto → dst port dst IP addr.

src IP addr. dst IP addr. dst port proto → proto dst IP addr.

the sum of the outputs is 1. The number of neurons in the hidden layer is much

smaller than the number of neurons in the input layer.

2.3.3. Training

The neural network is trained using captured flow-based network traffic.190

IP2Vec uses only the source IP address, destination IP address, destination port

and transport protocol of flows. Table 2 outlines the generation of training

samples.

IP2Vec generates five training samples from each flow. Each training sample

consists of an input value and an expected output value. In the first step,195

IP2Vec selects an input value for the training sample. The selected input value

is highlighted with cyan background in Table 2. The expected output values for

the corresponding input value are highlighted with gray background. In Table

2 can be seen that IP2Vec generates three training samples where the source IP

address is the input value, one training sample where the destination port is the200

input value and one training sample where the transport protocol is the input

value.

In the training process, the neural network is fed with the input value and

tries to predict the probabilities of the other values from the vocabulary. For

10

training samples, the probability of the concrete output value is 1 and 0 for all205

other values. In general, the output layer indicates the probabilities for each

value of the input vocabulary that it appears in the same flow as the given input

value.

The network uses back-propagation for learning. This kind of training, how-

ever, could take a lot of time. Let us assume that the hidden layer comprises210

32 neurons and the training data set encompasses one million different IP ad-

dresses and ports. This results in 32 million weights in each layer of the network.

Consequently, training such a large neural network is going to be slow. To make

things worse, a huge amount of training flows is required for adjusting that

many weights and for avoiding overfitting. Consequently, we have to update215

millions of weights for millions of training samples. Therefore, IP2Vec attempts

to reduce the training time by using Negative Sampling in a similar way as

Word2Vec does [29]. In Negative Sampling, each training sample modifies only

a small percentage of the weights, rather than all of them. More details on

Negative Sampling may be found in [11] and [30].220

2.3.4. Continuous Representation of IP addresses

After the training phase, IP2Vec uses the weights of the hidden layer as

m-dimensional vector representations of IP addresses. That means, a 32 dimen-

sional continuous representation of each IP address, transport protocol and port

is obtained if the hidden layer comprises 32 neurons.225

Intuition. Why does this approach work? If two IP addresses refer to similar

destination IP addresses, destination ports, and transport protocols, then the

neural network needs to output similar results for these IP addresses. One way

for the neural network to learn similar output values for different input values

is to learn similar weights in the hidden layer of the network. Consequently, if230

two IP addresses exhibit similar network behavior, IP2Vec attempts to learn

similar weights (which are the vectors of the target feature space Rm) in the

hidden layer.

11

3. Transformation Approaches

This section describes three different methods to transform the heteroge-235

neous NetFlow data such that they may be processed by Improved Wasserstein

Generative Adversarial Networks (WGAN-GP).

3.1. Preliminaries

In general, we use in all three methods the same preprocessing steps for the

attributes date first seen, transport protocol, and TCP flags (see Table 1).240

Usually, the concrete timestamp is marginal for generating realistic flow-

based network data. Instead, many intrusion detection systems derive additional

information from the timestamp like ”is today a working day or weekend day”

or ”does the event occur during typical working hours or at night”. Therefore,

we do not generate timestamps. Instead, we create two attributes weekday245

and daytime. To be precise, we extract the weekday information of flows and

generate seven binary attributes isMonday, isTuesday and so on. Then, we

interpret the daytime as seconds [0, 86400) and normalize them to the interval

[0, 1]. We transform the transport protocol (see #3 in Table 1) to three binary

attributes, namely isTCP, isUDP, and isICMP. The same procedure is followed250

for TCP flags (see #10 in Table 1) which are transformed to six binary attributes

isURG, isACK, isPUS, isSYN, isRES, and isFIN.

3.2. Method 1 - Numeric Transformation

Although IP addresses and ports look like real numbers, they are actually

categorical. Yet, the simplest approach is to interpret them as numbers af-255

ter all and treat them as continuous attributes. We refer to this method as

Numeric-based Improved Wasserstein Generative Adversarial Networks (short:

N-WGAN-GP). This method transforms each octet of an IP address to the in-

terval [0,1], e.g. 192.168.220.14 is transformed to four continuous attributes:

(ip 1) 192/255 = 0.7529, (ip 2) 168/255 = 0.6588, (ip 3) 220/255 = 0.8627 and260

(ip 4) 14/255 = 0.0549. We do a similar procedure for ports by dividing them

12

through the highest port number, e.g. the source port = 80 will be transformed

to one continuous attribute 80/65535 = 0.00122.

The attributes duration, bytes and packets (see attributes #2, #8 and #9

in Table 1) are normalized to the interval [0, 1]. Table 3 provides examples and265

compares the three transformation methods.

3.3. Method 2 - Binary Transformation

The second method creates several binary attributes for IP addresses, ports,

bytes, and packets. We refer to this method as Binary-based Improved Wasser-

stein Generative Adversarial Networks (short: B-WGAN-GP). Each octet of270

an IP address is mapped to it’s 8-bit binary representation. Consequently,

IP addresses are transformed into 32 binary attributes, e.g. 192.168.220.14 is

transformed to 11000000 10101000 11011100 00001110. Ports are converted to

their 16-bit binary representation, e.g. the source port 80 is transformed to

00000000 01010000. For representing bytes and packets, we transform them to275

a binary representation as well and limit their length to 32 bit. The attribute

duration is normalized to the interval [0, 1]. Table 3 shows an example for this

transformation procedure.

3.4. Method 3 - Embedding Transformation

The third method transforms IP addresses, ports, duration, bytes, and pack-280

ets into so-called embeddings in a m-dimensional continuous feature space Rm

following the ideas in Section 2.3. We refer to this method as Embedding-based

Improved Wasserstein Generative Adversarial Networks (short: E-WGAN-GP).

E-WGAN-GP extends IP2Vec (see Section 2.3) for learning embeddings not

only for IP addresses, ports, and transport protocols, but also for the attributes285

duration, bytes, and packets. To that end, the input vocabulary of IP2Vec is

extended by the values of the latter three attributes and additional training

pairs are extracted from each flow. Table 4 presents the extended training

sample generation.

13

Table 3: Preprocessing of flow-based data. The first column provides the original flow

attributes and examplarly values, the other columns show the extracted features (column

Attr.) and the corresponding values (column Value)) for each of preprocessing method.

N-WGAN-GP B-WGAN-GP E-WGAN-GP

Attribute / Value Attr. Value Attr. Value Attr. Value

date first seen isMonday 1 isMonday 1 isMonday 1

2018-05-28 11:39:23 isTuesday 0 isTuesday 0 isTuesday 0

isWednesday 0 isWednesday 0 isWednesday 0

isThursday 0 isThursday 0 isThursday 0

isFriday 0 isFriday 0 isFriday 0

isSaturday 0 isSaturday 0 isSaturday 0

isSunday 0 isSunday 0 isSunday 0

daytime 41963
86400 = 0.485 daytime 41963

86400 = 0.485 daytime 41963
86400 = 0.485

duration norm dur 1.503−durmin

durmax−durmin
norm dur 1.503−durmin

durmax−durmin
dur 1


e1

...

em

1.503 ...

dur m

transport protocol isTCP 1 isTCP 1 isTCP 1

TCP isUDP 0 isUDP 0 isUDP 0

isICMP 0 isICMP 0 isICMP 0

IP address ip 1 192
255 = 0.7529 ip 1 to ip 8 1,1,0,0,0,0,0,0 ip 1


e1

...

em

192.168.210.5 ip 2 168
255 = 0.6588 ip 9 to ip 16 1,0,1,0,1,0,0,0 ...

ip 3 210
255 = 0.8627 ip 17 to ip 24 1,1,0,1,0,0,1,0 ip m

ip 4 5
255 = 0.0196 ip 25 to ip 32 0,0,0,0,0,1,0,1

port pt 53872
65535 = 0.8220 pt 1 to pt 8 1,1,0,1,0,0,1,0 pt 1


e1

...

em

53872 pt 9 to pt 16 0,1,1,1,0,0,0,0 ...

pt m

bytes norm byt 1.503−bytmin

bytmax−bytmin
byt 1 to byt 8 0,0,0,0,0,0,0,0 byt 1


e1

...

em

144 byt 9 to byt 16 0,0,0,0,0,0,0,0 ...

byt 17 to byt 24 0,0,0,0,0,0,0,0 byt m

byt 25 to byt 32 1,0,0,1,0,0,0,0

packets norm pck 1.503−pckmin

pckmax−pckmin
pck 1 to pck 8 0,0,0,0,0,0,0,0 pck 1


e1

...

em

1 pck 9 to pck 16 0,0,0,0,0,0,0,0 ...

pck 17 to pck 24 0,0,0,0,0,0,0,0 pck m

pck 25 to pck 32 0,0,0,0,0,0,0,1

TCP flags isURG 0 isURG 0 isURG 0

.A..S. isACK 1 isACK 1 isACK 1

isPSH 0 isPSH 0 isPSH 0

isRES 0 isRES 0 isRES 0

isSYN 1 isSYN 1 isSYN 1

isFIN 0 isFIN 0 isFIN 0

14

Table 4: Extended generation of training samples in IP2Vec. Input values are highlighted

with cyan background and expected output values are highlighted with gray background. The

following abbrevations are used: src IP addr. (source IP address), dst IP addr. (destination

IP address), dst port (destintion port), proto (transport protocol).

input value output value

src IP addr. src port dst IP addr. dst port proto bytes packets duration → src IP addr. dst IP addr.

→ src IP addr. src port

→ src IP addr. proto

src IP addr. src port dst IP addr. dst port proto bytes packets duration → dst IP addr. src IP addr.

→ dst IP addr. dst port

→ dst IP addr. proto

src IP addr. src port dst IP addr. dst port proto bytes packets duration → src port src IP addr.

src IP addr. src port dst IP addr. dst port proto bytes packets duration → dst port dst IP addr.

src IP addr. src port dst IP addr. dst port proto bytes packets duration → bytes packets

→ bytes duration

src IP addr. src port dst IP addr. dst port proto bytes packets duration → packets bytes

→ packets duration

src IP addr. src port dst IP addr. dst port proto bytes packets duration → duration packets

Each flow produces 13 training samples each of which consists of an input290

and an expected output value. The input values are highlighted with cyan back-

ground in Table 4. The expected output values for the corresponding input value

are highlighted with gray background. Our adapted training sample generation

extracts further training samples for the attributes bytes, packets and duration.

Further, we also create training pairs with the destination IP address as input.295

Ring et al. [11] argue that it is not necessary to extract training samples with

destination IP addresses as input when working on unidirectional flows. Yet, in

this case, IP2Vec does not learn meaningful representation for multi- and broad-

cast IP addresses which only appear as destination IP addresses in flow-based

network traffic. Table 3 shows the result of an exemplary transformation.300

E-WGAN-GP maps flows to embeddings which need to be re-transformed

to the original space after generation. To that end, values are replaced by

the closest embeddings generated by IP2Vec. For instance, we calculate the

cosine similarity between the generated output for the source IP address and

all existing IP address embeddings generated by IP2Vec. Then, we replace the305

output with the IP address which has the highest similarity.

15

4. Experiments

This section provides an experimental evaluation of our three approaches N-

WGAN-GP, B-WGAN-GP and E-WGAN-GP for synthetic flow-based network

traffic generation.310

4.1. Data Set

We use the publicly available CIDDS-001 data set [14] which contains uni-

directional flow-based network traffic as well as detailed information about the

networks and IP addresses within the data set. Figure 4 shows an overview of

the emulated business environment of the CIDDS-001 data set. In essence, the315

CIDDS-001 data set contains four internal subnets which can be identified by

their IP address ranges: a developer subnet (dev) with exclusively Linux clients,

an office subnet (off) with exclusively Windows clients, a management subnet

(mgt) with mixed clients, and a server subnet (srv). Additional knowledge

facilitates the evaluation of the generated data (see Section 4.3).320

The CIDDS-001 data set contains four weeks of network traffic. We consider

only the network traffic which was captured at the network device within the

OpenStack environment (see Figure 4) and divide the network traffic in two

parts: week1 and week2-4. The first two weeks contain normal user behavior

and attacks, whereas week3 and week4 contain only normal user behavior and325

no attacks. We use this kind of splitting in order to obtain a large training data

set week2-4 for our generative models and simultaneously provide a reference

data set week1 which contains normal and malicious network behavior. Overall,

week2-4 contains around 22 million flows and week1 contains around 8.5 million

flows. We consider only the TCP, UDP and ICMP flows and remove the 895330

IGMP flows from the data set.

4.2. Definition of a Baseline

As baseline for our experiments, we build a generative model which creates

new flows based on the empirical probability distribution of the input data. The

baseline estimates the probability distribution for each attribute by counting335

16

Figure 4: Overview of the simulated network environment from the CIDDS-001 data set [14].

17

from the input data. New flows are generated by drawing from the empirical

probability distributions. Each attribute is drawn independently from other

attributes.

4.3. Evaluation Methodology

Evaluation of generative models is challenging and an open research topic:340

Borji [32] analyzed different evaluation measures for GANs. Images generated

with GANs are often presented to human judges and evaluated by visual com-

parison. Another well-known evaluation measure for images is the Inception

Score (IS) [33]. IS classifies generated images in 1000 different classes using the

Inception Net v3 [34]. IS, however, is not applicable in our scenario since the345

Inception Net v3 can only classify images, but no flow-based network traffic.

In the IT security domain, there is neither consensus on how to evaluate

network traffic generators, nor a standardized methodology [35]. Glasser and

Lindauer [36] discuss about the problem of evaluating synthetic data. The au-

thors conclude that synthetic data will only be realistic in some limited and350

measurable dimensions in the absence of a clear definition of realism. There-

fore, Glasser and Lindauer use human feedback from domain experts to evaluate

the quality of generated data for anomaly detection. Stiborek et al. [37] use an

anomaly score to evaluate their generated data. Siska et al. [38] and Iannucci

et al. [39] build graphs and evaluate the diversity of the generated traffic by355

comparing the number of nodes and edges between generated and real network

traffic. Other flow-based network traffic generators often focus on specific as-

pects in their evaluation, e.g. distributions of bytes or packets are compared

with real NetFlow data in [40] and [41].

Since there is no single widely accepted evaluation methodology, we use360

several evaluation approaches to assess the quality of the generated data from

different views. To evaluate the diversity and distribution of the generated data,

we visualize attributes (see Section 4.4.2) and compute the Euclidean distances

between generated and real flow-based network data (see Section 4.4.3). To

evaluate the quality of the content and relationships between attributes within365

18

a flow, we introduce domain knowledge checks (see Section 4.4.4) as a new

evaluation method. This method is developed on the basic idea of Glasser

and Lindauer [36]. While Glasser and Lindauer [36] use feedback from human

experts, the domain knowledge checks are automated test procedures on the

basis of domain knowledge.370

4.4. Generation of Flow-based Network Data

Now, we evaluate the quality of the generated data by the baseline (see

Section 4.2), N-WGAN-GP, B-WGAN-GP, and E-WGAN-GP (see Section 3).

4.4.1. Parameter Configuration

For all four approaches, we use week2-4 of the CIDDS-001 data set as train-375

ing input and generate 8.5 million flows for each approach.

We configured N-WGAN-GP, B-WGAN-GP and E-WGAN-GP to use a

feed-forward neural network as generator and discriminator. Furthermore, we

used the default parameter configuration of [13] and trained the networks for

5 epochs. An epoch is one training iteration over the complete training data380

set [31]. Consequently, we use each flow of the training data set five times for

training the neuronal networks. We observed that a higher number of epochs

neither leads to increasing quality nor reduces the loss values of the GANs.

For identifying the number of neurons in each hidden layer, we set up a small

parameter study in which we varied the number of neurons from 8 to 192. We385

found that 80 neurons in each hidden layer were sufficient for B-WGAN-GP

and E-WGAN-GP. Similar numbers of neurons (e.g. 64 or 96) in each hidden

layer lead to no significant changes in the quality of the generated data. For

N-WGAN-GP, we set the number of neurons in the hidden layer to 24 since

the numerical representation of flows is much smaller than for B-WGAN-GP or390

E-WGAN-GP.

Additionally, we have to learn embeddings for E-WGAN-GP in a previous

step. Therefore, we configured IP2Vec to use 20 neurons in the hidden layer

and trained the network like Ring et al. [11] for 10 epochs.

19

Figure 5: Temporal distribution of flows per hour.

4.4.2. Visualization395

Figure 5 shows the temporal distribution of the generated flows and refer-

ence week week1. The y-axis shows the flows per hour as a percentage of total

traffic and the three lines represent the reference week (week1), the generated

data of the baseline (baseline), and the generated data of the E-WGAN-GP ap-

proach (E-WGAN-GP). Since all three transformation approaches process the400

attribute date first seen in the same way, only (E-WGAN-GP) is included for

the sake of brevity. E-WGAN-GP reflects the essential temporal distribution

of flows. In the CIDDS-001 data set, the emulated users exhibit common be-

havior including lunch breaks and offline work which results in temporal limited

network activities and a jagged curve (e.g. around 12:00 on working days). In405

contrast to that, the curve of E-WGAN-GP is smoother than the curve of the

original traffic week1.

In the following, we use different visualization plots in order to get a deeper

understanding of the generated data.

20

Figure 6: Distribution of the attribute source port for the subnets. The rows show in order:

(1) data sampled from real data (week 1) and data generated by (2) baseline, (3) N-WGAN-

GP, (4) E-WGAN-GP and (5) B-WGAN-GP.

21

Figure 7: Distribution of the attribute destination ip for the subnets. The rows show in

order: (1) data sampled from real data (week 1) and data generated by (2) baseline, (3)

N-WGAN-GP, (4) E-WGAN-GP and (5) B-WGAN-GP.

22

Figures 6 and 7 show the real distributions (first row) sampled from week1410

respectively generated distributions by our maximum likelihood estimator base-

line (second row) and generated distributions by our WGAN-GP models using

different data representations for each row (third to fifth row). Each violin plot

shows the data distribution of the attribute source port (Figure 6) respectively

the attribute destination IP address (Figure 7) for the different source IP ad-415

dresses grouped by their subnet (see Section 4.1). IP addresses from different

subnets come along with different network behavior. For instance, IP addresses

from the mgt subnet are typically clients which use services while IP addresses

from the srv subnet are servers which offer services. This knowledge was not

explicitly modeled during data generation.420

We will now briefly discuss the conditional distribution of source ports (Fig-

ure 6). In the first row, we can clearly distinguish typical client-port (dev,

mgt, off) and server-port (ext, srv) distributions. As expected, the maximum

likelihood baseline is not able to capture the differences of the distributions

depending on the subnet of the source IP address and models a distribution425

which is a combination of all five subnets from the input data. In contrast,

the B-WGAN-GP and E-WGAN-GP capture the conditional probability dis-

tributions for the source port given the subnet of the source IP address very

well.

N-WGAN-GP is incapable of representing the distributions properly. Note430

that almost exclusively flows with external source IP addresses are generated

in the selected samples. In-depth analysis of the generated data suggests that

numeric representations fail to match the designated subnets exactly. As nearly

all generated data is assigned to the ext subnet, it comes as no surprise that the

distribution represents a combination of all five subnets from the input data for435

both source ports (Figure 6) and destination IP addresses (Figure 7).

For the attribute destination IP address, the distribution is a mixture of

external and internal IP addresses for dev, mgt and off subnets (see reference

week week1). This matches the user roles, surfing on the internet (external)

as well as accessing internal services (e.g. printers). For external subnets, the440

23

destination IP address has to be within the internal IP address range. Traffic

from external sources to external targets does not run through the simulated

network environment of the CIDDS-001 data set. Consequently, there is no flow

within the CIDDS-001 data set which has a source IP address and a destination

IP address from the ext subnet. This fact can be seen for week1 in Figure 7445

where flows which have their origin in the ext subnet only address a small range

of destination IP addresses which reflect the range of internal IP addresses. E-

WGAN-GP and B-WGAN-GP capture this property very well while the baseline

and N-WGAN-GP fail to capture this property.

4.4.3. Euclidean Distances450

The second evaluation compares the distribution of the generated and real

flow-based network data in each attribute independently. Therefore, we calcu-

late Euclidean distances between the probability distributions of the generated

data and the input flow-based network data (week2-4) in each attribute. We

choose the Euclidean distance over the Kullback-Leibler divergence in order to455

avoid calculation problems where the probability of generated data is zero. Ta-

ble 5 highlights the results. We refrain from calculating the Euclidean distance

for the attribute date first seen since exact matches of timestamps (considering

seconds and milliseconds) do not make sense. At this point, we refer to Figure 5

which analyzes the temporal distribution of the generated timestamps.460

Network traffic is subject to concept drift and exact reproduction of prob-

ability distributions is not desirable. This fact can be seen in Table 5 where

the Euclidean distances between the probability distributions from week1 and

week2-4 of the CIDDS-001 data set are between 0.02 and 0.14. Consequently,

generated network traffic should have similar Euclidean distances to the training465

data like the reference week week1. However, it should be mentioned that there

is no perfect distance value x which indicates the correct amount of concept

drift. The generated data of E-WGAN-GP tends to have similar distances to

the training data (week2-4) like the reference data set week1. Table 5 shows that

the baseline has the lowest distance to the training data in each attribute. The470

24

Table 5: Euclidian distances between the training data (week2-4) and the generated flow-

based network traffic in each attribute.

Attribute Basel
ine

N-W
GAN-G

P

B-W
GAN-G

P

E-W
GAN-G

P

week
1

duration 0.0002 0.4764 0.4764 0.0525 0.0347

transport protocol 0.0001 0.0014 0.0042 0.0015 0.0223

source IP address 0.0003 0.1679 0.0773 0.0988 0.1409

source port 0.0003 0.5658 0.0453 0.0352 0.0436

destination IP address 0.0003 0.1655 0.0632 0.1272 0.1357

destination port 0.0003 0.5682 0.0421 0.0327 0.0437

bytes 0.0002 0.5858 0.0391 0.0278 0.0452

packets 0.0004 1.0416 0.0578 0.0251 0.0437

TCP flags 0.0003 0.0217 0.0618 0.0082 0.0687

generated data of N-WGAN-GP differs considerably from the training data set

in some attributes. This is because N-WGAN-GP often does not generate the

exact values but a large number of new values. The binary approach B-WGAN-

GP has small distances in most attributes (except for attribute duration). This

may be caused by the distribution of duration in the training data as most flows475

in the training data set have very small values in this attribute. Further, the

normalization of the duration to interval [0, 1] entails that almost all flows have

very low values in this attribute. N-WGAN-GP and B-WGAN-GP tend to

generate the smallest possible duration (0.000 seconds) for all flows.

4.4.4. Domain Knowledge Checks480

We use domain knowledge checks to evaluate the intrinsic quality of the

generated data. To that end, we derive several properties that generated flow-

based network data need to fulfill in order to be realistic. We use the following

seven heuristics as sanity checks:

• Test 1: If the transport protocol is UDP, then the flow must not have any485

25

TCP flags.

• Test 2: The CIDDS-001 data set is captured within an emulated com-

pany network. Therefore, at least one IP address (source IP address

or destination IP address) of each flow must be internal (starting with

192.168.XXX.XXX).490

• Test 3: If the flow describes normal user behavior and the source port

or destination port is 80 (HTTP) or 443 (HTTPS), the transport protocol

must be TCP.

• Test 4: If the flow describes normal user behavior and the source port or

destination port is 53 (DNS), the transport protocol must be UDP.495

• Test 5: If a multi- or broadcast IP address appears in the flow, it must be

the destination IP address.

• Test 6: If the flow represents a netbios message (destination port is 137

or 138), the source IP addresses must be internal (192.168.XXX.XXX) and

the destination IP address must be an internal broadcast (192.168.XXX.255).500

• Test 7: TCP, UDP and ICMP packets have a minimum and maximum

packet size. Therefore, we check the relationship between bytes and pack-

ets in each flow according to the following rule:

42 ∗ packets ≤ bytes ≤ 65.535 ∗ packets

Table 6 shows the results of checking the generated data against these rules.505

The reference data set week1 achieves 100 percent in each test which is not

surprising since the data is real flow-based network traffic which is captured in

the same environment as the training data set. The baseline approach does not

capture dependencies between flow attributes and achieves worse results. This

can be especially observed in Tests 1, 4, and 6. Since multi- and broadcast510

IP addresses appear only in the attribute destination IP address, the baseline

cannot fail Test 5 and achieves 100 percent.

26

Table 6: Results of the domain knowledge checks in percentage. Higher values indicate better

results.

Basel
ine

N-W
GAN-G

P

B-W
GAN-G

P

E-W
GAN-G

P

week
1

Test 1 14.08 96.46 97.88 99.77 100.0

Test 2 81.26 0.61 98.90 99.98 100.0

Test 3 86.90 95.45 99.97 99.97 100.0

Test 4 15.08 7.14 99.90 99.84 100.0

Test 5 100.0 25.79 47.13 99.80 100.0

Test 6 0.07 0.00 40.19 92.57 100.0

Test 7 71.26 100.0 85.32 99.49 100.0

For our generative models, E-WGAN-GP achieves the best results on av-

erage. The usage of embeddings leads to more meaningful similarities within

categorical attributes and facilitates the learning of interrelationships. Embed-515

dings, however, also reduce the possible resulting space since no new values can

be generated. B-WGAN-GP generates flows which achieve high accuracy in

Tests 1 to 4. However, this approach shows weaknesses in Tests 5 and 6 where

several internal relationships must be considered. The numerical approach N-

WGAN-GP has the lowest accuracy in the tests. In particular, Test 4 shows520

that normalization of source port or destination port to a single continuous at-

tribute is inappropriate. Straightforward mapping of 216 different port values

to one continuous attribute leads to too many values for a good reconstruction.

In contrast to that, the binary representation of B-WGAN-GP leads to better

results in that test.525

5. Discussion

Flow-based network traffic consists of heterogeneous data and GANs can

only process continuous input values. To solve this problem, we analyze three

methods to transform categorical to continuous attributes. The advantages and

27

disadvantages of these approaches are discussed in the following.530

N-WGAN-GP is a straightforward numeric method but leads to unwanted

similarities between categorical values which are not similar considering real

data. For instance, this transformation approach assesses the IP addresses

192.168.220.10 and 191.168.220.10 as highly similar although the first IP ad-

dress 192.168.220.10 is private and the second IP address 191.168.220.10 is535

public. Hence, the two addresses should be ranked as fairly dissimilar. Obvi-

ously, even small errors in the generation process can cause significant errors.

This effect can be observed in Test 2 (see Table 6) where N-WGAN-GP has

problems with the generation of private IP addresses. Instead, this approach

often generates non-private IP addresses such as 191.168.X.X or 192.167.X.X.540

In image generation, the original application domain of GANs, small errors do

not have serious consequences. A brightness 191 instead of 192 in a generated

pixel has nearly no effect on the image and the error is (normally) not visible

for human eyes. Further, N-WGAN-GP normalizes the numeric attributes bytes

and packets to the interval [0, 1]. The generated data are then de-normalized545

using the original training data. Here, we can observe that real flows often have

typical byte sizes like 66 bytes which are also not exactly matched. This results

in higher Euclidean distances in these attributes (see Table 5). Overall, the

first method N-GAN-WP does not seem to be suitable for generating realistic

flow-based network traffic.550

B-WGAN-GP extracts binary attributes from categorical attributes and

converts numerical attributes to their binary representation. Using this trans-

formation, additional structural information (e.g. subnet information) of IP ad-

dresses can be maintained. Further, B-WGAN-GP assigns larger value ranges

to categorical values in the transformed space than N-WGAN-GP. While N-555

WGAN-GP uses a single continuous attribute to represent a source port, B-

WGAN-GP uses 16 binary attributes for representation. These two aspects

support B-WGAN-GP in generating better categorical values of a flow as can

be observed in the results of the domain knowledge checks (see e.g. Test 2

and Test 4 in Table 6). Further, Figures 6 and 7 indicate that B-WGAN-GP560

28

captures the internal structure of the traffic very well even though it is less re-

stricted than E-WGAN-GP with respect to the treatment of previously unseen

values.

E-WGAN-GP learns embeddings for IP addresses, ports, bytes, packets, and

duration. These embeddings are continuous vector representations and take565

contextual information into account. As a consequence, the generation of flows

is less error-prone as small variations in the embedding space generally do not

change the outcome in input space much. For instance, if a GAN introduces

a small error in IP address generation, it could find the embedding of the IP

address 192.168.220.5 as nearest neighbor instead of the embedding of the ex-570

pected IP address 192.168.220.13. Since both IP addresses are internal clients,

the error has nearly no effect. As a consequence, E-WGAN-GP achieves the

best results of the generative models in the evaluation. Yet, this approach (in

contrast to N-WGAN-GP and B-WGAN-GP) cannot generate previously un-

seen values due to the embedding translation. This is not a problem for the575

attributes bytes, packets and duration. Given enough training data, embed-

dings for all (important) values of bytes, duration and packets are available. For

example, consider the attribute bytes. We assume that the available embedding

values b1, b2, b3, ..., bk−1, bk sufficiently cover the possible value range of the at-

tribute bytes. As specific byte-values have no particular meaning, we are only580

interested in the magnitude of the attribute. Therefore, non existing values bx

can be replaced with available embedding values without adversely affecting the

meaning.

The situation may be different for IP addresses and ports. IP addresses

represent hosts with a distinct complex network behavior, for instance as a web585

server, printer, or Linux client. Generating new IP addresses goes along with

the invention of a new host with new network behavior. To answer the question

whether the generation of new IP addresses is necessary, the purpose needs to

be considered in which the generated data shall be used later. If the training set

comprises more than 10,000 or 100,000 different IP addresses, there is probably590

no need to generate new IP addresses for an IDS evaluation data set. However,

29

this does not hold generally. Instead, one should ask the following two questions:

(1) are there enough different IP addresses in the training data set and (2) is

there a need to generate previously unseen IP addresses? If previously unseen IP

addresses are required, E-WGAN-GP is not suitable as transformation method,595

otherwise E-WGAN-GP will generate better flows than all other approaches.

The situation for ports is similar to IP addresses. Generally, there are 65536

different ports and most of these ports should appear in the training data set.

Generating new port values is also associated with generating new behavior. If

the training data set comprises SSH connections (port 22) and HTTP connec-600

tions (port 80), but no FTP connections (port 20 and 21), generators are not

able to produce realistic FTP connections if they have never seen such connec-

tions. Since the network behavior of FTP differs greatly from SSH and HTTP,

it does not make much sense to generate unseen service ports. However, the

situation is different for typical client ports.605

Generally, GANs capture the implicit conditional probability distributions

very well, given that a proper data representation is chosen which is the case

for E-WGAN-GP and B-WGAN-GP (see Figures 6 and 7). While the visual

differences between binary and embedded data representations are subtle, the

domain knowledge checks show larger quality differences. Overall, this analysis610

suggests that E-WGAN-GP and B-WGAN-GP are able to generate good flow-

based network traffic. While E-WGAN-GP achieves better evaluation results,

B-WGAN-GP is not limited in the value range and is able to generate previously

unseen values.

6. Related Work615

This work targets the generation of flow-based network traffic using GANs.

Therefore, we provide an overview of flow-based traffic generators before we

review the general use of GANs in the application domain IT security.

30

6.1. Traffic Generators

Molnár et al. [35] give a comprehensive overview of network traffic gen-620

erators, categorize them with respect to their purposes, and analyze the used

validation measures. The authors conclude that there is no consensus on how

to validate network traffic generators. Since the proposed approach aims to

generate flow-based network traffic, the following overview considers primar-

ily flow-based network traffic generators. Neither approaches which emulate625

computer networks and capture their network traffic like [14] or [42], nor static

intrusion detection data sets like DARPA 98 or KDD CUP 99 will be considered

in the following. We categorize flow-based network traffic generators into (I) Re-

play Engines, (II) Maximum Throughput Generators, (III) Attack Generators,

and (IV) High-Level Generators.630

Category (I). As the name suggests, Replay Engines use previously captured

network traffic and replay the packets from it. Often, the aim of Replay Engines

is to consider the original inter packet time (IPT) behavior between the network

packets. TCPReplay [43] and TCPivo [44] are well-known representatives of

this category. Since network traffic is subject to concept drift, replaying already635

known network traffic only makes limited sense for generating IDS evaluation

data sets. Instead, a good network traffic generator for our purpose should be

able to generate new synthetic flow-based network traffic.

Category (II). Maximum Throughput Generators usually aim to test end-to-

end network performance [35]. Iperf [45] is such a generator and can be used640

for testing bandwidth, delay jitter, and loss ratio characteristics. Consequently,

methods from this category primarily aim at evaluating network bandwidth

performance.

Category (III). Attack Generators use real network traffic as input and combine

it with synthetically created attacks. FLAME [46] is a generator for malicious645

network traffic. The authors use rule-based approaches to inject e.g. port scan

attacks or denial of service attacks. Vasilomanolakis et al. [47] present ID2T, a

31

similar approach which combines real network traffic with synthetically created

malicious network traffic. For creating malicious network traffic, the authors

use rule-based scripts or manipulate parameters of the input network traffic.650

Sperotto et al. [48] analyze ssh brute force attacks on flow level and use a

Hidden Markov Model to model the characteristics of them. However, their

model generates only the number of bytes, packets and flows during a typical

attack scenario and does not generate complete flow-based data.

Category (IV). High-Level Generators aim to generate new synthetic network655

traffic which contains realistic network connections. Stiborek et al. [37] propose

three statistical methods to model host-based behavior on flow-based network

level. The authors use real network traffic as input and extract typical inter-

and intra-flow relations of host behavior. New flow-based data is generated

based on a time variant joint probability model which considers the extracted660

user behavior. Siska et al. [38] propose a graph-based method to generate flow-

based network traffic. The authors use real network traffic as input and extract

traffic templates. Traffic templates are extracted for each service port (e.g. port

80 (HTTP) or 53 (DNS)) and contain structural properties as well as the value

distributions of other flow attributes (e.g. log-normal distribution of transmit-665

ted bytes). These traffic templates can be combined with user-defined traffic

templates. A flow generator selects flow attributes from the traffic templates

and generates new network traffic. Iannucci et al. [39] propose PGPBA and

PGSK, two synthetic flow-based network traffic generators. Their generators

are based on the graph generation algorithms Barabasi-Albert (PGPBA) and670

Kronecker (PGSK). The authors initialize their graph-based approaches with

network traffic in packet-based format. When generating new traffic, the au-

thors first compute the probability of the attribute bytes. All other attributes

of flow-based data are calculated based on the conditional probability of the

attribute bytes. To evaluate the quality of their generated traffic, Iannucci et675

al. [39] analyze the degree and pagerank distribution of their graphs to show

the veracity of the generated data.

32

The approach presented here does not simply replay existing network traffic

like category (I). In fact, traffic generators from the first two categories have a

different objective. Our approach belongs to category (IV) and generates new680

synthetic network traffic and is not limited to generating only malicious network

traffic like category (III). While Siska et al. [38] and Iannucci et al. [39] use do-

main knowledge to generate flows by defining conditional dependencies between

flow attributes, we use GAN-based approaches which learn all dependencies

between the flow attributes inherently.685

6.2. GANs

This section analyses how GANs were recently introduced in the domain IT

security. A more general discussion about attacks and defenes for deep learning

against adversarial examples may be found in Yuan et al. [49]. Rigaki and

Garcia [50] use a GAN based approach to modify malware communication in690

order to avoid detection. The authors evaluate their method using an Intrusion

Prevention System (IPS) which is based on a Markov model. The IPS considers

the bytes, duration and time-delta of flows for determining malicious network

traffic. Therefore, Rigaki and Garcia use a GAN which learns to imitate Face-

book chat traffic characteristics based on these flow attributes. For capturing695

the time-delta of the flows, the generator and discriminator of the GAN are

Recurrent Neuronal Networks (RNN). After the training phase, the authors use

the GAN to generate legitimate Facebook traffic characteristics and adapt the

malware to match these traffic patterns. Following this approach, the malware

is able to successfully bypass the IPS. Hu and Tan [51] present a GAN based ap-700

proach named MalGAN in order to generate synthetic malware examples which

are able to bypass anomaly-based detection methods. Malware examples are

represented as 160-dimensional binary attributes.

Anderson et al. [52] developed a character-based GAN to mimic domain

generation algorithms (DGA) as used by malware to contact command and705

control servers. The authors train an auto-encoder to generate domain names

and reassembled encoder and decoder to an adversarial setting fooling DGA-

33

detection classifiers. DeepDGA generates domain-names, which are categorical

data, however as the domain-name is the only attribute generated, their setting

is hardly comparable to our flow-based network data generation task.710

Yin et al. [53] propose Bot-GAN, a framework which generates synthetic

network data in order to improve botnet detection methods. However, their

framework does not consider the generation of categorical attributes like IP

addresses and ports which is one of the key contributions of our work.

Zheng et al. [54] use a generative adversarial network based approach for715

fraud detection in bank transfers. To be precise, the authors use a deep de-

noising autoencoder and two Gaussian Mixture Models (GMM). The encoder

and one GMM act as discriminator and the decoder act as generator. The sec-

ond GMM classifies the bank transfers in combination with a threshold into the

classes normal or fraud. Zheng et al. achieve good results with this approach720

and are able to beat non GAN-based approaches. However, their input data

differ significantly from flow-based data and consist primarily of continuous at-

tributes like amount of transferred money, balance of the account or frequency

of transfers.

For analysis of mobile traffic Zhang et al. [55] propose ZipNet-GAN, a GAN-725

based approach for fine-grained pattern extraction from coarse-grained network

data, similar to super-resolution in image processing. Despite they are combin-

ing generative adversarial networks with the generation of fine-grained network

traffic, their approach is very different to ours since they only work with traffic

as aggregated continuous attribute, not with network data at flow-level and rely730

on coarse-grained information as input.

As can be seen in this section, GANs are already used in the domain IT secu-

rity and prove their general suitability. However, existing works are only applied

to specific application scenarios and consider only continuous attributes. In con-

trast to that, the proposed approach aims to generate network data in standard735

flow-based NetFlow format and considers all typical categorical attributes like

IP addresses or port numbers.

34

7. Summary

Labeled flow-based data sets are necessary for evaluating and comparing

anomaly-based intrusion detection methods. Evaluation data sets like DARPA 98740

and KDD Cup 99 cover several attack scenarios as well as normal user behavior.

These data sets, however, were captured at some point in time such that con-

cept drift of network traffic causes static data sets to become obsolete sooner or

later.

In this paper, we proposed three synthetic flow-based network traffic gener-745

ators which are based on Improved Wasserstein GANs (WGAN-GP) [12] using

the two time scale update rule from [13]. Our generators are initialized with

flow-based network traffic and then generate new synthetic flow-based network

traffic. In contrast to previous high-level generators, our GAN-based approaches

learn all internal dependencies between attributes inherently and no additional750

knowledge has to be modeled. Flow-based network traffic consists of heteroge-

neous data, but GANs can only process continuous input data. To overcome

this challenge, we proposed three different methods to handle flow-based net-

work data. In the first approach N-WGAN-GP, we interpreted IP addresses

and ports as continuous input values and normalized numeric attributes like755

bytes and packets to the interval [0, 1]. In the second approach B-WGAN-GP,

we created binary attributes from categorical and numerical attributes. For in-

stance, we converted ports to their 16-bit binary representation and extracted

16 binary attributes. B-WGAN-GP is able to maintain more information (e.g.

subnet information of IP addresses) from the categorical input data. The third760

approach E-WGAN-GP learns meaningful continuous representations of cat-

egorical attributes like IP addresses using IP2Vec [11]. The preprocessing of

E-WGAN-GP is inspired from the text mining domain which also has to deal

with non-continuous input values. Then, we generated new flow-based network

traffic based on the CIDDS-001 data set [14] in an experimental evaluation. Our765

experiments indicate that especially E-WGAN-GP is able to generate realistic

data which achieves good evaluation results. B-WGAN-GP achieves similarly

35

good results and is able to create new (unseen) values in contrast to E-WGAN-

GP. The quality of network data generated by N-WGAN-GP is less convincing,

which indicates that straight forward numeric transformation is not appropriate.770

Our research indicates that GANs are well suited for generating flow-based

network traffic. We plan to extend our approach in order to generate sequences

of flows instead of individual flows. Therefore, we want to evaluate further

network structures (e.g. LSTMs or CNN) which are able to learn temporal

relationships of flow sequences. In addition, we want to work on the development775

of further evaluation methods.

Acknowledgments

M.R. was supported by the BayWISS Consortium Digitization. We grate-

fully acknowledge the support of NVIDIA Corporation with the donation of the

Titan Xp GPU used for this research.780

References

[1] A. L. Buczak, E. Guven, A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection, IEEE Communications

Surveys & Tutorials 18 (2) (2016) 1153–1176.

[2] R. Sommer, V. Paxson, Outside the Closed World: On Using Machine785

Learning For Network Intrusion Detection, in: IEEE Symposium on Secu-

rity and Privacy, IEEE, 2010, pp. 305–316.

[3] C. A. Catania, C. G. Garino, Automatic network intrusion detection: Cur-

rent techniques and open issues, Computers & Electrical Engineering 38 (5)

(2012) 1062–1072.790

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Nets, in: Ad-

vances in Neural Information Processing Systems (NIPS), 2014, pp. 2672–

2680.

36

[5] A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning795

with Deep Convolutional Generative Adversarial Networks, in: Interna-

tional Conference on Learning Representations (ICLR), 2016.

[6] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, Photo-Realistic Single

Image Super-Resolution Using a Generative Adversarial Network, in: IEEE800

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,

2017, pp. 105–114.

[7] P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, Image-to-Image Translation with

Conditional Adversarial Networks, in: IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), IEEE, 2017, pp. 5967–5976.805

[8] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein Generative Adversarial

Networks, in: International Conference on Machine Learning (ICML), 2017,

pp. 214–223.

[9] L. Yu, W. Zhang, J. Wang, Y. Yu, SeqGAN: Sequence Generative Adver-

sarial Nets with Policy Gradient, in: Conference on Artificial Intelligence810

(AAAI), AAAI Press, 2017, pp. 2852–2858.

[10] K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, G. Klambauer, Fréchet

ChemblNet Distance: A metric for generative models for molecules, CoRR

abs/1803.09518.

URL http://arxiv.org/abs/1803.09518815

[11] M. Ring, D. Landes, A. Dallmann, A. Hotho, IP2Vec: Learning Similarities

between IP Adresses, in: Workshop on Data Mining for Cyber Security

(DMCS), International Conference on Data Mining, IEEE, 2017, pp. 657–

666.

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, Im-820

proved Training of Wasserstein GAN, in: Advances in Neural Information

Processing Systems (NIPS), 2017, pp. 5769–5779.

37

http://arxiv.org/abs/1803.09518
http://arxiv.org/abs/1803.09518
http://arxiv.org/abs/1803.09518
http://arxiv.org/abs/1803.09518

[13] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, GANs

Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equi-

librium, in: Advances in Neural Information Processing Systems (NIPS),825

2017, pp. 6629–6640.

[14] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, A. Hotho, Flow-based bench-

mark data sets for intrusion detection, in: European Conference on Cyber

Warfare and Security (ECCWS), ACPI, 2017, pp. 361–369.

[15] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, R. Zuech,830

Machine Learning for Detecting Brute Force Attacks at the Network Level,

in: IEEE International Conference on Bioinformatics and Bioengineering

(BIBE), IEEE, 2014, pp. 379–385.

[16] M. M. Najafabadi, T. M. Khoshgoftaar, A. Napolitano, C. Wheelus, RUDY

Attack: Detection at the Network Level and Its Important Features, in:835

International Florida Artificial Intelligence Research Society Conference,

2016, pp. 288–293.

[17] Q. A. Tran, F. Jiang, J. Hu, A real-time netflow-based intrusion detec-

tion system with improved BBNN and high-frequency field programmable

gate arrays, in: International Conference on Trust, Security and Privacy in840

Computing and Communications, IEEE, 2012, pp. 201–208.

[18] C. Wagner, J. François, T. Engel, et al., Machine Learning Approach for IP-

Flow Record Anomaly Detection, in: International Conference on Research

in Networking, Springer, 2011, pp. 28–39.

[19] V. L. Cao, M. Nicolau, J. McDermott, A Hybrid Autoencoder and Density845

Estimation Model for Anomaly Detection, in: International Conference on

Parallel Problem Solving from Nature, Springer, 2016, pp. 717–726.

[20] S. Garcia, M. Grill, J. Stiborek, A. Zunino, An empirical comparison of

botnet detection methods, Computers & Security 45 (2014) 100–123.

38

[21] M. Ring, D. Landes, A. Hotho, Detection of slow port scans in flow-based850

network traffic, PLOS ONE 13 (9) (2018) 1–18. doi:10.1371/journal.

pone.0204507.

[22] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954

(2004).

[23] B. Claise, Specification of the IP Flow Information Export (IPFIX) Proto-855

col for the Exchange of IP Traffic Flow Information, RFC 5101 (2008).

[24] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, 3rd

Edition, Elsevier, 2011.

[25] E. B. Beigi, H. H. Jazi, N. Stakhanova, A. A. Ghorbani, Towards Effec-

tive Feature Selection in Machine Learning-Based Botnet Detection Ap-860

proaches, in: IEEE Conference on Communications and Network Security,

IEEE, 2014, pp. 247–255.

[26] M. Stevanovic, J. M. Pedersen, An analysis of network traffic classification

for botnet detection, in: IEEE International Conference on Cyber Situa-

tional Awareness, Data Analytics and Assessment (CyberSA), IEEE, 2015,865

pp. 1–8.

[27] R. Salakhutdinov, H. Larochelle, Efficient learning of deep Boltzmann ma-

chines, in: International Conference on Artificial Intelligence and Statistics,

2010, pp. 693–700.

[28] I. Goodfellow, NIPS 2016 tutorial: Generative Adversarial Networks, arXiv870

preprint arXiv:1701.00160.

[29] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word

Representations in Vector Space, arXiv preprint arXiv:1301.3781.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed

Representations of Words and Phrases and their Compositionality, in: Ad-875

vances in Neural Information Processing Systems (NIPS), 2013, pp. 3111–

3119.

39

https://doi.org/10.1371/journal.pone.0204507
https://doi.org/10.1371/journal.pone.0204507
https://doi.org/10.1371/journal.pone.0204507

[31] N. Buduma, N. Locascio, Fundamentals of Deep Learning: Designing Next-

Generation Machine Intelligence Algorithms, O’Reilly Media, 2017.

[32] A. Borji, Pros and Cons of GAN Evaluation Measures, arXiv preprint880

arXiv:1802.03446.

[33] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,

Improved Techniques for Training GANs, in: Advances in Neural Informa-

tion Processing Systems (NIPS), 2016, pp. 2234–2242.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the885

Inception Architecture for Computer Vision, in: IEEE Conference on Com-

puter Vision and Pattern Recognition, 2016, pp. 2818–2826.

[35] S. Molnár, P. Megyesi, G. Szabo, How to Validate Traffic Generators?,

in: IEEE International Conference on Communications Workshops (ICC),

IEEE, 2013, pp. 1340–1344.890

[36] J. Glasser, B. Lindauer, Bridging the gap: A pragmatic approach to gen-

erating insider threat data, in: Security and Privacy Workshops (SPW),

IEEE, 2013, pp. 98–104.

[37] J. Stiborek, M. Rehák, T. Pevnỳ, Towards scalable network host simulation,

in: International Workshop on Agents and Cybersecurity, 2015, pp. 27–35.895

[38] P. Siska, M. P. Stoecklin, A. Kind, T. Braun, A Flow Trace Generator us-

ing Graph-based Traffic Classification Techniques, in: International Wire-

less Communications and Mobile Computing Conference (IWCMC), ACM,

2010, pp. 457–462. doi:10.1145/1815396.1815503.

[39] S. Iannucci, H. A. Kholidy, A. D. Ghimire, R. Jia, S. Abdelwahed, I. Ban-900

icescu, A Comparison of Graph-Based Synthetic Data Generators for

Benchmarking Next-Generation Intrusion Detection Systems, in: IEEE In-

ternational Conference on Cluster Computing (CLUSTER), IEEE, 2017,

pp. 278–289.

40

https://doi.org/10.1145/1815396.1815503

[40] J. Sommers, P. Barford, Self-Configuring Network Traffic Generation, in:905

ACM Internet Measurement Conference (ACM IMC), ACM, 2004, pp. 68–

81.

[41] A. Botta, A. Dainotti, A. Pescapé, A tool for the generation of realistic

network workload for emerging networking scenarios, Computer Networks

56 (15) (2012) 3531–3547.910

[42] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward developing

a systematic approach to generate benchmark datasets for intrusion detec-

tion, Computers & Security 31 (3) (2012) 357–374.

[43] A. Turner, Tcpreplay, (Date last accessed 14-June-2018).

URL http://tcpreplay.synfin.net/915

[44] W.-c. Feng, A. Goel, A. Bezzaz, W.-c. Feng, J. Walpole, TCPivo: A High-

Performance Packet Replay Engine, in: ACM Workshop on Models, Meth-

ods and Tools for Reproducible Network Research, ACM, 2003, pp. 57–64.

[45] D. Jon, E. Seth, M. A. Bruce, P. Jeff, P. Kaustubh, Iperf: The TCP/UDP

bandwidth measurement tool, (Date last accessed 14-June-2018).920

URL https://iperf.fr/

[46] D. Brauckhoff, A. Wagner, M. May, FLAME: A Flow-Level Anomaly Mod-

eling Engine, in: Workshop on Cyber Security Experimentation and Test

(CSET), USENIX Association, 2008, pp. 1:1–1:6.

[47] E. Vasilomanolakis, C. G. Cordero, N. Milanov, M. Mühlhäuser, Towards925

the creation of synthetic, yet realistic, intrusion detection datasets, in:

IEEE Network Operations and Management Symposium (NOMS), IEEE,

2016, pp. 1209–1214.

[48] A. Sperotto, R. Sadre, P.-T. de Boer, A. Pras, Hidden Markov Model mod-

eling of SSH brute-force attacks, in: International Workshop on Distributed930

Systems: Operations and Management, Springer, 2009, pp. 164–176.

41

http://tcpreplay.synfin.net/
http://tcpreplay.synfin.net/
https://iperf.fr/
https://iperf.fr/
https://iperf.fr/
https://iperf.fr/

[49] X. Yuan, P. He, Q. Zhu, R. R. Bhat, X. Li, Adversarial Examples: Attacks

and Defenses for Deep Learning, arXiv preprint arXiv:1712.07107.

[50] M. Rigaki, S. Garcia, Bringing a GAN to a Knife-fight: Adapting Malware

Communication to Avoid Detection, in: 1st Deep Learning and Security935

Workshop, San Francisco, USA, 2016.

[51] W. Hu, Y. Tan, Generating Adversarial Malware Examples for Black-Box

Attacks Based on GAN, arXiv preprint arXiv:1702.05983.

[52] H. S. Anderson, J. Woodbridge, B. Filar, Deepdga: Adversarially-tuned

domain generation and detection, in: Proceedings of the 2016 ACM Work-940

shop on Artificial Intelligence and Security, ACM, 2016, pp. 13–21.

[53] C. Yin, Y. Zhu, S. Liu, J. Fei, H. Zhang, An Enhancing Framework for

Botnet Detection Using Generative Adversarial Networks, in: International

Conference on Artificial Intelligence and Big Data (ICAIBD), 2018, pp.

228–234. doi:10.1109/ICAIBD.2018.8396200.945

[54] Y.-J. Zheng, X.-H. Zhou, W.-G. Sheng, Y. Xue, S.-Y. Chen, Generative

adversarial network based telecom fraud detection at the receiving bank,

Neural Networks 102 (2018) 78–86.

[55] C. Zhang, X. Ouyang, P. Patras, Zipnet-gan: Inferring fine-grained mobile

traffic patterns via a generative adversarial neural network, in: Proceedings950

of the 13th International Conference on emerging Networking EXperiments

and Technologies, ACM, 2017, pp. 363–375.

42

https://doi.org/10.1109/ICAIBD.2018.8396200

	Introduction
	Foundations
	Flow-based Network Traffic
	GANs
	IP2Vec
	Motivation of IP2Vec
	Model
	Training
	Continuous Representation of IP addresses

	Transformation Approaches
	Preliminaries
	Method 1 - Numeric Transformation
	Method 2 - Binary Transformation
	Method 3 - Embedding Transformation

	Experiments
	Data Set
	Definition of a Baseline
	Evaluation Methodology
	Generation of Flow-based Network Data
	Parameter Configuration
	Visualization
	Euclidean Distances
	Domain Knowledge Checks

	Discussion
	Related Work
	Traffic Generators
	GANs

	Summary

