Security and Fraud
The application and development of machine learning methods in the field of (network) security and fraud is an active field of research in the Data Science Chair. In the DeepScan project, we are developing methods to detect anomalies, ICT security incidents and fraudulent behaviour in business software. Other research projects are currently working on the detection of security incidents in corporate networks or on application layer.
Projects
We are currently working on the following projects:
DeepScan
Machine Learning for fraud detection in enterprise resource planning software systems.
Publications
Here is a list of selected publications.
-
Flow-based network traffic generation using Generative Adversarial Networks in Computers & Security (2019). 82 156–172.
-
IP2Vec: Learning Similarities Between IP Addresses in 2017 IEEE International Conference on Data Mining Workshops (ICDMW) (2017). 657–666.
-
Creation of Flow-Based Data Sets for Intrusion Detection in Journal of Information Warfare (2017). 16(4) 41–54.
-
A Toolset for Intrusion and Insider Threat Detection in Data Analytics and Decision Support for Cybersecurity: Trends, Methodologies and Applications, I. Palomares Carrascosa, H. K. Kalutarage, Y. Huang (eds.) (2017). 3–31.