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The combination of ubiquitous and social computing is an emerging research area which
integrates different but complementary methods, techniques, and tools. In this paper, we focus
on the Ubicon platform, its applications, and a large spectrum of analysis results. Ubicon
provides an extensible framework for building and hosting applications targeting both
ubiquitous and social environments. We summarize the architecture and exemplify its
implementation using four real-world applications built on top of Ubicon. In addition, we
discuss several scientific experiments in the context of these applications in order to give a
better picture of the potential of the framework, and discuss analysis results using several real-
world data sets collected utilizing Ubicon.

Keywords: Social computing; Ubiquitous computing; Data mining; Social sensing;
Applications

1. Introduction

The idea of ubiquitous computing introduced by Weiser (1991, 1993) as
omnipresent, unobtrusively, and invisibly functioning information systems con-
tinues to shape information systems in our daily lives. Similarly, social computing
(Parameswaran and Whinston 2007, Wang et al. 2007) has a continuing impact on
system and service development. Both involve the users’ contexts. Applications use
sensor networks to collect context information for anticipating the goals and
intentions of the users. In consequence, the ubiquitous system adapts automatically
to changing interests and integrates several services to increase its use. Additionally,
devices are becoming increasingly smaller and are integrated into everyday objects.
Connecting the social and the physical world is then one of the challenges in
ubiquitous and social computational systems, for example, the integration of social
connections, communities, and collaborative applications.
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In this paper, we focus on Ubicon1 and its applications. Ubicon is a software
platform for implementing ubiquitous and social applications; it aims at supporting
applications at the intersection of ubiquitous and social computing, integrating
functionalities of both environments. Ubicon provides a number of components for
data collection, processing, and serving. At its core, Ubicon provides the means for
creating and hosting ubiquitous and social applications. Grounded by several main
principles of the lambda architecture (Marz and Warren 2013), Ubicon features
flexible ways for adaptations and extensions in the respective applications.
Our contribution can be summarized as follows: we present the Ubicon platform

and summarize its basic architecture and components. We then provide a detailed
view on four real-world applications that have been successfully implemented using
Ubicon; Conferator2 and MyGroup3 focus on enhancing ubiquitous social
interactions, while WideNoise4 and AirProbe5 are applications for collaborative
noise collection and air quality monitoring, respectively. In these respective
application contexts, we discuss data mining and analysis methods for comprehen-
sively sketching the capabilities and the potential of the combination of ubiquitous
and social computing. These methods range from social interaction networks of
face-to-face contacts to participatory open-sensing in environmental application
contexts. The presented data mining techniques and components of the respective
applications include methods from localization to user recommendation.
The remainder of this paper is structured as follows. Section 2 provides an

overview on the Ubicon platform. After that, Section 3 summarizes four example
applications and exemplifies different data mining and analysis techniques
implemented in the respective applications. Next, Section 4 provides analysis
results using real-world data from the presented systems. Finally, Section 5
discusses related work, and Section 6 concludes the paper with a summary and
promising options for future work. This article is an extended version of
Atzmueller et al. (2012a).

2. Ubicon—an overview

In the following, we first briefly provide an overview on the Ubicon platform.
From an architecture perspective, we outline the different layers and core modules
provided by Ubicon. Since applications typically have specialized and unique
requirements, Ubicon offers support by providing an application framework with
several core components that can be utilized and extended by applications as
needed. Using these core components, it is not necessary, for example, to
implement the same components that are typical for ubiquitous and social systems
again and again. In addition, the data from different applications built on Ubicon
can be easily combined for enhancing the overall functionality of the different
system.
From a data-centric view, Ubicon implements data storage, processing, and

serving pipeline similar to the lambda architecture (Marz and Warren 2013). In
that way, core concepts such as immutability and recomputation are transparently
enabled by the platform. Figure 1 shows a conceptual overview of the system’s
architecture. The data flow is organized in three layers shown in the left side of
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the figure. The functionality for each of these layers is backed by the Ubicon core
(shown in the right), which provides canned functionality, i.e. framework classes
and interfaces, which can be utilized throughout different applications.
The functionality of the layers and core components is summarized in the

following:

. Immutable data storage layer: built on the principle of data immutability, the
first layer receives and stores the input data. The data storage layer provides a
general mechanism for storing ubiquitous data that are directly stored in the
input data table without further processing for enabling a low-complexity
overhead and for avoiding data corruption issues.

. Data-processing layer: data processing aspects involve scalability, extensibil-
ity, and debuggability. Such aspects are handled by the data-processing layer.
It utilizes a set of data processors that use the input data table and generate
application-specific processed data tables. The application of the data
processors is repeatable, as a mapping from input data to processed data,
providing a general and extensible mechanism. In addition, scalability issues
can be addressed, for example, by utilizing frameworks such as map/reduce
(Dean and Ghemawat 2008).

. Data-serving layer: the data-serving layer features data access to the processed
data. On the framework level, it provides access, for example, via database
connectors. Using these, generic data access can be easily implemented.

. Ubicon core: This core framework functionality includes basic privacy
components, data analysis methods, a generic data logic—specifically on the
database level, a query API, social connectors, a basic user management
system, and core web components. These are implemented with a model-view-
controller pattern using the Spring framework6. Using these, Ubicon can be
deployed using a standard servlet container, e.g. Apache Tomcat.7

Typically, applications utilize the provided core components, interfaces and
classes, and extend the overall workflow according to their individual application

B i P i

Ubicon Layer Architecture Ubicon Core

Immutable
Data Storage

Basic Privacy

Data Analytics

Data Processing

Generic Data Logic

Query APIData Processing Query API

Social Connectors

Data Serving
User Management

Web CoreWeb Core

Figure 1. Conceptual overview on the architecture of the Ubicon software platform.

Ubicon and its applications 55

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 W

ue
rz

bu
rg

],
 [

M
ar

tin
 B

ec
ke

r]
 a

t 0
2:

29
 2

7 
M

ar
ch

 2
01

4 



requirements. We will discuss specific examples in the next section when
describing several applications built on top of Ubicon.

3. Applications

MyGroup and Conferator—social computational systems for enhancing interac-
tions in working groups and at conferences, respectively—are maintained and
developed by the Knowledge and Data Engineering (KDE) Group8 at the
University of Kassel in the context of the inter-disciplinary VENUS research
cluster,9 which is concerned with the design of social, legal, and technological
networking issues in situated ubiquitous systems. The WideNoise and AirProbe
web applications for environmental sensing with respect to noise and air pollution
are jointly developed by the Data Mining and Information Retrieval (DMIR)
Group10 at the University of Würzburg and the KDE group at the University of
Kassel in the context of the EU project EveryAware.11

3.1. MyGroup: social networking in working groups

MyGroup aims at supporting members of working groups. It employs active RIFD
(radio-frequency identification) tags for localizing the members and for monitoring
their social contacts. These so-called proximity tags have been developed by the
SocioPatterns collaboration12 and are able to detect face-to-face proximity of
individuals wearing them. The face-to-face proximity of two persons usually
implies that they are engaged in a conversation. The proximity tags send out two
types of radio signals: proximity-sensing signals and tracking signals. Proximity-
sensing signals are emitted at a low power level and are used for the detection of
face-to-face proximity. For localization purposes, the proximity tags send out
tracking signals at different power levels that are received by RFID readers at fixed
positions in the target area (typically a room in a building). A technique that allows
the detection of individuals at room-level basis is presented in Scholz et al. (2011).
Furthermore, the system provides profile information including links to (external)
social software, e.g. BibSonomy13 (Benz et al. 2010), Twitter, Facebook, or XING.
MyGroup has been applied at a number of different events: it is being used by

the KDE Group at the University of Kassel, and is currently being extended for
use in a larger research cluster. MyGroup has also been utilized at a large student
party,14 for supporting organizational processes, at the First International Change-
maker Camp at the University of Kassel, and at a CodeCamp for supporting
software development processes.
The collected contact and location data can be utilized for different research

purposes, as described below. Both raw and processed data are stored, thus
allowing to check inconsistencies or incompleteness of the data—utilizing the
available raw data—according to the Ubicon layer architecture. Processed data in
this context means, for example, a face-to-face contact between individuals or a
person’s position at the specific point in time. As in Szomszor et al. (2010), the
data processor identifies a face-to-face contact when the corresponding proximity
tags detect each other for more than 20 seconds. A contact ends, when both
proximity tags do not detect each other for more than 60 seconds. In the database
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we store the contact time interval as well as the usernames of those persons who
wear these proximity tags. So far, we collected approximately 2 terabytes of raw
data that are now the main source for our ongoing research about structures and
behavior within research groups.

3.1.1. Overview—functionality. MyGroup provides several functions for improving
interactions and the discussions in working groups: each user can inspect his/her
face-to-face contacts with other users on an individual basis—complemented by
the provided contact information for each participant. The timeline (cf. Figure 2)
is an aggregation of different activities of the group: it provides an aggregated
view on the currently active topics published on Twitter or BibSonomy by the
members of the group and the conversations that recently happened. The timeline
which is displayed on a large LCD screen often stimulates interesting research
discussions and enables enhanced dissemination and exchange of knowledge.
The map view (cf. Figure 3) enables an easy localization of the group members.

Elaborate user profiles (similar to those of the Conferator, see Figure 5) provide
detailed information, for example, about position and interests of a group member.

Figure 2. A screenshot of the timeline view: the screenshot shows two recent BibSonomy posts.
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Utilizing the system, we can exploit the social information for supporting
different interactions; we can recommend, for example, persons based on their
expertise in (software) projects, as described below. Different trust and privacy
settings, for example concerning the visibility of contacts and locations, allow a
selective distribution of sensitive information. The system is continuously refined
according to the user feedback and usability studies, in particular, in the VENUS
project. For more details on a successful evaluation of the applied approach, cf.
Geihs et al. (2012), and in the context of Ubicon, we refer to Behrenbruch
et al. (2013).

3.1.2. Recommending software developers. Identifying experts for a given problem
is one of the main challenges when working in a large team. In the context of
MyGroup, we focused on supporting software development groups (Macek et al.
2011). The presented approach can potentially be generalized for any organization
using revision control systems, e.g. for recommending collaborators based on
changes in documents, papers, or wikis.
In the software development context, we analyze code changes and the

structure of the software projects. In this way, we create resource trees resembling
the hierarchic organization of source files. The contribution of each developer is
then measured by the number of changed lines of code. We combine this

Figure 3. A screenshot of the map view of MyGroup. The large circles denote rooms, the smaller
circles participants; connections between those indicate ongoing conversations. The screenshot also
contains two participants who are changing rooms.
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information with the RFID contact graph of the developers: in addition to
weighted edges which reflect the relative amount of changed lines of code, we
consider edges between the developers. These edges are weighted by the
cumulative duration of the face-to-face contacts of the developers within the last
eight hours before committing changes to the source code. Thereby, we connect
their real-life communication and interaction using the MyGroup system. The
resulting structure captures important knowledge of a social group: exogenous
information, e.g. developers writing code by themselves, and endogenous
information representing the knowledge transfer from one individual to another
by means of communication.
For recommending software developers, the PageRank algorithm (Brin and

Page 1998) is applied to the extended contact graph which combines the resource
and developer contact graph. The output can either be an ordered list of
developers that are supposed to know mostly about a specific source file or an
expertise profile. An example analyzing the source code of the Ubicon framework
is depicted in Figure 4; it shows the personal experience (expertise profile) of one
developer for a set of modules of the Ubicon system. Such information can be
used to support project managers in their task to assign work packages to certain
developers or to organize the office structure such that developers who might
profit from each other’s knowledge are seated together.
As described in Macek et al. (2011), an evaluation of the recommendation

method in the context of MyGroup outperformed baseline methods based on pure
lines-of-code analysis for the recommendation. Due to the limited space, we refer to
Macek et al. (2011) for more details of the applied algorithm and ranking methods.

3.2. Conferator: a social conference guidance system

Conferator (Atzmueller et al. 2011) is a social and ubiquitous conference guidance
system, aiming at supporting conference participants during conference planning,
attendance, and their post-conference activities. It features the ability to manage
social and face-to-face contacts during the conference (based on the same
technology as MyGroup) and to support social networking.

3.2.1. Overview—functionality. At its core, Conferator comprises two key
functionalities: Conferator helps to manage organizational information like the
conference schedule. Furthermore, Conferator provides information about

5 % - RFID Server

18 % - MyGroup

20 % - Web App

7 % - Data Processor

16 % - Database

8 % - Model

6 % - Common

20 % - Conferator

Figure 4. Expertise profile of a developer generated by the analysis of logs from a revision control
system and RFID communication for the Ubicon system.
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personal social contacts, by providing context-sensitive information, e.g. the
location of other conference participants or a contact history using the timeline
view. Furthermore, the users can browse the list of participants to search for
acquaintances or friends. The corresponding user profiles provide additional
information, cf. Figure 5. Similar to MyGroup, Conferator offers several privacy
settings in order to enable privacy protection, e.g. for sharing locations or contact
information.
Conferator utilizes the same RFID technology for indoor localization and face-

to-face contact detection similar to the MyGroup application, cf. Section 3.1.
Conferator also provides information about the conference schedule; it contains
information about talks, i.e. the authors, time, and place of the talk. The talks are
usually assigned to sessions, which are assigned to tracks. Combining the
conference schedule with localization information can deliver interesting
information, e.g. “Who visited which talk?” or “Which talks, sessions and
tracks were the most popular during the given event?” (cf. Atzmueller et al.
2012b, Macek et al. 2012).

Figure 5. A screenshot of a Conferator user profile with context information and latest posts.
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Conferator has successfully been applied at conferences for special interest
groups of the German Computer Science Society (GI)—LWA 201015 (Atzmueller
et al. 2010, 2012b), 2011,16 and 2012,17 and at the ACM Hypertext 201118

conference (Macek et al. 2012).

3.2.2. Mapping live interactions. Capturing and visualizing live interactions of
individual users are an important task for MyGroup and Conferator. Therefore, a
localization framework is a central component for such a system. The indoor
localization component provides the location of all the users, and shows where
their conversations take place.19 During conferences, for instance, Conferator
offers the possibility of observing who is visiting a given talk, thus facilitating the
academic exchange during the subsequent coffee breaks. Furthermore, it is
possible to identify hotspots, e.g. conference rooms where a large number of
conference participants are listening to—apparently interesting—talks, and to
potentially recommend those to undecided participants.
The localization framework consists of two parts, the positioning component

and the visualization of the individual locations (see Figure 3). The individual
user positions at room level are computed based on the positions of the RFID
readers in the target area. Further, it exploits the proximity information of users to
improve the localization accuracy. Using the social proximity information in the
Social Boosting algorithm (Scholz et al. 2011), the accuracy could be improved
from 84% (baseline algorithm using only the readers’ positions) to nearly 90%, as
evaluated during the poster session at LWA 2010. For more details, see Scholz
et al. (2011).

3.2.3. Communities and recommending user interactions. Intelligent recommenda-
tions include in particular the suggestion of interesting contacts, topics, or
context-specific reminders for tasks or people. These often motivate certain
actions, e.g. contacting other users or working with certain resources. The
Acquaint-O-Matic for Conferator and MyGroup can then be applied for directly
recommending users or for browsing a list of similar users. The former generates
a personalized list of users that the current user might know or might be interested
to know. It provides links to the suggested users’ profile pages and encourages to
get in touch with those users. The similar users section allows to explore a
broader view on similar users and the own community of the user.
For recommendations, similarity is measured based on previous face-to-face

contacts, establishing links between users, co-authorship relations,20 and expressed
interest in talks as well as actually attended talks within a conference. For
calculating recommendations, each of these interaction networks is stored as a
weighted (directed or undirected) graph, giving rise to various established similarity
metrics which can be used for obtaining personalized and context-specific
recommendations. Currently, a personalized PageRank (Brin and Page 1998)
algorithm for graph-like representations and the cosine similarity measure for
calculating similarities between rows in the adjacency matrix are applied.
In addition, recommendations based on link-prediction measures are also

included into the Acquaint-O-Matic. Link prediction aims to predict new or
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recurring links between participants, i.e. links that are newly established or
repetitive links, respectively. Specifically, we consider the face-to-face contact
network and additional information, e.g. roles or academic status information
about the participants (cf. Scholz et al. 2012).
For a more interactive approach, Conferator provides the “My Community”

page. It applies automatic community detection methods, e.g. InfoMap: Rosvall
and Bergstrom (2008) and Rosvall et al. (2009); Label Propagation: Raghavan
et al. (2007); Leading Eigenvector, Newman (2006); and Walktrap: Pons and
Latapy (2005). The applied community detection algorithm detects communities
based on the face-to-face contact network of the conference participants, e.g.
weighted according to the total contact length of participants or by the frequency
of their contacts. During the conference, the algorithm is run in periodic intervals
to analyze the respective data captured so far.
On the “My Community” page, the user may see members of the community

which he/she belongs to. The user may then explore profile pages of the
conference participants of the respective community, as inspiration for future
conversations and new contacts during the conference.

3.3. WideNoise: collective observation of environmental noise

The WideNoise web application aggregates, summarizes, and illustrates noise-
related data collected by the WideNoise smartphone application21 (cf (Atzmueller
et al. 2012a). This smartphone application is recording environmental noise levels
and allows the user to express certain perceptions about the recorded samples via
perception sliders, e.g. love/hate. To further characterize the samples, it is possible
to attach custom tags. In order to share samples with friends or the general public,
the smartphone application also supports posting results on social media.
The WideNoise web application provides several data summarization views

including themap view and several statistics pages. The map is shown in Figure 6. It
displays, for example, a clustered view on global and user-specific measurements
(providing the corresponding detail information on demand, Shneiderman 1996) or
a tag cloud characterizing the summarized data by its semantic context.
The user can access several live statistics about the collected data allowing to

trace the current measurement trends or to get an overview of the collected data.
Some of these statistics are:

. Latest recordings and recent average values for different time intervals and
locations.

. User rankings including users with most samples, the most active users, etc.

. Tag clouds characterizing the semantic context of the measurements.

A second type of statistics can be accessed by users via their personal page,
e.g. information on their own measuring behavior. The page also provides a
Keyhole Markup Language (KML)22 export containing all the users measurements—
as an alternative to the map visualization.
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Interesting analysis options include subgroup analytics on tags, perceptions,
and measurements (e.g. Atzmueller and Mueller 2013) or tag-based recommenda-
tions (Mueller et al. 2013).

3.4. AirProbe: collective measurement of air quality

AirProbe is a system for collaborative air quality monitoring. It consists of three
components: a low-cost sensor box for measuring air quality (Elen et al. 2012), a
smartphone application to communicate with the sensor box, and the web
application implemented as part of the Ubicon framework for receiving, aggreg-
ating, and visualizing the data.

3.4.1. Overview—functionality. The sensor box produces readings from several air
quality-related sensors such as NO2, CO, O3, VOC, temperature, or humidity.

Figure 6. A screenshot of the map page of WideNoise.

Ubicon and its applications 63

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 W

ue
rz

bu
rg

],
 [

M
ar

tin
 B

ec
ke

r]
 a

t 0
2:

29
 2

7 
M

ar
ch

 2
01

4 



Users may add tags concerning their measurements adding semantics or
subjective information to the otherwise objective measurements. The web
application visualizes the collected data on a map which allows for an easy
access to the data as well as for obtaining first insights. The map provides a
quantitative view on the data by aggregating the samples using clusters as well as
a grid view in order to emphasize the covered area (see Figure 7). The map view
also supports the active tracking of currently measured data; tracking these current
measurements is further supported by providing data compliant with Google Earth
for 3D visualizations. In addition to the map view, the AirProbe web application
also provides several statistics like the latest overall measurement activity or air
quality averages.
Initial case studies have already been conducted in Antwerp and Torino for

sensor calibration. During these case studies, it already became apparent that

Figure 7. A screenshot of the map page of AirProbe. The left side shows the cluster view, the right
side shows the grid view.
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handling large numbers of measurements will pose many challenges for the web
application regarding data processing and visualization. Therefore, mechanisms
for speeding up the visualization for the cluster and grid aggregations on the map
view have been introduced, as described below.

3.4.2. Clustering large data for fast browsing of annotated maps. One of the main
features of WideNoise and AirProbe is the visualization of measurements on a
map. In order to motivate the users to explore the collected data and share more of
their own, it is essential to provide the best possible user experience when
browsing on the map.
Aggregation into clusters and grid cells is one way to allow a quick overview

on large amounts of data at the first glance. The clustering is computed on the
server and only the aggregated cluster information is transmitted to the client in
order to keep things as responsive as possible for the user. However, the
aggregation has to be computed for each request (for different viewports, zoom
levels, etc.) separately. This is time-consuming, especially as the amount of data
increases with continuously recorded measurements. As of February 2013, for
instance, the AirProbe database contains about 78,231 measurements amounting
to 1,067,916 air quality samples—each measurement can contain several air
quality samples.
In order to provide cluster or grid data as fast as possible, our solution is to

aggregate data for possible requests beforehand. The aggregated data are stored as
a collection of spatial objects. These collections are queried instead of calculating
aggregations for each request on the fly. This spatial caching mechanism is
outlined in Figure 8. For an incoming request, first a spatial object collection is
selected based on certain meta-attributes. Then the spatial objects within the
specified longitude–latitude bounds are retrieved.

Figure 8. Outline of the spatial object cache concept.
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Spatial objects are stored in the data table. Each object is described by a
collection id, an object id, a longitude–latitude pair, and some object-specific
information such as average sensor values or associated tags. The meta-attributes
of a spatial object collection are stored in the meta-table and are used to retrieve
the stored collections. These attributes are as follows:

. data type: distinguishes collections of different nature, e.g. air measurements
or noise measurements.

. spatial type: distinguishes collections by their spatial properties, e.g. clusters,
grids, or tracks.

. sub-type: distinguishes sub-collections representing the same samples but
different corresponding data. This allows to dynamically load additional
information (e.g. tags) about spatial objects after transmitting the initial data
(e.g. average values) given an object id.

. zoom level: spatial objects are aggregated values. Those values are aggregated
differently for each zoom level defined by the map.

Using this spatial object cache, we are now running cronjobs on our data in order
to update the spatial collections regularly. The rendering time of large clusters was
reduced from several minutes to a fraction of a second. This enabled a smooth
visualization of large amounts of data on the map. A downside of this approach is
that the live characteristics of the aggregated data are reduced. Cronjobs are
currently only run every two hours. One run to aggregate grid as well as cluster
collections for 18 zoom levels currently takes about 20 minutes in total.

4. Analyses of communication behavior and noise perception

In this section, we present results exemplifying the analysis options provided by
the distinct applications discussed in Section 3; first, we focus on the analysis of
conference dynamics in the context of the Conferator system. After that, we
discuss the utilization of the MyGroup application for a long-term data collection
concerning the interactions at a working group. Next, we describe a first analysis
of the WideNoise data, focusing on relations between tags and perceived
perceptions of the people measuring environmental noise.

4.1. Conference dynamics

Using the conference contact and social data collected by Conferator, we aim to
analyze and explore the structure and communication dynamics during conference
events. We start with a first analysis of community dynamics, before we discuss
communities and associated roles.

4.1.1. Community dynamics. We analyzed the community dynamics across
conferences for LWA 2010 (77 Conferator participants), LWA 2011 (42 Conferator
participants), and LWA 2012 (42 Conferator participants) and summarized the
results in Kibanov et al. (2013). For a comparison across conferences, we checked
if the participants of different conferences stay in the same communities or if they
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“switch”. For that, we automatically detect communities using the InfoMap
algorithm (Rosvall and Bergstrom 2008, Rosvall et al. 2009) on the contact graph
of the participants.
In the following, we associate sets of participants with a community subgroup

of the contact graph. We consider the set of participants corresponding to the
community with the most participants who visit another conference and compare
this with a null hypothesis—that the participants of the community at the first
conference would be drawn randomly from all the participants of the second
conference.
For a pair of conferences, let G1 and G2 denote the respective contact graphs,

and N1 and N2 the respective sets of participants. For comparing the stability of
the communities contained in a pair of conferences, we perform the following
steps:

(1) N = N1 ⋂ N2, i.e. the participants who visited both conferences.
(2) Detect sets of communities: C1 in G1, and C2 in G2

(3) Select the set of participants N1,max of the community C1,max ∊ C1 for which
the overlap of the contained set of participants is maximized with respect to
N, i.e. the community that contains the largest number of participants in N.

(4) M = set of participants of N1,max ⋂ N.
(5) Select the set of participants N2,max of the community C2,max ∊ C2 for which

the overlap of the contained set of participants is maximized with respect to
M, i.e. the community that contains the largest number of participants in M.

(6) I:= M ⋂ N2,max.

(7) NH ¼ Mj j: xN2;maxj j
N2

ðnull hypothesisÞ

If I (the intersection of both selected communities) is not significantly larger than
NH (null hypothesis), then we observe no stability in communities across the
conferences.
Table 1 summarizes the results comparing the LWA 2010, 2011, and 2012

conferences. As shown in the table, we can observe the trend that community
structure stays relatively stable across conferences, since the number of particular
members who stay in the same community is almost every time twice as large as
the null hypothesis. For more details, we refer to Kibanov et al. (2013).

Table 1. Community dynamics comparing the stability of communities for a pair of conferences
against a null hypothesis, that the participants of the community at the first conference would be

drawn randomly from all the participants of the second conference.

Conference 1 Conference 2 I/M Null hypothesis

LWA 2010 LWA 2011 9 of 13 participants 4.64
LWA 2010 LWA 2012 6 of 13 participants 3.40
LWA 2011 LWA 2010 9 of 10 participants 4.41
LWA 2011 LWA 2012 2 of 4 participants 1.05
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4.1.2. Communities and roles. For analyzing communities and roles, we performed
an in-depth analysis of the Hypertext 2011 conference with several interesting
observations and findings (cf. Macek et al. 2012). There is a clear connection,
for example, between a community-oriented role of a participant, e.g, an
ambassador as an important person connecting different communities or a bridge
as a not-so-visible person bridging different communities, and the academic status
of the participant (Professor, PostDoc, PhD Student, and others).
Specifically, we aimed at discovering subgroups using the VIKAMINE system

(Atzmueller and Lemmerich 2012), i.e. sets of participants with a specific role as
closely as possible using a set of descriptive features, e.g. their country of origin,
title, role as session chair, invited speaker, or presenter of a conference paper.
Subgroup discovery (cf. Klösgen 1996, Atzmueller and Lemmerich 2009,
Lemmerich et al. 2012) aims at identifying interesting patterns with respect to a
given target property according to a specific interestingness measure. In our
context, the target properties of interest are given by the different roles of
participants in the contact graph.
Concerning a minimal conversation length of 60 seconds (Table 2), it is easy to

see that most of the session chairs serve as ambassadors during the conference (the
remaining session chairs are bridges). Furthermore, a strong affiliation to Hypertext
plays an important role for being an ambassador in the conference. The feature
affiliation denotes the familiarity with Hypertext, such that authors of at most one
Hypertext paper published in 2011 get a low affiliation score, authors who
published one or two papers before Hypertext 2011 get a medium affiliation score,
and authors with at least 3 papers before Hypertext 2011 get a strong affiliation
score. It is also evident that the participants from the Netherlands (including in
particular the organizers) are typical bridges, as expected, e.g. subgroup #3 of
Table 2 with a target share of 100%.

Furthermore, we analyzed the correlation between different community
structures (track, country, conference affiliation, and academic status) and the
contact length of participants within these communities. Figure 9 indicates the
trend that being in the same track, for example, improves the community quality
indicator (p-value, Scripps et al. 2007) with increasing minimal conversation
lengths. This confirms our intuition that communities tend to be structured
according to those properties, e.g. a common track. For more details, we refer to
Macek et al. (2012).

Table 2. Role patterns for a minimal conversation length of 60 seconds.

# Target Lift Share Size Pattern

1 Ambassador 1.42 0.63 8 Session chair= true
2 Ambassador 1.14 0.50 12 Affiliation=strong
3 Bridge 2.54 1.0 6 Country=Netherlands AND Presenter=No
4 Bridge 2.18 0.86 7 Country=Netherlands
5 Bridge 0.95 0.37 8 Session chair= true

Note: Min. Contact Length: 60 sec.
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4.2. Communication patterns in working groups

In order to test, apply, and improve our own systems, all members of our group
(KDE) wear RFID tags during their daily work, as explained in Section 3.1. For a first
impression of the typical contacts and conversations during a workday, Figure 10
displays the cumulated probability distribution of the contact length of the data we
collected between October 2010 and March 2011: each line in the graph denotes one
of the time slots. We divided a working day into six two-hour slots from 8:00 to
20:00. In the graph, the x-axis shows the duration of face-to-face contacts
(conversations) in minutes, while the probability that this duration is exceeded (for
the particular time slot) is shown in the y-axis. Both axes are scaled logarithmically.
It is easy to see that, for example, longer conversations are more likely during

the evening hours than during the morning hours. Long discussions (i.e. more
than 20 minutes) are not held in the early morning at all. Furthermore, short
discussions (i.e. less than a minute) are very likely during the whole day.

4.3. Noise perception in crowd-sourced sensing

The WideNoise application and its corresponding back-end are continuously
running since December 2011.
In the following, we present analysis and statistics with respect to different

locations and case studies in comparison to the overall worldwide statistics
(33,168 measurements). One location to focus on is the Heathrow Airport area
near London (6,055 measurements) where a long-running campaign against noise
caused by landing of planes and starting from the Heathrow Airport took place.
Furthermore, two case studies are examined: one was an all-day event taking
place in Rome on 9 June 2012 (830 measurements) and the other took place in
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Figure 9. Time-based analysis showing a community quality indicator, i.e. the p-value (Scripps
et al. 2007) for the partitionings track, country, affiliation, and academic status using different
minimal conversation lengths. The higher the p-value, the higher the probability for a contact within
a community. See Macek et al. (2012) for more details.
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Antwerp on 10 July 2012 from 9:00 AM to 1:30 PM (1,943 measurements). The
areas of the corresponding events were roughly estimated using bounding boxes.
As shown in Table 3, we observe that the case studies in Rome and Antwerp

have a higher noise level than the average worldwide. This is also and especially
true for Heathrow. While we do not list any specific case studies in London, the
corresponding measurements include samples which were taken during a
Heathrow campaign, for which the users are motivated to use the system for
measuring higher noise levels in order to prove their point regarding noise
pollution caused by aeroplanes leaving and approaching the Heathrow Airport.
This explains the exceptional average noise-level values for Heathrow.

4.3.1. Perceptions. When taking measurements with the WideNoise application,
users can record their perceptions of the actual situation using four sliders.
Looking at these perceptions for the experiments, Table 4 yields additional
insights. Overall, more “man-made” noise was recorded than natural noise and
people tend to associate noise with “hate” rather than “love”. In the Heathrow
area, mostly aeroplane noise is recorded which is usually associated with the
“man-made” aspect resulting in the high average value. On the other hand, people
in the Heathrow area are mostly sampling alone whereas during the Antwerp and
the Rome case study participants were measuring in groups. This explains the
strength of the “social” aspect compared to Heathrow.
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Figure 10. Cumulated probability distribution of face-to-face contact lengths in the KDE group, for
different timeframes.
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4.3.2. Perception and tag associations. In addition to recording their perceptions,
WideNoise allows its users to add words (the so-called tags) to their recordings
for specifying the context of the ongoing measurement more precisely. Table 3
shows the 10 tags that were assigned most frequently. Most of the users did not
utilize tags (only about 13.3% of the measurements are tagged in Rome but more
than 37.1% in Antwerp). In almost all cases, the tagged recordings tend to have
higher noise levels. This observation also holds for the worldwide data: only
13.4% of all measurements are tagged and those measurements are on average
8.5% louder than the mean.
In order to analyze the tag–perception relations in more detail, we applied

subgroup analytics, as outlined above, using the VIKAMINE system (Atzmueller
and Lemmerich 2012). We aimed at identifying subgroups of measurements
tagged with certain tags that are as unusual as possible compared to the mean of a
certain parameter, e.g. given by one of the perceptions love/ate, calm/hectic,
alone/social, and nature/man-made.

Table 3. Count of noise samples and average noise level (dB) for different locations and case
studies overall and for a chosen set of tags. It is important to note that the noise levels are

uncalibrated values as measured by the different types of mobile phones.

Worldwide Heathrow area Antwerp Rome

Count dB Count dB Count dB Count dB

Tagged samples 4,431 70 1,809 69 721 74 110 72
All samples 33,168 64 6,055 73 1.943 67 830 68

Worldwide Heathrow area Antwerp Rome
Tag Count dB Count dB Count dB Count dB
aeroplane noise 522 63 522 63 – – – –
Antwerpen 249 81 – – 218 81 – –
car 221 74 8 77 148 81 21 63
Esterno 548 76 – – – – – –
Heathrow 546 76 546 76 – – – –
indoor 96 71 – – 2 70 21 50
office 109 69 – – – – 16 63
plane 150 83 127 83 – – – –
station 138 85 1 85 115 76 – –
traffic 140 83 9 78 100 81 10 81

Table 4. Averages of the user-assigned perceptions for locations and case-studies (excluding
measurements with only default perception values of 0.5).

Location/case study Love/hate Calm/hectic Alone/social Nature/man-made

Worldwide 0.60 0.57 0.50 0.78
Heathrow area 0.76 0.68 0.37 0.94
Antwerp 0.61 0.72 0.82 0.86
Rome 0.52 0.49 0.59 0.68
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In summary, the results support our findings shown in Table 3 for the decibel (dB)
values: heathrow- and airplane-related tags are among the top relations, while the
subgroup containing the combination of the tags indoor and small plane yields the
highest increase for a more complex pattern. The same can be observed for the
perceptions hate, hectic, social, and man-made where airplane-related tags from the
London Heathrow area dominate the overall perceptions in the whole population.
Examples of tags associated with love include, for example, silence, quit, music, or
sleep. On the other hand, tags associated with hate include, e.g. aeroplane or rooftop.
For the perceptions calm and hectic, we observe similar relations. For the perception
social, strong associations are given by the tags airport, commute, office, whereas alone
is described, for example, by the tags home, quiet, or sleep. Finally, the perceptionman-
made is exemplified by the tags piazza, chatter, or telco. Thus, we observe that the
perceptions and associated tag assignments correspond to intuition rather well.

5. Related work

From a software architecture point of view, there are various frameworks and
toolkits for supporting ubiquitous and/or context-aware applications. The Context
Toolkit (Salber et al. 1999, Dey et al. 2001), for example, provides a conceptual
framework for the rapid development of context-aware applications. Similarly
Bannach et al. (2008, 2010) and Kunze and Bannach (2012) present the context-
recognition network toolkit/toolchain for building context-aware pervasive
applications. Compared to these toolkits addressing mainly context-aware
applications, Ubicon has a different focus: on the one hand, its application focus
is different. It aims at supporting applications that consider both ubiquitous and
social aspects. In addition, Ubicon is no general toolkit for rapid prototyping, but
aims at providing a general framework support for implementing and hosting
ubiquitous and social applications in high-availability online scenarios. This is
achieved by providing a layered template architecture with an efficient and
effective data storage and processing chain. Then, applications implement this
template using the modules provided by the Ubicon core components. In addition,
applications can also make use of the same platform components, such that they
are hosted on the same server for potentially sharing data and providing an
integrated user experience across applications.
Concerning the Ubicon applications, several systems for observing social

behavior, for example, at conferences have been built using RFID tokens or
Bluetooth-enabled devices; Hui et al. (2005) describe an application using
Bluetooth-based modules for collecting mobility patterns of conference partici-
pants. Concerning social interactions, Eagle and Pentland (2006) present an
approach for collecting proximity and location information using Bluetooth-
enabled mobile phones. One of the first experiments using RFID tags to track the
position of persons on room level was conducted by Meriac et al. (2007) in the
Jewish Museum, Berlin, in 2007. Cattuto et al. (2010) added proximity sensing in
the SocioPatterns project. For MyGroup and Conferator, we are using the
SocioPatterns hardware as a technological basis. In addition, we increased the
precision of the localization component and linked the RFID tag information with
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further information, e.g. about the working group members or the schedule of a
workshop week. This provides for new insights into the behavior of all
participants (cf. Macek et al. 2012). Similarly Chin et al. (2013) describe the
Find and Connect system and analysis concerning the relations between physical
and social interactions at conferences.
In the context of MyGroup, there have been several approaches for improving

collaborative group activities: Digiano et al. (2006) and Looi et al. (2009) propose
and examine the GroupScribbles technique for assisting collaborative activities.
Lin et al. (2009) present the SmallBlue system to operationalize (generated) social
networks for expert finding and connecting people. In contrast to these systems,
we do not only aim to improve the collaboration between people and to provide
helpful information for networking but also we take the dynamic structure of the
social interactions into account in order to provide instant recommendations and
notifications about people and events.
While MyGroup and Conferator target the area of social interactions

themselves, the WideNoise and AirProbe address the area of participatory sensing
on a more sensor-based level. Both are implemented in the EveryAware project,23

which aims at enhancing environmental awareness through social information
technologies. There are approaches like the Partisan architecture (Burke et al.
2006) aiming to provide a framework of basic building blocks to support
participatory sensing on a ‘grassroots’ level.
Participatory sensing allows to approach many research questions. One such

area is understanding patterns, semantics, and dynamics of social behavior and its
interaction with the sensor data collected by corresponding applications. In this
context, Pan et al. (2013) defines research areas in the trace analysis realm. In this
area, applications like WideNoise and AirProbe aim at contributing strongly in the
future.
Kanjo (2010) presents the first system for collecting noise data with mobile

phones, and discusses its implementation on a technical level. There are several
existing platforms dedicated to specialized sensor data types. Maisonneuve et al.
(2010) present an approach for monitoring the noise pollution by the general
public using the NoiseTube24 system. Aircasting25 is another platform which
allows users to upload information about surrounding noise using their mobile
phones. Aircasting also supports air quality measurements. There is other research
about participatory air quality sensing as in Hasenfratz et al. (2012). The AirProbe
application and corresponding research go into the same direction but provide a
more advanced sensor box and put additional focus on behavioral change as well
as on the combination of objective and subjective data like, for example,
perceptions or tags. This also distinguishes the approaches taken by EveryAware
from other open-sensing platforms like Eye on Earth, a “global public information
network” for creating and sharing environmentally relevant data and information
online through interactive map-based visualizations.26 Further platforms in this
context include COSM (Pachube) (cf. Atzori et al. 2011) or the OpenSensors
platform for earth observation using a sensor web (see Andrae and Simonis 2011).
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6. Conclusions

In this paper, we described the overall architecture of the Ubicon platform for
ubiquitous and social applications. We showed that very different applications can
be implemented using the platform, and described several application-specific
components for data analysis within the respective applications. Furthermore, we
provided analysis results using the collected data in different application contexts.
The results also show that the collected data are relevant for research purposes not
only for computer science but also for psychologists, sociologists, ecologists, etc.
For future work, we aim to integrate generic recommendation options into the

platform for an easier setup of such solutions. In addition, social connectors to
further social services would enable a more comprehensive coverage of the
context of the users. Furthermore, the integration and utilization of linked open
data is another interesting direction for embedding more context and semantics
into the collected data. Finally, we aim to further evaluate the presented
components, e.g. tag recommendations (Mueller et al. 2013), as well as coverage
and data quality of the WideNoise and AirProbe applications.
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[20] The network of co-authorship can be retrieved (mainly for computer science) from DBLP
(http://dblp.uni-trier.de/)

[21] http://itunes.apple.com/de/app/widenoise/id302052132/ (iOS) and https://play.google.com/
store/apps/details?id=eu.everyaware.widenoise.android (Android)

[22] http://opengeospatial.org/standards/kml/
[23] http://www.everyaware.eu
[24] http://noisetube.net/
[25] http://www.aircasting.org
[26] http://www.eyeonearth.eu/en-us/Pages/Learn-More.aspx
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