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Mini-Abstract 

Objective and high-fidelity parameters were studied in surgical patients using wearable 

technology to derive patient-specific physical recovery trajectories. A multi-parameter model 

outperformed benchmark metrics and linked individual trajectories to preoperative immune 

states. 

Abstract 

Objective: The longitudinal assessment of physical function with high temporal resolution at 

a scalable and objective level in patients recovering from surgery is highly desirable to 

understand the biological and clinical factors that drive the clinical outcome. However, 

physical recovery from surgery itself remains poorly defined and the utility of wearable 

technologies to study recovery after surgery has not been established. 

Background: Prolonged postoperative recovery is often associated with long-lasting 

impairment of physical, mental, and social functions. While phenotypical and clinical patient 

characteristics account for some variation of individual recovery trajectories, biological 

differences likely play a major role. Specifically, patient-specific immune states have been 

linked to prolonged physical impairment after surgery. However, current methods of 

quantifying physical recovery lack patient specificity and objectivity. 

Methods: Here, a combined high-fidelity accelerometry and state-of-the-art deep immune 

profiling approach was studied in patients undergoing major joint replacement surgery. The 

aim was to determine whether objective physical parameters derived from accelerometry data 

can accurately track patient-specific physical recovery profiles (suggestive of a ‘clock of 

postoperative recovery’), compare the performance of derived parameters with benchmark 

metrics including step count, and link individual recovery profiles with patients’ preoperative 

immune state. 

Results: The results of our models indicate that patient-specific temporal patterns of physical 

function can be derived with a precision superior to benchmark metrics. Notably, six distinct 

domains of physical function and sleep are identified to represent the objective temporal 

patterns: “activity capacity” and “moderate and overall activity” (declined immediately after 

surgery); “sleep disruption and sedentary activity” (increased after surgery); “overall sleep”, 

“sleep onset”, and “light activity” (no clear changes were observed after surgery). These 

patterns can be linked to individual patients’ preoperative immune state using cross-validated 

canonical-correlation analysis.  Importantly, the pSTAT3 signal activity in M-MDSCs 

predicted a slower recovery. 

Conclusions: Accelerometry-based recovery trajectories are scalable and objective outcomes 

to study patient-specific factors that drive physical recovery. 
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Introduction 

Currently, more than 300 million surgeries are performed annually worldwide [1]. Recovery 

after surgery is highly variable, and protracted recovery affects up to 30% of patients, leading 

to personal suffering, impaired daily function, delayed return to work, and major 

socioeconomic costs [2]–[4]. While rapid advances in surgical and perioperative care have 

significantly shortened hospital length of stay, surgical recovery far exceeds the 

hospitalization period [5], [6]. From a patient’s perspective, recovery includes the return to 

preoperative levels of independence and well-being [7]. As such, studying the entire surgical 

recovery process, which can last weeks to months, is logistically challenging, resource-

intense, and largely contingent on subjective data typically obtained with questionnaires [8]–

[11]. Additional concerns regarding subjective data include reporting biases and limited 

reliability [12]. For example, self-reported physical performance metrics are imprecise as 

they both, under and overestimate activity when compared to objective metrics [12], [13]. 

Finally, a large-scale study conducted in six countries comparing subjective and survey-based 

physical activity metrics to sensor-based metrics of physical activity that measured time spent 

in sedentary behavior and specific intensity levels of physical activity (light, moderate, and 

vigorous), indicated a large discordance between self-reported and sensor-based outcomes 

[13]. 

One sentinel recovery outcome after surgery is physical function, which is likely to impact 

other domains of recovery. The scalable, low-cost, objective, remote, and continuous 

assessment of physical function over extended periods of time is highly desirable to 

understand mechanisms that improve, or conversely, impede physical function. As such, the 

application of sensing technologies included in wearable devices for monitoring of physical 

function is rapidly emerging in different clinical domains including inpatient rehabilitation, 

sleep, geriatric, and feto-maternal medicine [14] [15][16]. However, the utility of wearable 

technologies to study recovery after surgery has not been established. 

The role of the immune system in determining recovery in patients suffering from trauma 

including major surgery is prominent [17]–[19]. Mass cytometry [20], a recent breakthrough 

technology for highly parameterized single-cell immune profiling has rapidly been adopted in 

different clinical settings including vaccine development [21], feto-maternal health [22], [23], 

oncology and immunotherapy [24]. More recently, mass cytometry has been used in 

perioperative medicine, by our group, to study how a patient’s preoperative immune state and 

immune responses to surgery determine clinical recovery trajectories  (derived from self-

reported measurements) [19], [25]. Evidence from these important and resource-intense but 

limited-sized studies suggests that patient-specific differences in immune cell signaling 

responses are strongly associated with the rate at which patients regain physical function after 

surgery.  

Here, a novel patient-centric computational approach is presented that leverages wearable 

acceleration data and high-parameter functional immune profiling to (1) objectively quantify 

the temporal pattern of physical recovery in individual patients (suggestive of a ‘clock of 
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postoperative recovery’ indicating time to return to their preoperative state), and (2) link such 

recovery patterns to individual patients’ preoperative immune states. Integration of 

accelerometry and biological data is a novel and personalized framework to identify 

biological factors that drive physical recovery. The outlined approach, once validated, can be 

scaled to larger and more diverse surgical cohorts with the final goal to advance physical 

recovery in a personalized and preemptive fashion.  

Methods 

Clinical study design 

Patients undergoing primary hip arthroplasty (PHA) were recruited at the Arthritis and Joint 

Replacement Clinic of the Department of Orthopedic Surgery at Stanford University School 

of Medicine (see “CONSORT Chart” and “Study Materials” in Supplementary Content, 

http://links.lww.com/SLA/D476). The study was approved by the Institutional Review Board 

of Stanford University. Seventy-five patients were enrolled after providing written informed 

consent. Fifty-three patients completed the study and 49 patients provided accelerometry data 

suitable for analysis (Table 1). Refer to “Study Materials” in Supplementary Content for the 

exclusion criteria. 

Accelerometry for measurement of physical activity and sleep patterns 

Physical activity and sleep patterns of each participant were collected via an ActiGraph 

smartwatch (ActiGraph, LLC, FL, USA) continuously worn on the wrist of the dominant arm 

starting 5 days before surgery and ending forty days after surgery (Figure 1A). Two patients 

wore the watch on the non-dominant wrist. The three-dimensional acceleration data were 

sampled at 30 Hz, which produced about 350 million acceleration measurements per patient. 

A broad array of algorithms extracted time-series attributes (or features) representing various 

aspects of daily physical activity (e.g., step counts, energy expenditure, and time spent at 

various physical activity levels) as well as sleep features. For example, the Cole-Kripke 

algorithm [26] and the Freedson algorithm [27] were used for deriving sleep and energy 

expenditure features, respectively.  A complete list of features is provided in Supplementary 

Table 1, http://links.lww.com/SLA/D476. ActiGraph's actigraphy data analysis software 

platform ActiLife v6.13.3 was used for the purpose of feature extraction. Missing values were 

imputed using a 2-Nearest Neighbors imputation approach. The resulting multifaceted array 

of daily physical health attributes was used to derive patient-specific recovery trajectories and 

infer rates of recovery surrogates (Figure 1D).  

Single-cell immune profiling 

To comprehensively characterize a patient’s preoperative immune state, plasma and whole 

blood samples were collected 1 hour before surgery for analyses with a highly multiplexed 

proteomic platform and single-cell mass cytometry (Figures 1B and 1C). Proteomics and 

immunome data from 35 patients passed quality control standards. These two platforms were 
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used in combination with objective physical recovery surrogates to elucidate baseline 

proteomic and immunological features associated with the rate of physical recovery (Figures 

1E-G).  

Blood for proteomic analysis was collected in EDTA tubes, placed on ice, double-spun 

within 60 minutes and stored at -80°C until further analysis. The proteomic analysis was 

performed by Olink Proteomics Inc. (Watertown, MA) with a highly multiplex platform 

using proximity extension technology [28]. For this study, 11 panels were used, each 

measuring 92 different proteins simultaneously in 1 µL of plasma. Each protein was detected 

by a matched pair of antibodies that were coupled to unique and partially complementary 

oligonucleotides. When in close proximity, a new and protein-specific DNA reporter 

sequence was formed by hybridization and extension, which was then amplified and 

quantified by real-time PCR [29]. Quality metrics were as follows: 538 of 539 plasma 

samples passed, 865 of 1,012 proteins were detected, and the median intra-assay coefficient 

of variation was 8% [30]. 

Blood collected for mass cytometry analysis was processed within 30 minutes after blood 

draw. Individual aliquots were stimulated with 5 receptor-specific ligands [i.e., granulocyte-

macrophage colony-stimulating factor (GMCSF), interferon (IFN)-α, lipopolysaccharide 

(LPS), a mixture of interleukins (IL)-2, IL-4, and IL-6 and phorbol 12-myristate 13-acetate 

and ionomycin (PI)]. A 46-parameter mass cytometry assay (Supplementary Table 2, 

http://links.lww.com/SLA/D476) was used to analyze the distribution and intracellular 

signaling activities of 28 major innate and adaptive immune cell subsets (Figures 1B and 1E, 

Supplementary Figure 2, http://links.lww.com/SLA/D476). Intracellular mass cytometry 

parameters were chosen to capture important cell signaling pathways known to be activated 

in innate or adaptive immune cells after surgery (including JAK/STAT, P38MAPK and 

NFκB signaling pathways) [18], [31]. Refer to “Study Materials” in Supplementary Content 

for more details on mass cytometry analysis. 

Results 

An accelerometry-based clock of postoperative recovery  

Tridimensional acceleration data were collected continuously in 49 patients wearing a 

clinical-grade ActiGraph smartwatch (ActiGraph GT9X Link, LLC, FL, USA) starting five 

days before and ending 40 days after surgery. The average 𝑙2 normalized vector magnitude of 

the three-dimensional data is depicted over time in Figure 1A. Each spike represents a 24-

hour cycle with peak and trough activities. Magnifications of a 24-hour cycle at different 

postoperative days is shown in Figure 2A.  Physical activity generally began increasing at 6 

am and started decreasing at 6 pm reaching trough levels close to midnight.  Peak and plateau 

activity levels continuously increased over the course of the 40-day postoperative observation 

period. Although there were considerable inter-personal variations in the human physical 

patterns after surgery, an evident steep decline followed by a gradual return in overall activity 
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is the dominant pattern (Figures 2A and 2C). Exceptions included light and sedentary 

activity, which were increased, as well as substantial disruption is the onset of sleep. 

Several functional aspects were captured by the wearable sensors including a range of 

physical activity parameters (e.g.  intensity, periods of activity, daily activity capacity, 

estimates of step count, estimates of caloric intake) and sleep patterns (e.g., sleep 

fragmentation index, sleep onset, number of awakenings). Developing time-series signal 

processing algorithms that extract acceleration-based functional parameters is a high-yield 

current research emphasis. Various algorithms were applied to extract 62 temporal physical 

and sleep features from the current dataset. Using a static sliding window of 24 hours, daily 

feature vectors were derived for each patient. The sliding window approach is a common 

high level feature extraction method in time series physical activity monitoring [32], [33]. To 

facilitate the optimization algorithm and reduce the adverse effects of outliers, a zero mean 

unit variance standard scaler was built on each of the preoperative data feature vectors. The 

scalers were then applied to the entire corresponding feature vector, independent of the other 

feature vectors. A correlation graph displays the complex inter-connectivity of the 62 features 

(Figure 2B). Each node represents one feature and edges indicate a significant pairwise 

statistical correlation (p<0.01) between nodes. 

An unsupervised k-means clustering algorithm was used to objectively identify distinct 

components of highly correlated features. Six distinct components or domains were identified 

and labeled based on the included features: overall sleep, sleep onset, sleep disruption and 

sedentary activity, light activity, moderate and overall activity, and activity capacity (Figure 

2B).  The time course of the average magnitude of the six domains is shown in Figure 2C. 

Each domain followed a unique temporal pattern. Importantly, the domains “moderate and 

overall activity” and “activity capacity” sharply declined immediately after surgery and then 

gradually returned to preoperative levels over the course of weeks. In contrast, the domains 

“sleep disruption and sedentary activity” increased moderately after surgery and gradually 

returned to preoperative levels. This is consistent with observed decrease in “moderate and 

overall activity” and “activity capacity”. While the domains “light activity” and “sleep onset” 

decreased after surgery, no clear temporal patterns were observed. Finally, the domain 

“overall sleep” did not noticeably change after surgery.  

Inferring patient-specific trajectories of recovery 

To quantify physical recovery patterns after surgery, the temporal postoperative 

accelerometry data were used to build a patient-specific model, predicting the number of 

‘days since surgery’. A supervised model was trained on the feature matrix of each individual 

patient, independently. The feature matrix consisted of 62 feature vectors of medium to high-

level patient physical attributes characterizing each postoperative day as the target variable. 

The Random Forest (RF) regression algorithm [34] was used because of the continuity of the 

output variable and the highly interrelated nature of the feature vectors. RF is a robust 

ensemble method that allows for relatively easy interpretation of the results, leverages the 

specificity and non-linearity of the tree-based approaches, and takes advantage of the 
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generalization and robustness of ensemble methods. For each patient, a RF model was trained 

to infer time since surgery using the patient-specific feature matrix (as previously visualized 

in Figure 2B). The repeated k-fold cross-validation showed high performance of the patient-

specific RF model predicting ‘days since surgery' (p<0.05) with median prediction p-values 

of 5.9 × 10−7 (Figure 3A, Supplementary Figure 3, http://links.lww.com/SLA/D476). Refer 

to the section “Modeling and Analysis” in Supplementary Content for details regarding 

model training and evaluation. 

The performance of RF models varied between patients with a median Root Mean Square 

Error (RMSE) of ~8 days when estimating the ‘day since surgery’ (Figure 3B). Importantly, 

the multivariate model (shown in pink) was compared against univariate models using a 

single accelerometry feature as provided by the manufacturer for training the RF predictor. 

Six univariate models are shown in Figure 3B for manufacturer provided features (1) total 

steps taken in a day (24-hour period), (2) estimated daily metabolic equivalent of task, (3) 

number of awakening episodes detected during a patient’s sleep in one day, (4) duration of 

time spent performing light activities, (5) onset of bedtime for a given day, and (6) total of 

activity counts (measured by Freedson algorithm) detected during sleep intervals for one day. 

The performance comparisons of all univariate models are shown in Supplementary Figure 4, 

http://links.lww.com/SLA/D476. Importantly, the multivariate RF models were clearly 

superior to the univariate models using a single accelerometry feature. As an additional 

control, the preoperative baseline data (before the grey dashed line) was fed into the models 

to predict a post-operative day. Data were normalized to baseline to ascertain within-subject 

control given uncertainties regarding the accuracy of absolute accelerometry metrics. This 

analysis demonstrated that the model’s inference on the baseline (preoperative) data points 

ranges more than 21 days after surgery. Interestingly, this observation independently 

confirms the sanity of the RF models.  

Figure 3C highlights the relative contribution of the 62 accelerometry features used to derive 

the RF model predicting ‘days since surgery’.  The color intensity is indicative of relative 

importance of each node computed using Gini importance [35]. Features in the domains 

‘Activity Capacity’ and ‘Sleep Disruption and Sedentary Activity’ ranked highest followed 

by the features in the domains ‘Moderate and Overall Activity’, ‘Overall Sleep’, and ‘Light 

Activity’.  

An array of recovery surrogates for each patient was devised such that it quantifies the 

patient’s recovery trajectory with respect to each accelerometry feature. The accelerometry 

data collected for five days preceding surgery (i.e., the baseline accelerometry feature 

vectors) were inputted into the personalized RF models to estimate days after surgery. Note 

that the baseline inferences are made by models trained solely on postoperative data. The 

models use the temporal patterns learned from postoperative data to infer the time point along 

the postoperative timeline that most closely matches baseline patterns. The RF inference on 

preoperative data will reveal the day after surgery that is closest to a patient’s preoperative 

state. Based on this, an array of 62 recovery surrogates (corresponding to 62 accelerometry 

features) is constructed. Each element of this array (i.e., one recovery surrogate) indicates the 
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earliest time that the postoperative feature value returns to the patient’s baseline levels. The 

smaller the surrogate, the faster a patient is returning to his/her preoperative physical status 

(as inferred from the corresponding accelerometry feature). The detailed formulation of 

recovery surrogates is presented in “Modeling and Analysis” section in Supplementary 

Content, http://links.lww.com/SLA/D476. 

Association of accelerometry-based recovery surrogates with Self-reported Outcomes 

Self-reported outcomes were captured before surgery, on postoperative days 1-3, bi-weekly 

after discharge for postoperative weeks 1-4, and weekly for postoperative weeks 5-6. The 

surgical recovery scale (SRS) and an adapted version of the Western Ontario and McMaster 

Universities Osteoarthritis Index (WOMAC), two extensively validated questionnaires, were 

used to assess general fatigue and resulting functional impairment, as well as pain and 

function of the operated lower extremity [19], [36], [37]. The patient-specific area under the 

curve (AUC) was derived for each longitudinal self-reported outcome. Refer to “Study 

Materials” in Supplementary Content for a detailed description of self-reported outcome 

tools. As shown in Figure 4, the univariate analysis revealed a significant correlation between 

the surgical recovery scale (SRS) and recovery surrogates derived from the proposed clock of 

postoperative recovery (𝑃 < 0.003). 

Preoperative immune states are associated with physical recovery trajectories  

A total of 1,848 mass cytometry immune features were extracted from blood samples 

collected before surgery. These included endogenous intracellular activities of 28 innate and 

adaptive immune cell subsets and their capacity to respond to the five external ligands. The 

immunological dataset formed a complex network of cell type-specific frequencies and 

signaling activities, which highlight the interconnectivity of the immune system (Figure 5A). 

In parallel, the concentrations of 1,008 plasma proteins were measured. The assay quantifies 

proteins over a wide dynamic range as normalized protein expression values (NPX), which is 

unit less number derived on a 𝑙𝑜𝑔2 scale that is proportional to relative plasma 

concentrations. Similar to the immunological parameters, proteins built a complex 

correlational network (Figure 5B), which is annotated by gene ontology terms as provided by 

Olink Proteomics Inc. (Watertown, MA). The resulting immunome datasets are original and 

have not been reported previously. 

To determine whether patients’ preoperative immune and proteomic states could predict their 

physical recovery surrogates, Canonical-Correlation Analysis (CCA) models were trained to 

reveal linear associations between the physical recovery surrogates and the correlated 

immune or proteomic network parameters. To improve robustness, a leave-one-out cross 

validation algorithm was used, so that the results are predictions derived in patients not 

included when training the model. Refer to “Modeling and Analysis” in Supplementary 

Content, http://links.lww.com/SLA/D476 for detailed discussion of CCA training and 

evaluation. Immune network parameters predicted physical recovery surrogates of individual 
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patients (𝑝 < 0.01), while proteomic network parameters were not predictive (𝑝 = 0.69) as 

shown in Figure 5C and 5D.  

Examination of the most informative immune model features (top 10% of ranked model 

features considering absolute coefficient) revealed intracellular signaling responses that were 

reminiscent of prior studies linking patients’ immune response to surgery to their recovery 

[19]. Notably, the phosphor-(p)-STAT3 signal in monocytic myeloid-derived suppressor cells 

(M-MDSCs) in response to IL-2/4/6 stimulation with IL-2/4/6 positively correlated with 

slower physical recovery. Notably, among the 184 most informative model features, 89.6% 

(165 features) were negatively correlated with the physical recovery surrogate 

(Supplementary Table 3, http://links.lww.com/SLA/D476). Importantly, the pSTAT1 and 

pSTAT3 responses to INF-α stimulation in CD4T, NK and memory B cells were negatively 

correlated, i.e., associated with slower physical recovery.  

To gain a better understanding of the correlations between specific accelerometry and 

immune features, additional statistical analyses considered each accelerometry feature 

independently (Supplementary Figure 5, http://links.lww.com/SLA/D476). Inspection of the 

bipartite correlation between immunological and accelerometry networks (Supplementary 

Figure 5A, http://links.lww.com/SLA/D476) revealed additional interconnected 

immunological and physical recovery parameters that change concordantly. Significant 

correlations were highlighted between the accelerometry and immune features using graph 

edges. As shown in Supplementary Figure 5B, http://links.lww.com/SLA/D476, this analysis 

confirmed several significant correlations between pSTAT1 response to INF- α stimulation in 

NK cells and CD4T cells and the “moderate and overall activity”, and “activity capacity” 

domains. 

Discussion 

Our results indicate that wearable technologies enable the objective, scalable, and 

longitudinal tracking of individual patient’s physical recovery after surgery. Notably, the 

machine-learning centered approach anchored in multivariate vector analysis offered 

significantly improved accuracy compared to benchmark metrics provided by manufacturers 

such as step count. Importantly, individual physical recovery trajectories were linked to 

patient-specific immune states before surgery. These findings suggest that accelerometry can 

be adopted as an affordable and scalable technology to track individual patient’s physical 

recovery over time and link it to pre-surgical biological and other attributes that drive such 

recovery. Such insight is valuable for risk stratification and interventional strategies 

facilitating patients’ physical recovery.  

Six distinct groups of physical activity and sleep monitoring represented domains of surgical 

recovery.  Each domain followed a unique temporal pattern. Each domain pattern indicated a 

noticeable disruption at the time of surgery with the exception of “Overall Sleep” domain. 

Features in the domains ‘Activity Capacity’ and ‘Sleep Disruption and Sedentary Activity’ 

were found the most informative in prediction of time after surgery and demonstrated larger 
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univariate correlation with recovery surrogates followed by features in the domains 

‘Moderate and Overall Activity’. Importantly, the highly informative “Activity Capacity” 

domain is supported by previous studies of using submaximal capacity parameters such as 

“5-Chair Stand and Timed Up and Go” in assessment of physical performance and surgical 

recovery [38]. This result warrants studying similar physical performance attributes in a 

continuous and pervasive fashion. 

The proposed recovery surrogates derived from the wearable data demonstrated a significant 

correlation with the self-reported SRS. The SRS is specifically designed to capture surgical 

recovery as it measures attributes of fatigue and resulting functional consequences on daily 

activities in surgical patients [36], [39]. The SRS is sensitive to change and correlates with 

course and severity of postoperative complications [19], [40].  Importantly, this result 

provides validation that the accelerometry derived surrogates resonate with a relevant patient 

reported outcome. 

The canonical-correlation analysis revealed immune correlates of clinical recovery that 

echoed findings of previous studies [18], [31]. Importantly, the pSTAT3 signal activity in M-

MDSCs predicted a slower recovery. M-MDSCs are a monocyte subset with suppressive 

capacity that expand in the context of certain malignancies, sepsis and traumatic injury [41]–

[43]. Prior in vitro and in vivo studies suggest that STAT3 is an essential transcription factor 

for M-MDSCs to suppress the proliferation and function of CD4T cells and other immune 

cells, including NK cells [44]. In the context of surgery, our group previously showed that the 

pSTAT3 signal in M-MDSCs strongly correlated with prolonged postoperative functional 

recovery [19]. As such, the derived recovery surrogates can reveal biological determinants of 

surgical recovery. 

Additional analysis in Supplementary Figure 5, http://links.lww.com/SLA/D476 revealed 

negative correlations between preoperative adaptive immune responses and the rate of 

postoperative recovery. They included the STAT1 and STAT6 signaling responses to IFN-α 

in B and CD4T cell subsets (particularly related to “moderate and overall activity” and 

“activity capacity” domains). Type I IFN-α stimulation lowers the threshold for adaptive cell 

activation, especially by inducing up-regulation of CD69, CD86 and CD25 receptors [45]. 

Interestingly, adaptive cells such as B and T cells are well described as being key elements in 

bone [46], [47] and wound healing [48]. They also included the STAT1 response to IFN-α 

stimulation in NK cells. Taken together, the results suggest that preoperative immune states 

characterized by increased JAK/STAT signaling in B cell, CD4+T cell and NK cell and 

decreased JAK/STAT signaling in M-MDSC JAK/STAT benefit patients’ physical recovery 

trajectory. An important next step is to examine whether selective modulation of the 

JAK/STAT signaling pathways before surgery can accelerate physical recovery. 

This study has several limitations. While the models were cross-validated and tested on 

previously unseen patients, the relatively small sample size limits the generalizability of our 

results. As such, larger studies are required to independently validate our results and test the 

boundaries of their generalizability.  The study was conducted in patients undergoing major 
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joint replacement surgery. As such, larger studies are likely needed to develop models 

generalizable across, or specific to, various surgery types. Finally, the pre-operative period 

was limited to only one week. We note that data during this week prior to surgery are likely 

impacted by pain and impairment and do not represent baseline activity levels of cohort not 

suffering from osteoarthritis. However, a post-hoc analysis demonstrated that our results were 

not confounded by preoperative activity levels (Supplementary Figure 6, 

http://links.lww.com/SLA/D476). 

Taken together, to the best of our knowledge this is the first study to combine wearable 

technologies, machine learning approaches, and state-of-the-art immune monitoring to 

describe patient-specific physical recovery trajectories that outperform benchmark metrics 

and provide insight into biology that may drive important aspects of postoperative recovery. 

The outlined strategy is scalable and therefore amenable for implementation in larger-scale 

studies providing more detailed and generalizable insight into perioperative patient factors 

that drive clinical recovery.  

Reproducibility and Data Availability 

Data and source codes for reproduction of the results are publicly available at 

https://github.com/raminfl/hipval. ActiGraph's actigraphy data analysis software platform 

ActiLife v6.13.3 can be downloaded from https://actigraphcorp.com/actilife  
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Figure 1. Study overview and analytical approach. Forty-nine patients undergoing hip 

replacement surgery were included in the analysis. (A) Patients were instructed to wear a 

clinical grade motion sensing smart-watch continuously on their wrist for 5 days before and 

for 40 days after surgery to monitor physical activity and sleep patterns. (B)  Whole blood 

samples were obtained from each patient one hour before surgery for analysis with mass 

cytometry to determine immune cell-type specific signaling activities at baseline and in 

response to ex-vivo stimulation with the receptor-specific ligands granulocyte-macrophage 

colony-stimulating factor (GMCSF), interferon alpha (INF- α), interleukins 2, 4 and 6 (IL), 

lipopolysaccharide (LPS), and a mixture of phorbol 12-myristate 13-acetate and ionomycin 

(PI) (C) An antibody-based proteomic platform was used for measuring 1,012 proteins in 

plasma of the same samples. (D) Patient-specific daily activity and sleep patterns adjusted to 

preoperative metrics were used for inferring model parameters reflecting the rate of recovery, 

i.e., the time to return to preoperative states. Correlation networks were built for (E) mass 

cytometry and (F) proteomic data sets. (G) The feature sets presented in the correlation 

networks trained multivariate models predicting the rate of recovery based on patients’ 

preoperative immune and proteomic states. 
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Figure 2. Accelerometer signal processing and feature extraction. (A) Depicted is the 

average normalized (l2 norm) vector magnitude of high-fidelity three-dimensional 

acceleration measurements recorded over distinct 24-hour periods.  Color-coded lines track 

the signal magnitude at different postoperative days. (B) The correlation network of relevant 

activity and sleep parameters (nodes) reveals distinct components derived by applying an 

unsupervised clustering algorithm (kMeans). Major components of the network included 

moderate and overall activity (orange), activity capacity (blue), light activity (yellow), overall 

sleep attributes (ocean green), sleep onset (lawn green), and sleep disruption overlapping with 

sedentary activity (pink).  Node sizes indicate the strength of the correlation between a 

parameter and the number of days after surgery. The edges indicate statistical significance 

(p<0.01, Spearman’s correlation). (C) Shown is the average magnitude for each component 

over the course of the observation period starting 5 days before and ending 40 days after 

surgery. The color code is identical with (B), shaded areas mark the 90% confidence 

intervals, the horizontal grey line indicates the average before surgery, and the vertical grey 

line indicates the day of surgery. 
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Figure 3. An accelerometry clock of recovery from surgery. (A) The patient-specific 

correlated accelerometry network of temporal physical activity and sleep quality features was 

used to predict ‘days since surgery’ (Spearman’s 𝜌 = 0.7, 𝑝 = 5.9 × 10−7, cross validation). 

The model predictions versus ground truth ‘Day since surgery’ is plotted. Personalized model 

predictions are shown in grey (n=49). The mean predictions and 90% confidence intervals are 

shown in red. The vertical dashed line indicates the day of surgery. (B) The multivariate 

clock of recovery in (A) is compared against univariate models using metrics provided by the 

manufacturer. The y axis depicts the median Root Mean Square Error and the black line atop 

each bar depicts the 90% CI. (C) The correlated accelerometry network shows the major 

domains of accelerometry-derived attributes (daily sleep and activity). The color of the nodes 

corresponds to the relative contribution of each component to the cross-validated model 

predicting ‘days since surgery’ (i.e., gini importance). The darker shades indicate higher 

importance. 
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Figure 4. Correlation with self-reported clinical outcomes. The univariate correlation 

(spearman’s) between patients’ objective physical recovery trajectory, and questionnaire-

based subjective outcomes including fatigue (SRS), pain and function of the operated limb 

(WOMAC), and comorbidity burden (index) are shown. Fatigue and physical recovery 

trajectories correlated significantly (𝑝 < 0.003).  
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Figure 5. Preoperative immune parameters predict patient-specific physical recovery 

trajectories. (A) The immune correlation network within and across various features is 

color-coded to reflect cellular phenotypical and functional basal conditions as well as cellular 

responses to ex-vivo stimulation with different ligands including granulocyte-macrophage 

colony-stimulating factor (GMCSF), interferon alpha (INF- α), interleukins (IL) -2, -4 and -6, 

lipopolysaccharide (LPS), and a mixture of phorbol 12-myristate 13-acetate (PMA), 

ionomycin (PI). (B) The proteomic correlation network is colored by gene ontology terms. 

(C) Preoperative immune network parameters predict physical recovery trajectories (𝑅 =

0.46, 𝑝 = 5.2 × 10−3). The shaded area denotes the 90% confidence interval of the 

regression line (solid black). (D) Preoperative proteomic network parameters were not 

predictive. 
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Table 1:  Patient Data 

DEMOGRAPHICS AND PRESURGICAL CLINICAL CHARACHTERISTICS 

Sex (male/female) 23/26 

Age (years; median & IQR) 63 (57-68) 

Body mass index (kg/m
2
; median & IQR) 26.7 (24.2-30.5) 

Race  

   African American 1 

   Asian 2 

   Caucasian 42 

   Unknown 4 

Cumulative Illness Rating Scale (0-56; median & IQR) 10 (7-12) 

Beck Depression Inventory (0-63; median & IQR) 7 (5-14) 

Profile of Moods Anxiety Scale (0-36; median & IQR 7 (3-11) 

10-Itme Stress Scale (0-40; median & IQR) 12 (6-18) 

36-Item Short Form Health Survey (median & IQR)  

   Physical component summary score (15.0-61.7) 33.9 (30.0-38.0) 

   Mental component summary score (7.4-65.6) 42.7 (35.9-52.8) 

  

Surgical Recovery Scale (17-100; median & IQR) 63.7 (54.1-72.6) 

Western Ontario and McMaster Universities Osteoarthritis Index 

(median & IQR) 

 

   Hip pain (0-40) 21.5 (15.5-28.5) 

   Hip function (0-60) 32.5 (23.0-42.0) 

Hip Disability and Osteoarthritis Outcomes Score (0-100; median 

& IQR) 

 

   Pain 45.0 (32.5-52.5) 

   Symptom 35.0 (20.0-50.0) 

   Activity of daily living 50.0 (32.0-60.0) 

   Sport 18.8 (6.3-31.3) 

   Quality of life 19.0 (6.0-31.0) 

ANESTHESIA AND SURGERY 
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ASA class (1-5; median & IQR) 2 (2-3) 

Anesthetic technique  

   General & Neuraxial 30 

   General 10 

   Neuraxial 9 

Times (min; median & IQR)  

   Surgery 102 (81-113) 

   Anesthesia 183 (158-198) 

   Post anesthesia care unit 103 (82-148) 

Blood loss (ml; median & IQR) 300 (200-300) 

Intraoperative fluids (ml; median & IQR) 1500 (1000-

2000) 

Opioid use postoperative day 1&2 (mg; median & IQR)
 1
 7.5 (3.4-12.0) 

Time to discharge (days; median & IQR) 2.1 (2.0-2.9) 

1) Intravenous hydromorphone equivalent 
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