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Abstract Company data are a valuable asset and must be protected against unautho-
rized access and manipulation. In this contribution, we report on our ongoing work
that aims to support IT security experts with identifying novel or obfuscated attacks
in company networks, irrespective of their origin inside or outside the company net-
work. A new toolset for anomaly based network intrusion detection is proposed.
This toolset uses flow-based data which can be easily retrieved by central network
components. We study the challenges of analysing flow-based data streams using
data mining algorithms and build an appropriate approach step by step. In contrast to
previous work, we collect flow-based data for each host over a certain time window,
include the knowledge of domain experts and analyse the data from three different
views. We argue that incorporating expert knowledge and previous flows allow us to
create more meaningful attributes for subsequent analysis methods. This way, we try
to detect novel attacks while simultaneously limiting the number of false positives.
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1 Introduction

Information security is a critical issue for many companies. The fast development of
network-based computer systems in modern society leads to an increasing number
of diverse and complex attacks on company data and services. However, company
data are a valuable asset which must be authentic to be valuable and inaccessible to
unauthorized parties [27]. Therefore, it is necessary to find ways to protect company
networks against criminal activities, called intrusions. To reach that goal, companies
use various security systems like firewalls, security information and event manage-
ment systems (SIEM), host-based intrusion detection systems, or network intrusion
detection systems.

This chapter focuses on anomaly-based network intrusion detection systems.
Generally, network intrusion detection systems (NIDS) try to identify malicious
behaviour on network level and can be categorized into misuse and anomaly de-
tection [25]. Misuse detection utilizes known attacks and tries to match incoming
network activities with predefined signatures of attacks and malware [14]. Conse-
quently, only known attacks can be found and the list of signatures must be con-
stantly updated [18]. The increasing trend of insider attacks complicates this chal-
lenge even more. It is harder to identify signatures that indicate unusual behaviour
as these behaviours may be perfectly normal under slightly different circumstances.
Anomaly detection systems on the other hand assume that normal and malicious
network activities differ [18]. Regular network activities are modelled by using rep-
resentative training data, whereas incoming network activities are labelled as mali-
cious if they deviate significantly [14]. Thus, anomaly detection systems are able to
detect novel or obfuscated attacks. However, operational environments mainly ap-
ply misuse detection systems [52]. Sommer and Paxson [52] identify the following
reasons for the failure of anomaly-based intrusion detection systems in real world
settings:

. high cost of false positives

. lack of publicly available training and evaluation data sets

. the semantic gap between results and their operational interpretation
. variability of input data

. fundamental evaluation difficulties

[ O I S

In this contribution, we propose a novel approach for anomaly based network
intrusion detection in which we try to consider the challenges identified by Sommer
and Paxson [52]. We report on our ongoing work that aims to develop an interactive
toolset which supports IT security experts by identifying malicious network activ-
ities. The resulting toolset Coburg Utility Framework (CUF) is based on a flexible
architecture and offers a wide range of data mining algorithms. Our work addresses
various aspects that may contribute to master the challenge of identifying signifi-
cant incidents in network data streams, irrespective of their origin from inside or
outside of a company network. In particular, our approach builds upon flow-based
data. Flows are meta information about network communications between hosts and
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can be easily retrieved by central network components like routers, switches or fire-
walls. This results in fewer privacy concerns compared to packet-based approaches
and the amount of flow data is considerably smaller in contrast to the complete
packet information.

The resulting approach is multistaged: We first propose an enrichment of flow-
based data. To this end, we collect all flows within a given time window for each
host and calculate additional attributes. Simultaneously, we use additional domain
knowledge to add further information to the flow-based data like the origin of the
Source IP Address. In order to detect malicious network traffic, the enriched flow-
based data is analysed from three different perspectives using data mining algo-
rithms. These views are adjusted to detect various phases of attacks like Scanning
or Gaining Access. We are confident that collecting flows for each host separately
for a certain time window and the inclusion of domain knowledge allows us to calcu-
late more meaningful attributes for subsequent analysis methods. Further, the three
different analysis views allow us to reduce the complexity in each single view. We
also describe our process to generate labelled flow-based data sets using OpenStack
in order to evaluate the proposed approach.

The chapter is organized as follows: The next section introduces the general
structure of our toolset Coburg Utility Framework (CUF). Section 3 proposes our
data mining approach to analyse flow-based data streams using CUF. Then, the gen-
eration of labelled flow-based data sets for training and evaluation is described in
Section 4. Section 5 discusses related work on flow-based anomaly detection. The
last section summarizes the chapter and provides an outlook.

2 Coburg Utility Framework

We use the following definitions: A data stream Xg = {X;,X5,...,X,} is an un-
bounded set (n = o) of data points X;. Each data point X; is characterized by a
set of attributes. A data set Xp consists of a fixed number of data points X;. When
talking about network data, each flow can be considered a data point.

The objective of our research is a methodology for analysing flow-based data
streams to detect malicious network activities. To this end, a combination of var-
ious data mining methods (clustering, classification and visualization) needs to be
explored. Different configurations are then compared and evaluated with respect to
their quality. An appropriate workflow can only be found by experimenting with
different processing steps on real world data. By assessing the results we are able
to figure out the best possible configuration. Hence, a highly flexible experimental
environment is required to allow for an easy setup of different methods. Hereby, a
wide range of tools for modelling, visualization and evaluation is used.

The Coburg Utility Framework (CUF) aims to fulfil these requirements. The un-
derlying core architecture of CUF is presented in the following Section. Section
2.2 provides an overview of available algorithms for offline and online analysis.
CUF also incorporates offline algorithms which we developed and applied in earlier
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work [27] since these algorithms can be used for further and deeper investigations
of malicious network activities.

2.1 Architecture of CUF

CUF implements a pipes-and-filters architecture which is often used in software
applications that handle and process data streams. Filters constitute independent
working steps that manipulate incoming data. Pipes connect pairs of filters and pass
data on to other filters. The architecture of CUF ensures optimal encapsulation of
pipes and filters, and both are realized as services with a common interface. Services
are implemented by a service provider and loaded dynamically by a service loader.
In addition, this architecture provides an easy way of integrating new filters, e.g.,
when integrating a new clustering algorithm as a filter, all other filters and pipes
stay unchanged.

As an enhancement to the pure pipes-and-filters pattern, CUF allows to split and
merge workflows. Thus, different clustering filters or multiple instances of one filter
with different parameter settings can be combined to process data in a single run
and compare their results directly. Since each of these steps is implemented as an
individual filter in CUF, different workflows can easily be set up and executed.

Figure 1 shows a simple data mining workflow in CUF to cluster network data. At

(JDBC) ‘ ‘ (GeolPFilter) ‘ ‘ (KPrototypes) ‘ ‘ (ParallelCoordinates) ‘ ‘ (HTML)
Prepro- q - g
Input cessing Clustering Visualize Output

Fig. 1 Representation of a data mining workflow in CUF.

first, an input filter reads the data from a database. Then, a preprocessing filter adds
additional information to each data point. In this case, the GeolPFilter adds to each
data point the corresponding geographical coordinates of the Source IP Address and
Destination IP Address using an external database. The third filter in the processing
chain is the clustering algorithm k-Prototypes. This filter sorts the incoming data
points in a predefined number of k clusters (groups) according to their similarity. The
fourth filter visualizes the results in form of Parallel Coordinates and the last filter
writes the results to disk. Input and output interfaces of the filters are represented by
the coloured rectangles in Figure 1. Input interfaces are on the left side and output
interfaces are on the right side. Green rectangles transport data points, whereas blue
rectangles transport cluster objects. Figure 1 shows that the Parallel Coordinates
filter is able to process data points (green input rectangle) or cluster objects (blue
input rectangle). The ability of filters to read and generate different output formats
allows us to easily split and merge workflows.
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One of the major challenges in analysing network data is the large amount of
data generated by network devices. Company networks generate millions of network
flows per hour. Consequently, an efficient and fast processing chain is required.
Here, the pipes-and-filters architecture of CUF itself has a big advantage. Since
filters work independently, each of them is executed in its own thread such that
multicore architectures may easily be utilized to reduce execution time.

2.2 Filters in CUF

This section provides an overview of available filters in CUF. We implement many
filters on our own to increase flexibility and customization of algorithms for flow-
based data. For example, we implemented the k-Prototypes algorithm to be able to
use adjusted distances measures. When no such adjustments are necessary, we pre-
fer the use of publicly available implementations. For instance, we include several
classifiers from the WEKA! toolkit like J48 or Support Vector Machines.

We distinguish five subcategories of filters, namely Input and Output, Prepro-
cessing, Clustering, Classification and Evaluation.

2.2.1 Input and Output

As the name suggests, input and output filters are responsible for reading and writing
data. CUF offers various input filters which can read data from different sources like
text files, binary files, or databases. For each input filter, a corresponding output filter
is available for storing data in a particular format. Binary files are primarily used to
read and write temporary results from clusterings. For text files, CUF offers two
formats: CSV and HTML. The CSV format is most widely used. Yet, analysing CSV
files with many columns and lines can quickly become confusing. Therefore, CUF
may also write data in a formatted table and store it in HTML format.

We are primarily interested in analysing flow-based data streams. In experimen-
tal settings, however, network data streams are often not available. Instead, flow-
based data streams are recorded from network devices and stored in CSV files. Each
recorded flow (data point) contains an attribute named Date first seen. This attribute
depicts the timestamp at which the corresponding network device created the flow.
For simulating live data streams from these stored CSV files, CUF offers an addi-
tional stream simulation filter. The stream simulation filter emulates a data stream
by extracting the attribute Date first seen from each flow and calculates the time
difference between two successive flows. The filter forwards the flows with respect
to the calculated time differences in the processing chain to simulate real traffic.

U http://www.cs.waikato.ac.nz/ml/index.htm]
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2.2.2 Preprocessing

CUF contains a wide range of preprocessing filters which, in most cases, are not lim-
ited to network data. Preprocessing filters clean data (e.g. by removing inconsistent
data), transform attribute values, or add further information. Some preprocessing
filters use explicit domain knowledge to add further information to data points.

An important aspect in network data analysis is heterogeneous data, namely data
points that are composed of continuous and categorical attributes. Continuous at-
tributes take real numbers as values and thus they have a natural order in their value
range. This allows simple calculations of similarities between different values. Ex-
amples for continuous attributes are the bytes or the timestamp of a network flow.
The values of categorical attributes are discrete and have no natural order in their
value range. This makes it hard to calculate similarities between categorical val-
ues, since simple distance measures like the Euclidian distance can not be applied.
Examples for categorical attributes are the Source IP Address or Source Port of
a flow. The mixture of continuous and categorical attributes complicates matters
since most data mining algorithms can only handle either continuous or categorical
attributes. To transform the problem of heterogeneous data into a well-known prob-
lem, CUF offers various preprocessing filters to discretize continuous attributes (e.g.
the Hellinger Discretization [28] or the Multi-Interval Discretziation using Mini-
mal Description Length [15]) or to transform categorical attributes to continuous
attributes (e.g. a transformation to binary attributes for each categorical value).

Further, CUF contains a novel distance measure ConDist [45]. ConDist [45] is
able to calculate distances between data points which contain both, continuous and
categorical attributes. ConDist utilizes the Minkowski distance to calculate the dis-
tance for continuous attributes. For categorical attributes, ConDist uses correlated
context attributes to calculate distances. It also considers the quality of information
that can be extracted from the data set and automatically weights the attributes in
the overall distance calculation.

2.2.3 Clustering

In general, the first goal of any type of data analysis is a better understanding
of the data [27]. Clustering is an unsupervised technique, meaning it uses no a
priori knowledge about the data. Consequently, appropriate clustering techniques
can only be determined experimentally. In order to avoid restricting the range of
techniques, CUF integrates clustering algorithms from all categories, namely par-
titioning (k-means and variants), hierarchical (Lance-Williams [33], ROCK [20]
and extensions), grid-based and density-based algorithms (CLIQUE [2] and exten-
sions) [27]. Any clustering algorithm may choose an appropriate distance measure,
ranging from Minkowski distances for continuous data over the Jaccard Index for
categorical attributes to ConDist [45] for heterogeneous data. The latter is even ca-
pable of self-adapting to the underlying data set.
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Further, CUF integrates the stream clustering algorithms CluStream [1] and Den-
Stream [6] both of which are based on the principle of micro and macro clusters.
An online component clusters incoming data points into micro clusters. The of-
fline component is triggered by the user, uses micro clusters as input data points,
and presents a clustering result for a certain timeframe to the user. CluStream [1]
and DenStream [6] can only process continuous attributes in their standard form.
Therefore, CUF also integrates HCluStream [64] and HDenStream [29] which have
been proposed as extensions in order to handle categorical attributes in addition to
numerical ones.

2.2.4 Classification

Classification is a basic task in data mining and used to automatically assign (clas-
sify) data points into predefined groups (classes). Such a data mining model takes
as input a set of labelled examples. CUF integrates different classifiers like Neural
Networks, Decision Trees, k-Nearest-Neighbour or Support Vector Machine. Clas-
sification proceeds in two steps. In the first step, the classifier is trained using a
labelled set of training data. The training data set contains a fixed number of class
information. Each training data point X; is composed of a constant set of attributes
and a label indicating the class to which the data point belongs. The classifier learns
the characteristics of the different classes and builds a model or function for the as-
signment (classification) of unlabelled data points. In the second step, the classifier
uses this model or function to classify new (unseen) data points [56].

2.2.5 Evaluation

CUF provides a wide range of filters for result evaluation. First of all, filters are
integrated to calculate default evaluation measures like Accuracy, FI-Score, Re-
call or Precision. However, these measures can only be calculated when a ground
truth is available, like the labels in the classification setting. If there is no ground
truth available, CUF offers filters which calculate intrinsic validation measures. Re-
garding the evaluation of data stream clustering, Hassani and Seidl examine the
performance and properties of eleven internal clustering measures in [21]. Since
Calinski-Harabasz [5] emerges as best internal evaluation measure it is also imple-
mented in CUF. Besides Calinski-Harabasz, other promising evaluation methods are
implemented as well (e.g. CPCQ-Index [30], CDbw-Index [9], or Davies-Bouldin-
Index [13]). These intrinsic cluster validation measures evaluate the clustering re-
sults by their compactness and separability. However, these key measurements can
only provide an overall assessment of the results and give no further insights.
Therefore, CUF provides various visualization filters for deeper investigations.
Data plots (see Figure 2) may give a first impression of the data. Bar diagrams give
an overview of the number of generated clusters and their number of data points.
Further, CUF may use parallel coordinates, pixel-based visualization, or radial vi-
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Fig. 2 Data plot which represents the number of flows per time.

sualizations to display large amounts of multi-dimensional data to a human security
expert. Figure 3 shows the visualization of a network data set in parallel coordinates

A. Parallel Coordinates B. Radial Coordinates

Timestamp . Source-1P
Timestamp  Source-IP  Destinati *

\7.

IP Source-Port Destination-Port

[:estination—.Pmt

* *
Source-Port Destination-1P

Fig. 3 Representation of a network data set with a horizontal Port Scan in parallel coordinates (A)
and a vertical Port Scan in radial coordinates (B). The flows which belong to the Port Scan are
highlighted in red.

as well as in radial coordinates. In parallel coordinates, each attribute is displayed
on an axis. All axes are displayed parallel to each other on the screen. Each data
point is represented as a line from left to right. The situation is slightly different for
radial coordinates where each attribute is displayed on an axis as well, but data are
arranged in a circular layout. However, it has to be taken into account that opposing
axis are influencing each other. Other visualizations may be used to get an overview
of or detailed insights into the overall result.

This way, we tackle the fundamental challenge of evaluation of anomaly based
intrusion detection systems by using a broad range of evaluation technologies.
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3 Online Analysis of Network Data Streams

In this section, we introduce our approach of analysing flow-based data streams with
CUF. First, we investigate the general problem setting and deduce some implica-
tions for our approach in Section 3.1. Section 3.2 gives an overview of the proposed
approach and provides the underlying ideas. Then, the integration of additional do-
main knowledge is described in Section 3.3. The Sections 3.5, 3.6 and 3.7 describe
the three different views in which the incoming flow-based data stream is analysed.

3.1 General Problem Setting

The objective of our research is to identify malicious network traffic in flow-based
data streams using data mining methods. Hence, we now discuss typical attack sce-
narios, available data and necessary data preparation steps.

3.1.1 Attack Scenarios

Attack scenarios often follow predefined patterns. Literature usually distinguishes
various phases of attacks. A popular definition by Skoudis and Liston [51] is de-
picted in Figure 4 and contains the following phases:

1. Reconnaissance

2. Scanning

3. Gaining Access

4. Maintaining Access
5. Covering Tracks

In each phase, different methods are used to reach the corresponding goals.

E:>[ Reconnaissance ] @

[ Covering Tracks } [ Scanning ]

i) U

[ Maintaining Access ]<::[ Gaining Access J

Fig. 4 Overview of the five attack phases.
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In the first phase (Reconnaissance), the attacker tries to gather as much informa-
tion as possible about the target system. Skoudis and Liston [51] identify various
Reconnaissance techniques, e.g. web searches, whois database analysis, domain
name systems, social engineering or dumpster diving. A popular starting point in
this phase would be to search the companies website. In case of social engineering,
names of the current CEOs or other employees (e.g. server administrators) would
be targeted. Attackers commonly use such information by acting as an administra-
tor via email to get critical data from a trustful employee. Domain name systems
can be used to identify concrete IP ranges. Alternatively, it is possible to retrieve
usernames, (inital) passwords and internal /P Addresses via dumpster diving.

Scanning is the second phase and uses information which was gathered during
Reconnaissance to examine the target system. In essence, the Scanning phase is
an extension of Reconnaissance. Directly accessible hosts can be identified by IP
Range Scans. Then, Port Scans are used to identify open ports and thereby potential
attacking points. A variety of powerful scanning tools such as nmap? exists. Fur-
ther, these scanning tools contain features for deeper analysis like operation system
detection.

In the third phase (Gaining Access), the actual attack takes place. Typical attacks
in this phase are Denial of Service (DoS), SOL injections, PHP exploits, or Brute
Force attacks. Exemplary, DoS attacks try to make the target system unavailable by
flooding the target with illegitimate packets [8], while SSH Brute Force attacks are
used to gain access to a remote host by repeatedly trying to guess the correct login
information.

After gaining access, attackers usually want to maintain it. This can be accom-
plished in phase four (Maintaining Access) via typical techniques like trojan horses,
bots, backdoors or rootkits [51]. The compromised system can be used as starting
base for deeper exploration of the target network and to collect information for fur-
ther attacks.

The Covering Tracks phase completes the cycle of the attack scenario. Attackers
typically prefer to stay hidden, so they can maintain control of the systems as men-
tioned in phase four. Staying hidden buys time for the attackers and enables them
to steal data, consume CPU cycles, launch other attacks or just maintain the control
for future actions [51].

Attack scenarios do not necessarily include all phases. For example, an insider
(e.g. an employee) already holds information that an outsider would acquire in phase
one. Consequently, insiders would start at phase two or even three. In addition, not
all attackers are interested in keeping access and wiping out their traces. In these
cases the phases four and five are optional.

2 https://nmap.org/
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3.1.2 Flow-based Data

As already mentioned above, we focus on flow-based data for intrusion and insider
threat detection. To reiterate, flows contain meta information about connections be-
tween two network components. A flow is identified by the default five tuple: Source
IP Address, Source Port, Destination IP Address, Destination Port and Transport
Protocol. We capture flows in unidirectional NetFlow format [10] which typically
contains the attributes shown in Table 1. These attributes are typical in flow-based

Table 1 Overview of the used NetFlow attributes in our approach. The third column gives a short
description of the attributes.

Nr. Name Description

1 Src IP Source IP Address

2 Src Port Source Port

3 Dest IP Destination IP Address

4 Dest Port Destination Port

5 Proto Transport Protocol (e.g. ICMP, TCP, or UDP)
6 Date first seen Start time flow first seen

7 Duration Duration of the flow

8 Bytes Number of transmitted bytes

9 Packets Number of transmitted packets

10  Flags OR concatenation of all TCP Flags

data and also available in other flow standards like IPFIX [11] or sFlow [40]. Net-
Flow terminates a flow record in two cases: (1) a flow receives no data within o
seconds after the last packet arrived (inactive timeout) or (2) a flow has been open
for B seconds (active timeout). By default, NetFlow uses the values o = 15 and
B = 1800.

NIDS usually operate either on flow-based data or on packet-based data. We
analyse flow-based data for several reasons. In contrast to packet-based data, the
amount of data can be reduced, fewer privacy concerns are raised, and the problem
of encrypted payloads is bypassed. Further, problems associated with the variability
of input data [52] are avoided. Flows have a standard definition and can be easily
retrieved by central network components. Another advantage of flows is that huge
parts of the company network can be observed. For example, firewall log files would
limit the analysed data to the traffic which passes the firewall. Consequently, insider
attacks do not appear in these log files as they usually do not pass the firewall. In
contrast to that, traffic between internal network components always passes switches
or backbones. In conclusion, the use of flows allows to analyse the whole company
network traffic independently of its origin.

Flows come as either unidirectional or bidirectional flows. Unidirectional flows
aggregate those packets from host A to host B into one flow that have identical five
tuples. The packets from host B to host A are merged to another unidirectional flow.
In contrast, bidirectional flows contain the traffic from host A to host B as well
as vice versa. Consequently, bidirectional flows contain more information. How-
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ever, we decided to use unidirectional flows since company backbones often contain
asymmetric routing [23] which would distort the information in bidirectional flows.

The individual phases of an attack (see Section 3.1.1) have different effects on
flow-based data. The Reconnaissance phase has no influence on the data since meth-
ods like dumpster diving or social engineering generate no observable network traf-
fic within the company. In comparison, the other four phases generate observable
network traffic.

It should be noted that the detection of attacks using host-based log files could
sometimes be easier than the analysis of flows, e.g. failed ssh logins are stored in
the ssh-log-file. However, regarding phase five (Covering Tracks), attackers usually
manipulate the log files on the host to wipe their traces. Since we use flow-based
data of network components and no host-based log files, the covering of tracks fails
in our anomaly based intrusion detection system. This would only be possible if the
attacker hacks the network components and manipulates the flows.

3.1.3 Data Preparation

We follow the typical phases of the CRISP (Cross-Industry Standard Process for
Data Mining) model [49] which defines a standard model for Data Mining work-
flows. Business understanding and data preparation are necessary prerequisites for
the application of Data Mining methods. In our setting, business understanding cor-
responds to the analysis of hacking phases (Section 3.1.1) while data understanding
complies with the analysis of flow-based data (Section 3.1.2).

The next step in the workflow is the data preparation before data mining methods
can be applied. Reasons are the need for attributes which represents hidden infor-
mation or the requirement of some data mining methods, as they are only able to
handle some types of attributes. For example, when using Neuronal Networks the
input data should consist of exclusively continuous attributes. Hence, categorical at-
tributes like IP Addresses have to be transformed. Several aspects have to be consid-
ered when preprocessing flow-based data. Clustering (Section 2.2.3), classification
(Section 2.2.4) and outlier detection algorithms are usually based on a definition of
distance or similarity. Applying these algorithms directly on the attributes of flow-
based data (see Table 1) could lead to fatal problems. Therefore, it is necessary to
abstract certain attributes of the flow in a preprocessing step. For example, when
facing the same attack twice, but from a different Source IP Address and on a dif-
ferent Destination IP Address to a later time, at least three of the ten attributes of a
flow will differ. As a consequence, the flows of the two attacks are dissimilar and
categorized to different groups.
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3.1.4 Implications

Considering our above analysis of the general problem setting, where we investi-
gated attack scenarios, the underlying flow-based data and necessary data prepara-
tion steps, we can draw several conclusions:

(1) A basic assumption is that due to the big number of various applications and
services it is nearly impossible to decide if a single flow is normal or malicious traf-
fic based on the available attributes (see Table 1). This assumption is supported by
the fact that normal user behaviour and malicious user behaviour are characterized
by sequences of flows. Lets illustrate this by an example. Assume a Vertical Port
Scan attack. Here, the attacker scans some or all open ports on a target systems [55].
Since Source Port and Destination Port are keys of the default five tuple for creating
flows, each scanned port generates a new flow. Another example is the loading of a
web page. Often different pictures are reloaded or other web pages are included. In
such cases, the client opens various Source Ports or sends request to different web
servers (different Destination IP Addresses). For these reasons, it makes more sense
to collect multiple flows for each host rather than to analyse each flow separately.

(2) Different attack phases have different effects on flow-based data. In the sec-
ond phase (Scanning) different services and or hosts are targeted, whereas in the
third phase (Gaining Access), a concrete service of a host is attacked. In the fourth
phase (Maintaining Access), flow characteristics like transmitted Bytes or Packets
seem to be normal, only the origin of the connections are suspicious. Consequently,
it makes more sense to analyse the flow-based data from different views to detect
different attack phases.

(3) The information within flow-based data is limited. Therefore, flows should
be enriched with as much information about the network as possible using domain
knowledge.

3.2 Outline of the Proposed Approach

This section provides an overview of the proposed approach and discusses the un-
derlying ideas. Figure 5 shows the essential components of our approach.

The IP Address Info Filter is the first filter in the processing chain. It receives
the flow-based data stream Xg from central network components and incorporates
domain knowledge about the network (see Section 3.3). Data is passed through the
Service Detection Filter (Section 3.4) to identify the services of each flow (e.g. SSH,
DNS or HTTP). The Collecting Filter is the central component of our approach. It
also incorporates domain knowledge about the network and receives the enriched
flow-based data stream Xg from the Service Detection Filter. Based on the observa-
tions above, in its first step, the Collecting Filter collects all incoming flows for each
user separately. User identification is based on the Source IP Address of the flow.
A parameter 6 controls the windows-size (in seconds) of flows which are collected
for each user. The larger the parameter 8§, the more memory is necessary but in con-
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Fig. 5 Overview of the proposed approach.

sequence, the quality of the calculated summary of flows increases. The Collecting
Filter creates one Network data point for each user and each time window. For each
user and identified service within the time window a Service data point and User
data point is created. Each of these data points is created for investigating the user
flows from a specific view, namely Network Behaviour Analyser, Service Behaviour
Analyser and User Behaviour Analyser in Figure 5. The Network data point con-
tains specific information about the users’ network behaviour and is described in
Section 3.5. The Service data point contains specific information about the usage of
the concrete service and is described in Section 3.6. The User data point contains
specific information, e.g. if the behaviour is typical for a user or not. It is described
in 3.7. We argue that incorporating domain knowledge from IT security experts and
other flows allow us to create more meaningful attributes for downstream analysis
methods.

The IP Address Info Filter, Service Detection Filter, Collecting Filter, Network
Behaviour, Service Behaviour and User Behaviour are implemented as separate fil-
ters in CUF which can be run independently and in parallel.



A Toolset for Intrusion and Insider Threat Detection 15

3.3 Integration of Domain Knowledge

Arguably, the performance of a NIDS increases with the amount of domain specific
information about the network. Therefore, we integrate more detailed information
about Source IP Address, Destination IP Address, Source Port and Destination Port
in our system.

First, we integrate additional information about the Source IP Address and Desti-
nation IP Address through the IP Address Info Filter. Therefore, the network admin-
istrator has to set up a csv file with all network addresses of the company. Further,
the administrator has to add each IP Address of internal servers. Figure 6 shows
such a sample csv file.

#Subnet IPF Address, Subnetwork, Organization, isIntern, isServer

192.168.1.0 , 1&, General 1, O
192.1682.1.0 , 24, Management, 1, O
192.168.2.0 , 24, Developer , 1, O
192.168.3.0 , 24, Server 1, O
1%92.168.3.2 , 32, MailServer, 1, 1
15%2.168.3.3 , 32, FileServer, 1, 1
152.168.3.4 , 32, WebServer , 1, 1
152.168.2.42, 32, PrinterMam, 1, 1
1592.168.3.42, 32, PrinterDev, 1, 1

Fig. 6 Exemplary configuration file for integrating domain knowledge.

The first column in Figure 6 is a specific IP Address or the address of an internal
subnet. The second column defines the size of the subnet in column one, where 32
means that this entry refers to a single IP Address. The third column describes the
organization of the subnet or the function of the particular /P Address. The last two
columns indicate if the IP Address/Range is internal and if the IP Address/Range
is a server. Normally, all servers are part of the company network and marked as
internal. However, the configuration file allows the administrator to add special roles
to extern but known servers (e.g. servers of other companies for joint projects). Any
IP Address/Range that can not be matched to a given entry within the configuration
file is treated as an external address. Based on this information, the IP Address Info
Filter adds the corresponding organization and the two flags islntern and isServer
to each Source IP Address and Destination IP Address.

The second configuration file contains information about used ports in the com-
pany. Here, the network administrator has to flag open ports of internal servers, e.g.
port 20 and 21 for FTP or port 22 for SSH. By default, all ports between 0 and 1023
(the standardized ports) are considered as open ports. Requested connections to non
open ports increase the level of suspiciousness. This configuration file is read by the
Collecting filter for identifying client and servers within a flow.
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3.4 Service Detection Filter

The Service Detection Filter classifies each flow with respect to their services (e.g.
HTTP, SSH, DNS or FTP). Right now, this filter uses a common identification
method which is based on evaluating known port numbers assigned by the Inter-
net Assigned Numbers Authority (IANA)>.

Unfortunately, this approach is no longer viable because many applications do
not use fixed port numbers [65]. Another problem when evaluating known port num-
bers is that many applications tunnel their traffic through port 80 (e.g. Skype).

Therefore, we intend to integrate more sophisticated service detection algorithms
in the future. Nguyen et al. [37] and Valenti et al. [59] broadly review traffic clas-
sification using data mining approaches which is not limited to flow-based data.
Several approaches for flow-based service classification have been published ([32]
and [65]). Moore and Zuev [32] show the effectiveness of a Naive Bayes estimator
for flow-based traffic classification. Zander et al. [65] use autoclass, an unsupervised
Bayesian classifier which learns classes inherent in a training data set with unclas-
sified objects. A more recent approach of service classification using NetFlow data
is given by Rossi and Valenti [46].

3.5 Network Behaviour Analyser

The Network Behaviour Analyser evaluates hosts with respect to their general net-
work behaviour. Consequently, this analyser primarily checks if the number and the
kind of connections are normal or suspicious for a specific host. The primary goal is
to identify activities in the Scanning phase (see Section 3.1.1). Therefore, the main
attacks in this scenario are /P Range Scans or Port Scans. For the detection of Port
Scans, a more detailed analysis is required. Port Scans can be grouped into horizon-
tal scans and vertical scans. In case of more common horizontal scans the attacker
exploits a specific service and scans numerous hosts for the corresponding port [55].
In contrast, vertical scans target some or all ports of a single host.

Since the scanning behaviour of attacker and victim hosts are different for TCP
and UDP, they need to be treated separately. The most common 7TCP scan is the
SYN-scan. In this case, the attacker sends the initialization request of the 3-Way-
Handshake. If the port is open, a SYN-ACK-response is sent by the victim. Other-
wise, the victim host responds with a RST-Flag. It should be noted that there are
different approaches of TCP scans, e.g. sending a FIN flag instead of the initializa-
tion SYN flag for bypassing firewall rules. These approaches are described in more
detail in the documentation of the popular nmap® tool.

3 http://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml
4 https://nmap.org/
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Scanning UDP ports differs fundamentally from scanning TCP ports. Successful
addressing UDP ports does not necessarily render a response. However the same
behaviour can be observed if a firewall or other security mechanisms blocks the
request. If the attacker addresses a closed UDP port, the victim sends an ICMP
unreachable message in return. However, most operating systems limit the number
of ICMP unreachable messages to one per second.

In consequence, it is easier to detect the targeted victim instead of the attacker,
since victims follow rules predefined by protocols. In contrast, attackers may vary
their behaviour regarding the protocol to trick the systems. Also, it is more likely to
detect the scanning of closed ports due to the atypical behaviour of request-response.
Due to these observations, data points are calculated in the Collecting Filter with
corresponding attributes for this view. The calculated attributes contain values like
the number of flows within a time window, the number of sent or received RST-
Flags, the number of sent or received /CMP unreachable messages as well as the
number of requested ports per Destination IP Address. Since we consider both, the
view of the victim and the attacker, it is easier to detect distributed Port Scans too.

In preliminary experiments, we applied various classifiers (J48 Decision Tree, k-
Nearest-Neighbour, Naive Bayes or SVM) for the detection of IP Range Scans and
Port Scans. The proposed approach seems to work on our emulated data sets. We
will describe the process of data emulation in Section 4.

Several other methods which use similar approaches for Port Scan detection are
discussed in literature. Methods like Time-based Access Pattern, and Sequential
hypothesis testing (TAPS) [54] use the ratio of Destination IP Addresses and Desti-
nation Ports to identify scanners. If the ratio exceeds a threshold, the host is marked
as scanner. Threshold Random Walk (TRW) [24] assumes that a scanner has more
failed connections than a legitimate client. For identification of failed connections,
TRW also evaluates the TCP-Flags.

3.6 Service Behaviour Analyser

The Service Behaviour Analyser evaluates the hosts from the view of their correct
usage of services. Consequently, the main goal of this analyser is to check if the
use of the current service is normal or malicious for a host. Primary target is to
recognize the Gaining Access phase mentioned in Section 3.1.1. DoS or SSH Brute
Force attacks are typical representatives.

For the detection of misused services, it is necessary to collect all flows of this
service within the time window. Therefore, we use the service attribute added by the
Service Detection Filter (Section 3.4). All flows of the host within a time window
which share the same service and the same Destination IP Address are collected.
Based on these collected flows, the Collecting Filter calculates data points with
adjusted attributes for this view. The calculated attributes contain values like the
sum of transmitted Bytes and Packets, the duration of the flows, or the number of
flows. More useful attributes like the number of open connections or the number of
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successfully closed connections can be derived from TCP Flags (if available). The
Collecting Filter also builts attributes which give additional information about the
source and destination using the domain knowledge of Section 3.3.

Again, we applied various classifiers (J48 Decision Tree, k-Nearest-Neighbour,
Naive Bayes or SVM) for the detection of misused services. Preliminary experi-
ments regarding the detection of SSH Brute Force attacks on our emulated data sets
(Section 4) show promising results.

Quite a few similar approaches have already been published. For instance, Wag-
ner et al. [60] proposed a kernel for anomaly detection, especially for DDoS attacks.
Their kernel includes all recorded flows within a time window and considers the /P
Addresses and Bytes of the flows. Najafabadi et al. [34] propose an approach for
detecting SSH Brute Force attacks using aggregated NetFlow data. The authors in-
corporate domain knowledge about SSH Brute Force attacks, extract discriminating
attributes from NetFlows and use classifiers for the detection. Hellemons et al. [22]
propose SSHCure, a flow based SSH intrusion detection system. The authors anal-
yse the model of SSH Brute Force attacks and derive attributes for their detection in
NetFlow data. However, unlike these approaches, our approach is more general and
not limited to one specific source.

3.7 User Behaviour Analyser

The User Behaviour Analyser filter evaluates the hosts with respect to their used
services being typical. The main goal of this analyser is to recognize if the current
connection is normal or malicious for this user and to identify already infected and
misused hosts. Primary target is to recognize the Maintaining Access and Covering
Tracks phases mentioned in Section 3.1.1.

Once a server is infected, the attacker knows a valid combination of username
and password and is able to start a SSH session to that server. In this case, the traf-
fic characteristics like transmitted bytes, packets or duration seem to be legitimate.
Therefore, the Collecting Filter calculates data points for this view which strongly
consider the source, destination and services of the flows. Here, the domain knowl-
edge of Section 3.3 and Section 3.4 is used. For example, the calculated attributes
describe if the Source (Destination) IP Address is internal or external, if Source
(Destination) IP Address is a server or a client, and which organizations (see Figure
6) the Source (Destination) IP Address belongs to. Further, the identified service by
the Service Detection Filter is added as an additional attribute.

Right now, we use a simple rule learner which generates rules regarding nor-
mal and malicious behaviour. If an unknown combination occurs, the corresponding
connection information is sent to the domain experts for further investigation. Rules
generated in this case would look like the following:

0rganizationgy,rce = extern /\ organizationgegination = server A\ service = SSH —
Malicious
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This example would imply malicious behaviour, since we would not expect a
valid SSH connection to an internal server from outside the company network.

4 Data Generation

Labelled publicly available data sets are necessary for proper comparison and eval-
uation of network based intrusion detection systems. However, evaluation of our
system proves to be difficult due to the lack of up-to-date flow-based data sets.
Many existing data sets are not publicly available due to privacy concerns. Those
which are publicly available often do not reflect current trends or lack certain sta-
tistical characteristics [50]. Furthermore, correct labelling of real data proves to be
difficult due to the massive and in-transparent generation of traffic in networks. In
order to overcome these problems, we create labelled flow-based data sets through
emulation of user activities in a virtual environment using OpenStack [39].

In this section, some prominent existing data sets are presented as well as our
own approach to generate data sets for IDS evaluation.

4.1 Existing Data Sets

DARPA98 and DARPA99 from the MIT Lincoln Laboratory were among the first
standard packet-based data sets published for evaluation purposes. Those data sets
were created by capturing simulated traffic of a small US Air Force base with limited
personnel via tcpdump [26]. The MIT Lincoln Laboratory also provided the KDD
CUP 99 data set, which is a modified version of the DARPA9S8 data set [17]. Each
data point of the KDD data set consists of 41 attributes. The KDD data set, however,
has a few problems, one being the huge number of redundant records. To overcome
these problems, the NSL-KDD data set was generated by Tavallaee et al. [57]. Since
publicly available data sets are sparse due to privacy concerns, a lot of today’s work
is based on the DARPA ([41], [47]) and KDD ([7], [12] and [42]) data sets. As
DARPA data sets were created more than 17 years ago, it is questionable if they still
reflect relevant up-to-date scenarios appropriate for IDS evaluation ([19], [62] and
[66]).

Besides the data sets being outdated, conversion of packet-based to flow-based
data sets turns out to be tricky, if the data set is not available in a standard packet-
based format like pcap. Since we prefer to analyse network flows naturally flow-
based data sets would be best. Sperotto et al. [53] created one of the first publicly
available flow-based labelled datasets by monitoring a single honeypot. Due to the
traffic being recorded by monitoring a honeypot, the data set mainly consists of
malicious data. Thus, the detection of false positives could not be determined during
the evaluation [53]. For a more comprehensive IDS evaluation, a more balanced data
set would be preferable.
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In 2014, Wheelus et al. [62] presented the SANTA dataset which consists of real
traffic as well as penetration testing attack data. The attack data was labelled via
manual analysis [62]. In 2015, Zuech et al. [66] introduced a two part dataset named
IRSC. The IRSC set comprises a netflow data set as well as full packet capture set.
The data sets were labelled manually for uncontrolled attacks and via an IP filter
for controlled attacks [66]. Although the two flow-based data sets ([62], [66]) are
up-to-date, they are not publicly available as of now.

Another labelled flow-based data set is CTU-13. It was especially created for
training botnet detection algorithms. CTU-13 contains a variety of botnet traffic
mixed with background traffic coming from a real network [16].

Shiravi et al. [50] introduce a dynamic data set approach based on profiles con-
taining abstract representations of events and network behaviour. This allows to
generate reproducible, modified and extended data sets for better comparison of dif-
ferent IDS. We use unidirectional flows whereas [50] contains bidirectional ones.
Converting flows might constitute a viable approach, but would require some effort
for re-labelling.

In conclusion, the validation of IDS through data sets in general seems to be dif-
ficult due to few publicly available data sets. Some of the most widely used data sets
are outdated ([17], [48] and [57]) or only contain malicious data which complicates
the attempt for comprehensive validation. Since we use unidirectional flows some
of the presented data sets would only be applicable after conversion and re-labelling
of the data [50]. Some data sets are only for specific attack scenarios [16] and other
promising approaches are not publicly available ([62], [66]).

4.2 Data Set Emulation

Matowidzki et al. [31] define a list of characteristics for a good data set. A good data
set should contain recent, realistic and labelled data. It should be rich containing all
the typical attacks met in the wild as well as be correct regarding operating cycles in
enterprises, e.g. working hours. We try to meet these the requirements listed in [31]
in our approach using OpenStack.

OpenStack is an open source software platform which allows the creation of vir-
tual networks and virtual machines. This platform provides certain advantages when
generating flow-based data sets. A test environment can be easily scaled by using
virtual machines and therefore allows to generate data sets of any size. Furthermore,
one has full control over the environment including the control of the network traf-
fic. This ensures the correct capturing and labelling of truly clean flow-based data
sets which do not contain any harmful scenarios. Conversely, it is also possible to
include a host as an attacker and clearly label the data generated from the attacker as
malicious. A data set acquired from a real enterprise network can never be labelled
with the same quality. However, it is of upmost importance to emulate the network
activity as authentic as possible to generate viable data sets which is difficult for
synthetic data. To reach that goal, we emulate a sample small company network



A Toolset for Intrusion and Insider Threat Detection 21

with different subnets containing various servers and simulated clients and record
generated network traffic in unidirectional NetFlow format.

Internet Management  Developer Server
192.168.1.0/24 192.168.2.0/24  192.168.3.0/24

)

r
A

P00 O [
P00 0 D

Router

Fig. 7 An overview of a sample network in our OpenStack environment. The Router separates the
internal network from the internet and acts as firewall. The internal network structure with three
subnets containing several clients and servers is shown on the right.

4.2.1 Test Environment

Our sample network currently comprises three subnets, namely a management, a
developer and a server subnet. Each subnet contains several servers or clients. A
schematic overview of the network is shown in Figure 7.

The servers provide different services like printing on a network printer, email,
file sharing and hosting websites. The clients, which are windows and linux ma-
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chines, emulate user activity through various Python scripts. All three subnets are
connected through a virtual router. Open vSwitch is used to monitor the traffic in the
virtual network and to capture it in NetFlow format.

As already mentioned, OpenStack easily enables scaling of the desired test envi-
ronment. Our setup scripts contain the automatic update of the newly created hosts
as well as the installation of tools required to emulate normal user activity and set-
ting up an automatic startup of the said activities. Using this approach, new hosts
can easily be added to the test environment if needed.

4.2.2 Generation of Normal Data

Several aspects have to be considered when emulating normal user behaviour
through scripts. Ideally, scripts should:

run on all established operating systems

include all computerized activities of typical employees
be free of periodic activities

consider different working methods

consider working hours and idling of the employees

Nk L=

to be as close to real user behaviour as possible. Using this list, we have setup a kind
of user model within the scripts which reflects the real behaviour of the users. The
fact that we use the platform-independent language Python resolves the first issue
above.

To be realistic, emulated clients have to simulate a broad list of activities. Those
activities include all quintessential computerized activities of a typical employee
like browsing the web for work-related matters (e.g. companies websites or doing
research via search engines), private browsing (e.g. facebook, certain newsgroups
or blogs), file sharing, writing emails or printing on a network printer. Also, it is
important to ensure a varying length of files regarding the latter two activities and
varying types and numbers of attachments in the activity of sending emails.

To emulate user behaviour as realistically as possible it is vital to not simply
repeat given activities periodically but rather involve randomness to some extend.
Conversely, the activities should not be totally random but reflect different working
methods of the employees. It should be noted that some employees are more likely
to write a great amount of emails but rarely use a file sharing service. Configuration
files can be altered to model the different characteristica of each type of employee.

During a typical work day, employees are not permanently using “their” assigned
computer. Meetings, offline work or coffee breaks should also be taken into account.
The last point of the list is similar. The activities typically focus on the employees
working hours and drop during lunch break or in the evening.

It is to be noted that while we do our best to satisfy the requirements for gen-
erating as realistic data as possible, we do not claim to capture emulating viable
behaviour. In essence, one needs to ensure making the simulation as realistic as
possible by modelling time and size distributions. While those distributions are not
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implemented yet, in this setup new ideas for improving the emulation can be easily
integrated and tested.

4.2.3 Generation of Malicious Data

In addition to clean non-threatening flow-based data, malicious data behaviour is
needed in a fully labelled data set. This problem is solved by inserting one or more
hosts deployed as attacker. Subsequently, it is easy to label malicious flows using
the structure of the NetFlow data as well as additional knowledge like the Source
IP Address of the attacker and the exact timestamp of the attack. Again, Python
scripts are used to create malicious behaviour like DoS attacks, Port Scans, or SSH
brute force attacks. If malicious data is inserted via scripts, it is always possible to
include new attacks by simply writing new scripts. Thus, up-to-date data sets can be
generated at any time.

5 Related Work

Work on network based anomaly detection methods for intrusion and insider threat
detection can be separated into packet-based and flow-based anomaly detection. A
comprehensive review of both methods is given in Bhuyan et al. [3]. A recent survey
of data mining and machine learning methods for cyber security intrusion detection
is published by [4]. Further, Weller-Fahy et al. [61] published an overview of simi-
larity measures which are used for anomaly based network intrusion detection.

Since the proposed approach is based on flow-based data, the following review
does not consider packet-based methods. We categorize flow-based anomaly detec-
tion methods into (I) treating each flow separately, (II) aggregating all flows over
time windows and (III) aggregating flows of single hosts over time windows.

Category 1

Winter et al. [63] propose a flow-based anomaly detection method of category (I).
The authors use an One-Class SVM and train their system with malicious flows
instead of benign flows since data mining methods are better at finding similarities
than outliers. For learning the One-Class SVM, the honeypot data set of [53] is used.
During the evaluation phase, each flow within the class is considered as malicious
and each outlier is considered as normal behaviour. Another approach of this cate-
gory is proposed by Tran et al. [S8]. The basis of their system is a block-based neural
network (BBNN) integrated within an FPGA. They extract four attributes (Packets,
Bytes, Duration and Flags) from each flow as input for their IDS. The authors com-
pared their system against SVM and Naive Bayes classifier and outperformed them
in an experimental evaluation. Najafabadi et al. [35] use four different classification
algorithms for SSH Brute Force detection. The authors selected 8 attributes from
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the flow-based data and were able to detect the attacks. The detection of RUDY at-
tacks using classification algorithms is studied by Najafabadi et al. [36]. RUDY is
an application layer DoS attack which generates much less traffic than traditional
DoS attacks. The authors use the enriched flow-based SANTA dataset [62] for eval-
uation. The flows in this data set contain additional attributes which are calculated
based on full packet captures.

Category Il

Approaches from category (II) aggregate all flows within a certain time window.
Wagner et al. [60] developed a special kernel function for anomaly detection. The
authors divide the data stream in equally sized time windows and consider each time
window as a data point for their kernel. The kernel function takes information about
the Source (Destination) IP Address and the transferred Bytes of all flows within
the time window. The authors integrate their kernel function in an One-Class SVM
and evaluate their approach in the context of an internet service provider (ISP).
An entropy based anomaly detection approach is presented in [38]. Here, the au-
thors divide the data stream in five minute intervals and calculate for each interval
seven different distributions considering flow-header attributes and behavioural at-
tributes. Based on these distributions, entropy values are calculated which are used
for anomaly detection.

Category II1

Approaches from category (III) use more preprocessing algorithms in the data min-
ing workflow and do not work directly on flow-based data. These approaches aggre-
gate for each host the flows over a time window and calculate new attributes based
on these aggregations. BClus [16] uses this approach for behavioural-based botnet
detection. At first, they divide the flow data stream in time windows. Then, flows are
aggregated by Source IP Address for each time window. For each aggregation, new
attributes (e.g. amount of unique destination IP addresses contacted by this Source
IP Address) are calculated and used for further analysis. The authors evaluate their
botnet detection approach using the CTU-13 Malware data set. Another represen-
tative of this category is proposed by Najafabadi et al. [34]. The authors aggregate
all NetFlows with the same Source IP Address, Destination IP Address and Desti-
nation Port in 5 minute intervals. Based on these aggregations, new attributes are
calculated like the average transmitted bytes or the standard deviation of the trans-
mitted bytes. Then, Najafabadi et al. [34] train different classifiers and use them for
the detection of SSH Brute Force attacks.

Besides these three categories we want to also mention the Apache Spot® frame-
work. Apache Spot is an open source framework for analysing packet- and flow
based network traffic on Hadoop. This framework allows to use machine learning al-
gorithms for identifying malicious network traffic. Another network based anomaly

5 http://open-network-insight.org/
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detection system is proposed by Rehak et al. [43, 44]. Their system Camnep uses
various anomaly detectors and combine their results to decide if the network traffic
is normal or malicious. The individual filters use direct attributes from NetFlow and
additional context attributes. For calculating these attributes, the anomaly detectors
can access all flows of a 5 minute window.

Our proposed approach neither handles each flow separately (category I) nor sim-
ply aggregates all flows within a time window (category II). Instead, it follows the
approach of the third category and collects all flows for each host within a time win-
dow. However, in contrast to the third category, the proposed approach generates
more than one data point for each collection. The generation of multiple data points
for each collection allows us to calculate more adapted data points which describe
the network, service and user behaviour of the hosts. Further, we do not try to rec-
ognize all attack types with a single classifier like [60] or [63]. Instead, we analyse
the calculated data points from different views and develop for each view a separate
detection engine.

6 Summary and Future Work

Company data needs to be protected against unauthorized access. Attempts to gain
such unauthorized access may originate from outside the company network, but may
also be traced back to insiders. In this contribution, we report on ongoing work that
aims to assist domain experts by highlighting significant incidents. To that end, we
develop the Coburg Utility Framework (CUF), a toolset to support the analysis using
data mining methods. CUF is based on a pipes-and-filter architecture and contains
various machine learning algorithms, visualization tools, preprocessing algorithms
and evaluation algorithms. Due to its architecture, CUF is very flexible and can be
easily extended or adapted.

While our earlier work focused on offline analysis of data from company net-
works, we currently work on extending our approach to online analysis of data
streams. In particular, our approach builds upon flow-based data since this allows to
reduce the volume of data, bypasses the problem of encrypted payloads and leads
to less privacy concerns compared to packet-based data. Further, we include addi-
tional domain knowledge to support otherwise uniformed analysis methods. In par-
ticular, our approach includes analyses from three different points of view: the first
perspective is concerned with the general network behaviour of hosts, the second
perspective focuses on the usage of services, and the third perspective concentrates
on user behaviour.

Evaluation of anomaly-based intrusion and insider threat detection approaches
presupposes test data that are labelled in terms of normal or malicious behaviour. As
it turns out, such labelled test data are hard to obtain since such data sets are rarely
available for public use. Likewise, real data from company networks cannot be used
easily due to the lack of reliable labels. Therefore, we devised and set up a virtual
environment for generating flow-based network data. To that end, an OpenStack
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environment may emulate a flexible configuration of servers and clients. Client be-
haviour within that virtual network is generated through randomized Python scripts.
This allows to record real flow-based traffic with typical user activities and further
to simulate attacks like Port Scans, DoS or SSH Brute Force.

Future activities of our research are directed towards refining the flow-based anal-
ysis approach and provide appropriate visualization tools for data streams, e.g. by
extending well-known visualization approaches such as parallel coordinates to data
streams. In addition, the simulation environment needs to be expanded allowing to
generate even more realistic data sets as a basis to validate and refine our anomaly-
based intrusion and insider threat detection approach more thoroughly.
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