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� Introduction of globally and openly available features for land use regression (LUR). 
� Machine learning featuring automated hyper-parameter tuning for LUR tasks. 
� Global features significantly enhance LUR through cross-learning on multiple cities. 
� Source code and data available at dmir.org/openlur  
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A B S T R A C T   

To assess the exposure of citizens to pollutants like NOx or particulate matter in urban areas, land use regression 
(LUR) models are a well established method. LUR models leverage information about environmental and 
anthropogenic factors such as cars, heating, or industry to predict air pollution in areas where no measurements 
have been made. However, existing approaches are often not globally applicable and require tedious hyper- 
parameter tuning to enable high quality predictions. In this work, we tackle these issues by introducing Open-
LUR, an off-the-shelf approach for modeling air pollution that (i) works on a set of novel features solely extracted 
from the globally and openly available data source OpenStreetMap and (ii) is based on state-of-the-art machine 
learning featuring automated hyper-parameter tuning in order to minimize manual effort. We show that our 
proposed features are able to outperform their counterparts from local and closed sources, and illustrate how 
automated hyper parameter tuning can yield competitve results while alleviating the need for expert knowledge 
in machine learning and manual effort. Importantly, we further demonstrate the potential of the global avail-
ability of our features by applying cross-learning across different cities in order to reduce the need for a large 
amount of training samples. Overall, OpenLUR represents an off-the-shelf approach that facilitates easily 
reproducible experiments and the development of globally applicable models.   

1. Introduction 

Epidemiological studies show the negative impact of air pollutants 
like NOx or particulate matter (UFP, PM2.5 and PM10) on respiratory and 
cardiovascular health (Pope et al., 1991; Polichetti et al., 2009; Brook 
et al., 2010). In order to assess the exposure of citizens to such pollut-
ants, many measurement campaigns have been conducted. However, 
such campaigns are often restricted to very few stationary monitoring 
sites (Briggs et al., 2000; Carr et al., 2002; Brauer et al., 2003; Sahsu-
varoglu et al., 2006; Henderson et al., 2007; Arain et al., 2007; Aguilera 

et al., 2007; Su et al., 2009; Dons et al., 2013; Ragettli et al., 2014; 
Montagne et al., 2015; Muttoo et al., 2018; Araki et al., 2018), and even 
if mobile monitoring devices are used, spatial coverage is limited to road 
segments or locations that have been chosen for the measurement 
campaign (Sîrbu et al., 2015; Larson et al., 2009; Zwack et al., 2011; 
Patton et al., 2014; Hasenfratz et al., 2014; Hankey and Marshall, 2015; 
Su et al., 2015; Shi et al., 2016; Minet et al., 2017; Basu et al., 2019). To 
retrieve pollutant concentration in unmeasured locations researchers 
rely on the correlation of air pollution with environmental and anthro-
pogenic factors such as cars, streets, heating or industry (Jerrett et al., 
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2004). In particular, they employ land use regression (LUR) models 
which leverage features extracted from land use statistics to overcome 
the limits and predict air quality in a spatially dense manner. 

1.1. Problem setting 

In previous work, the corresponding features usually stem from very 
specialized sources like local governments (Brauer et al., 2003; Hoek 
et al., 2001; Stafoggia et al., 2019), commercial providers (Sahsuvaroglu 
et al., 2006; Muttoo et al., 2018; Stafoggia et al., 2019), other models 
(for example traffic or weather models) (Dons et al., 2013; Stafoggia 
et al., 2019), or custom recordings (Briggs et al., 2000; Carr et al., 2002). 
For some studies, the source of the underlying land use data is even not 
easy to access (Montagne et al., 2015; Hankey and Marshall, 2015; Araki 
et al., 2018). The proposed methods are consequently hard to reproduce 
and hardly generalize to arbitrary locations. 

Additionally, current work is often based on relatively simple models 
like linear regression (Arain et al., 2007; Aguilera et al., 2007; Muttoo 
et al., 2018) or generalized additive models (GAM) (Hasenfratz et al., 
2014). While some newer work explores more advanced methods 
(Champendal et al., 2014; Brokamp et al., 2017; Araki et al., 2018; 
Stafoggia et al., 2019; Basu et al., 2019), state-of-the-art machine 
learning approaches are still frequently neglected or require tedious 
hyper-parameter studies. 

1.2. Approach 

In this work, we address this issue and propose OpenLUR, an off-the- 
shelf solution for air pollution modeling using land use regression (LUR) 
based on open features and state-of-the-art machine learning (see 
Fig. 1). First, to ensure reproducible and generalizable models, we 
derive features solely from openly and globally available data extracted 
from OpenStreetMap (OSM) (OpenStreetMap contributors, 2017). Sec-
ond, we apply various state-of-the-art machine learning methods on 
these features. Besides GAMs and random forests, we specifically focus 
on methods that feature automated hyper-parameter tuning, for 
example AutoML (Blum et al., 2015), in order to eliminate the need for 
tiresome hyper-parameter studies. We evaluate both, our novel features 
as well as the state-of-the-art methods, on two large scale datasets: 
mobile air pollution data collected by Hasenfratz et al. (2014) and 
modelled air pollution data from the London atmospheric emissions 
inventory (Greater London Authority, 2016). We are able to show (i) 
that our novel open features outperform previously applied local feature 
sets on the given data, (ii) that using machine learning with automated 
hyper-parameter tuning yields high quality, reproducible and spatially 
generalizable models, (iii) that our features are applicable wherever 
OpenStreetMap data is available and (iv) that cross-learning on multiple 
cities can significantly enhance the model performance for small 
datasets. 

1.3. Contribution 

Our contributions in this article are: (i) We introduce a set of globally 
and openly available features for modeling air pollution using land use 
regression that significantly outperform previously proposed specialized 
features and show their global applicability. (ii) We evaluate state-of-art 
machine learning featuring automated hyper-parameter tuning for the 
application in land use regression tasks. (iii) We assess the enhance-
ments for urban land use regression models achieved by the utilization 
of data from multiple cities. (iv) We propose OpenLUR as a globally 
applicable and expendable approach for land use regression and make 
the source code and our extracted features openly available at 
https://www.dmir.org/OpenLUR in order to ensure reproducibility and 
to enable future research. 

2. Air quality training data 

Our approach is generally applicable to any land use regression 
scenario. In this work, we train and test our models and features on a 
year of data collected during the OpenSense project in Zurich starting 
from April of 2012. Ensuing we show the global applicability of the 
approach on data extracted from the London Atmospheric Emissions 
Inventory (LAEI) (Greater London Authority, 2016) and demonstrate the 
potential of globally available land use features by combining both 
datasets. 

2.1. OpenSense data 

In the OpenSense project UFP was continuously measured by sen-
sorboxes fixed to the top of tram cars (Hasenfratz et al., 2014). Hasen-
fratz et al. (2014) show the good measurement quality through the 
statistical distribution of measurements, comparison of baseline signals 
from several measurement devices and evaluation against high-quality 
datasets. With regard to preprocessing, we follow Hasenfratz et al. 
(2014): To rule out effects of seasonal variability on air pollution we 
split the collected data into four seasons of three months each (see 
Table 1). 

To further smooth over smaller temporal and spatial variabilities and 
outliers, we divided the observation area into squares of 100m� 100m 
and averaged the measurements for each season and square. Finally, 
squares with small numbers of samples which are prone to outliers and 
may negatively impact the model building process were removed. In 
particular, we kept the 200 squares with the largest amount of measured 
points (Hasenfratz et al., 2014). The # rows in Table 1 show the mean, 
min and max amount of measurements in the squares, that were kept in 
the dataset. The values used for the model training therefore are aver-
ages of at least 2000 single measurements which limits the influence of 
single outliers in the original data. 

Table 1 shows statistics of our dataset by season. The mean as well as 
the standard deviation (SD) tend to be higher for the two later seasons in 
this dataset. 

For a spatial visualization of Season 2, see Fig. 2. The particular 

Fig. 1. Abstract-/ToC-Art: Off-the-shelf 
approach to air pollution modeling using 
land use regression (LUR) powered by 
openly available features and state-of-the-art 
machine learning: On the left this figure 
shows a set of sparsely collected air quality 
measurements. To derive a spatially dense 
map, we train a LUR air quality model using 
globally and openly available features 
derived from OpenStreetMap by applying 
state-of-the-art machine learning featuring 
automated hyper-parameter tuning. Open-
LUR ensures easily reproducible experiments 
and enables world wide applicable models.   
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spatial patterns of the measurements are due to the sensor boxes being 
mounted on tram cars. 

2.2. LAEI data 

For showcasing the global applicability of our approach and the 
potential of globally available features, apply our features on annual 
mean PM10 concentrations stemming from the LAEI dataset (Greater 
London Authority, 2016). The data was obtained from a detailed 
dispersion model based on a vast number of input factors like road and 
rail traffic, aviation, agriculture, industry and domestic and commercial 
fuel burning and fires. For the dataset generation we randomly sampled 
3000 datapoints for training and 1500 for testing purposes from the 
urban central London region. With this comparatively large dataset we 
are able to provide evaluation scores that are robust against outliers. 

Table 2 shows the mean and standard deviation (SD) of both training 
and testing dataset. Note that the mean concentrations are higher than 
in Table 1, as PM10 includes bigger particles on top of UFP. 

3. The OpenLUR approach 

In this section, we introduce the main components of OpenLUR, our 
off-the-shelf approach for building air quality models based on land use 
regression (LUR): a novel set of open and globally available features 
derived from OpenStreetMap as well as the concept of automated hyper- 

parameter tuning for state-of-the art machine learning methods. 

3.1. OpenStreetMap features 

In contrast to feature sets used in previous studies (Hasenfratz et al., 
2014; Aguilera et al., 2007; Briggs et al., 2000), our features are only 
based on OSM and thus are openly available and globally applicable. 

To assess the validity of our feature set we compare them to a set of 
features used in previous work. In particular, we focus on the features 
from Hasenfratz et al. (2014). 

Hasenfratz et al. (2014) derived features for each individual grid cell 
(cf. Section 2), including for example population or industry density, 
building heights or terrain properties shown in Table 3. While some of 
these features are derived from OpenStreetMap, most of them stem from 
data provided by governmental institutions in Switzerland and Zurich. 
Thus, they are only available in this region, which leads to a model, that 
is only applicable in Zurich and can not be compared to models designed 
fo other regions. 

Table 1 
The four seasonal OpenSense UFP datasets from Zurich and basic statistics. The 
# rows show mean, min and max count of measurements used for the average in 
the squares in which we aggregated the air pollution mesurements.  

Season 1 2 3 4 

From April 01, 
2012 

July 01, 2012 October 01, 
2012 

January 01, 
2013 

To June 30, 
2012 

September 30, 
2012 

December 31, 
2012 

March 31, 
2013 

Mean 

[
109particles

m3 ]  

12.88 13.69 16.08 17.99 

SD 

[
109particles

m3 ]  

2.81 2.36 3.72 4.25 

Mean # 7292 6111 11712 10986 
Min # 2817 2105 3647 3727 
Max # 29946 29781 74588 222928       

Fig. 2. An excerpt from the air pollution 
data from Zurich used for training LUR 
models. The figure shows the spatial distri-
bution of the data from Season 2 of the 
OpenSense dataset (Hasenfratz et al., 2014) 
collected via sensor boxes on trams. The in-
dividual measurements are aggregated 
based on 100m� 100m grid cells. Analo-
gously to the experiments in (Hasenfratz 
et al., 2014), the cells are restricted to those 
200 with the most measurements. ©Open-
StreetMap contributors (www.openstree 
tmap.org/copyright).   

Table 2 
Statistics for the LAEI PM10 dataset from London.  

Dataset Size 
Mean [

109particles
m3 ]  SD [

109particles
m3 ]  

Training 3000 28.15 2.78 
Testing 1500 28.13 2.43  

Table 3 
Baseline features from Hasenfratz et al. (2014) with their respective source. 
Except from OSM, none of the features are globally available.  

Feature Source 

Population density Swiss Federal Statistical Office 
Industry density Swiss Federal Statistical Office 
Building heights Swiss Federal Statistical Office 
Heating type Swiss Federal Statistical Office 
Terrain elevation Swiss Federal Statistical Office 
Terrain slope Swiss Federal Statistical Office 
Terrain aspect Swiss Federal Statistical Office 
Road type OSM 
Distance to next road OSM 
Distance to next large road OSM 
Distance to next traffic signal OSM 
Average daily traffic volume Department of Waste, Water, Energy  

and Air of the Canton of Zürich  
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To derive our novel set of globally available features, we employ 
OpenStreetMap (OSM) which provides openly and globally available 
land use data. In this section, we briefly introduce OSM as a data source 
and describe the features as well as their extraction process. 

3.1.1. OpenStreetMap 
OSM is an open source map dataset developed and maintained by a 

large number of volunteers from all around the world (Haklay and 
Weber, 2008). Many studies confirm the quality of the data provided by 
OSM (Haklay, 2010; Hecht et al., 2013). Consequently, OSM is a popular 
data source in a variety of studies ranging from risk management 
(Schelhorn et al., 2014) and disaster warning (Rahman et al., 2012) to 
navigation (Hentschel and Wagner, 2010) and routing (Luxen and Vet-
ter, 2011). OSM also contains many variables related to air pollution. 
For example, it lists key:value pairs like landuse:industry or highway: 
motorway which can be directly used to derive relevant land usage and 
land cover statistics (Heymann, 1994; Estima and Painho, 2015; 
Hasenfratz et al., 2014).. 

3.1.2. Feature extraction 
To extract air pollution related features, we rely on OSM entities 

which are stored as polygons, lines or points (such as buildings, streets 
or traffic lights, respectively). Each entity is associated with a set of key: 
value pairs. In this study, we focus on entities with the keys landuse and 
highway. Using entities with these keys, we extracted two types of fea-
tures: area/length-based features and distance-based features. These fea-
tures are generated for each grid cell individually. We provide an 
overview over the features in Fig. 3. 

For the area/length-based features, we define a circular zone (buffer) 
of various sizes around a grid cell’s center (see top left of Fig. 3). Within 
those buffers, we measure the overall area or the overall length covered 
by those OSM entities relevant to the specific feature. In particular, we 
derive three area-based features by summing up the areas of entities 
with the key landuse and the values industrial, commercial and residential 
respectively. For the length-based features, we define two categories: 
roads with heavy traffic and roads with light traffic. For the heavy traffic 
features, we sum up the length of entities with the key highway and the 
values motorway, trunk, primary and secondary. For the light traffic fea-
tures, we sum up the length of entities with the key highway and the 
values tertiary and residential. This provides information about industrial 
land-use and traffic intensity. The procedure is illustrated in Fig. 3. We 
varied the buffer radii in 50m-steps ranging from 50m to 3000m for area- 
based features and from 50m to 1500m for length-based features to account 
for distance-dependencies. The radii were chosen according to their 
maximum distance of influence (Jerrett et al., 2004; Henderson et al., 
2007; Su et al., 2009). Three area-related key:value pairs using 60 buffer 

radii each and two length-related key:value pairs with 30 buffer radii 
each result in 240 features. 

For the distance-based features, we focus on the key:value pairs high-
way:motorway, highway:primary, highway:traffic_signals and landuse:in-
dustrial. For each of these pairs, we calculate the distance between a grid 
cell’s center and the nearest occurrence of an entity with the respective 
pair as illustrated in Fig. 3. Like for the area-based features, this repre-
sents information on the local traffic profile as well as industrial factors 
which are assumed to negatively influence air quality. Considering the 
four mentioned key:value pairs, this results in 4 features. 

Combining both feature classes results in 244 open and publicly 
available features derived solely from OSM, shown in Table 4. By con-
struction, these features represent land cover and traffic related infor-
mation and are closely tied to air pollution. We are aware, that this list of 
land use features is not exhaustive as factors like elevation, population 
density and other meteorological and environmental covariates can also 
highly influence air quality. OpenLUR can be extended with additional 
data sources via an easy to use API. The aim of this study however is to 
show the capability of OSM to provide land use information that can 
outperform closed source land use features. 

3.2. Automated hyper-parameter tuning 

Newer advancements in machine learning often promise better 
prediction results using the same data. These models however 
commonly require tedious hyper-parameter tuning and expert knowl-
edge concerning the applied algorithms. In this section we briefly 
introduce several approaches for automatic hyper-parameter tuning to 
negate this disadvantage. This is one key feature of our off-the-shelf 
approach. 

3.2.1. Basic approaches 
Most state-of-the-art machine learning methods need to be tailored 

to specific tasks by selecting an appropriate set of hyper-parameters. For 
the example of random forests, the number of estimators, the number of 
features per estimator or the minimal number of samples per leaf have to 
be tuned. The typical procedure to tune hyper-parameter sets is as fol-
lows: The dataset is split in a train, a validation and a test set. Different 
hyper-parameter sets are trained on the train data and tested on the 
validation data. The best performing model is used as final model, 
retrained on train and validation set and tested on the test set. Due to the 
combinatorial explosion of possible hyper-parameter combinations, this 
process either requires expert knowledge or has to be automated. In the 
following, we revisit two commonly used generic methods to automat-
ically optimize hyper-parameters: grid and stochastic search. 

3.2.1.1. Grid search. Grid search is performed by manually choosing a 
set of candidate values for each hyper-parameter. Then, all possible 
combinations of these values are evaluated. 

3.2.1.2. Stochasic search. Stochastic search optimizes hyper-parameters 
by randomly choosing candidate values for each hyper-parameter from a 
predefined probability distribution (mostly uniform) within a given time 
budget. This often allows to “find better models by effectively searching 
a larger, less promising configuration space” (Bergstra and Bengio, 
2012) than manual or grid search. 

3.2.2. AutoML 
Automated Machine Learning (AutoML) (Blum et al., 2015) goes one 

step further than the standard way to automated parameter tuning. It 
builds an ensemble learner that exploits the synergy of several weak 
regressors to produce an improved model. In other words, it simulta-
neously chooses and combines models from a set of model classes 
(random forests, support vector machines, naive Bayes, etc.) while at the 
same time optimizing their hyper-parameters. For this, it does not rely on 

Table 4 
Features derived from OpenStreetMap. The features are divided into two classes: 
area/length (top part) and distance based features (bottom part), where area/ 
length features use different buffer sizes (50m–3000m/50m–1500m with a step 
size of 50m). Overall this results in 244 features for each grid cell.  

Variable Unit key:value pairs in OSM 

Industry usage Area [m2]  landuse:industrial 

Commercial usage Area [m2]  landuse:commercial 

Residential usage Area [m2]  landuse:residential 

Heavy traffic Length [m] highway:motorway  
highway:trunk  
highway:primary  
highway:secondary 

Light traffic Length [m] highway:tertiary  
highway:residential 

Distance to next motorway Distance [m] highway:motorway 
Distance to next primary road Distance [m] highway:primary 
Distance to next traffic signal Distance [m] highway:traffic_signals 
Distance to next industrial area Distance [m] landuse:industrial  

F. Lautenschlager et al.                                                                                                                                                                                                                        
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grid or stochastic search, but utilizes efficient Bayesian optimization 
methods based on Gaussian processes to intelligently pick the most 
promising model and hyper-parameter combinations while staying 
within a given computational budget, such as time or memory usage 
(Blum et al., 2015). 

4. Experimental setup 

For OpenLUR we evaluate the two key components introduced in 
Section 3: our set of OSM features and the concept of hyper-parameter 
tuning for state-of-the-art machine learning methods. To show the 
ability of these components to provide an off-the-shelf approach, we 
compare our globally available OSM features with baseline features 
from previous work as independent variable and evaluate the competi-
tiveness of machine learning methods featuring automated hyper- 
parameter tuning. 

In this context, our general experimental setup is as follows: We aim 
to train models to predict the dependent variable UFP concentration at 
unobserved locations for the four seasons of the OpenSense dataset listed 
in Section 2. As done in most previous work, R2 and the root mean 
squared error (RMSE) are computed as scores to compare their perfor-
mance. The spatial dependence of the UFP concentration is modelled 
through the spatial variations of the independent variables. The tem-
poral dependence is ruled out by averaging measurements over seasons 
(c.f. Section 2) and using only one season for each model building and 
evaluation process. To account for random outliers of these scores due to 
the inherently small training sets (� 200 labeled samples in the Open-
Sense datasets, cf. Section 2), we report the mean of 40 10-fold cross 
validation scores as the final score for each model (cf. Hasenfratz et al. 
(2014)): For each of the 40 iterations, the dataset is randomly split into 
10 subsets. Ensuingly each subset is used once for the evaluation while 
the models are built based on the 9 remaining subsets. 

As baselines we picked two models that have proven to perform good 
on state-of-the art land use regression tasks (Hasenfratz et al., 2014; 
Champendal et al., 2014; Brokamp et al., 2017). To evaluate our 
apporach we compare them against two machine learning methods 
featuring automated hyper-parameter tuning. This results in the 
following list of models:  

� GAM: generalized additive model (no hyper-parameter tuning) 
(Hastie and Tibshirani, 1986)  
� RF: random forest (no hyper-parameter tuning) (Breiman, 2001)  
� RFOstochastic: random forest (hyper-parameters tuned by stochastic 

search) (Breiman, 2001; Bergstra and Bengio, 2012)  
� AutoML: automated machine learning (automated hyper-parameter 

tuning) (Blum et al., 2015) 

Due to the technical limitations of GAMs, a small set of features needs 
to be selected. We explain this process in the supplementary material. 
Beyond evaluating different feature sets, we compare GAMs and 
untuned random forests, against two state-of-the-art models with auto-
mated hyper-parameter tuning. Besides AutoML, we chose to optimize 
random forests using stochastic hyper-parameter search since (i) 
random forests are one of the most popular machine learning methods 
for land use regression (Champendal et al., 2014; Brokamp et al., 2017; 
Araki et al., 2018; Stafoggia et al., 2019) and (ii) stochastic search is 
reported to outperform manual or grid search (Bergstra and Bengio, 
2012). 

Note that, the features we extracted from OpenStreetMap as well as 
the code used to produce the following results are publicly available at 
https://www.dmir.org/OpenLUR. A more detailed explanation of the 
experimental setup can be found in the supplementary material. 

Fig. 3. Visualization of our set of open and globally available features. The top picture shows features based on the area/length of land use related entities within a 
given buffer zone. The bottom picture shows features based on the minimum distance to certain land use related entities. 

F. Lautenschlager et al.                                                                                                                                                                                                                        

https://www.dmir.org/OpenLUR


Atmospheric Environment 233 (2020) 117535

6

5. Results 

In this section, we report the results based on the experimental setup 
described in Section 4. This encompasses (i) results on comparing our 
novel OSM features against a baseline feature set, (ii) results on 
comparing machine learning methods with and without hyper- 
parameter tuning, (iii) the application of OpenLUR on the LAEI data-
set to evaluate the number of data samples needed for competitive re-
sults and the applicability of cross-learning across different cities, 
namely Zurich and London, to overcome the limits of small-scale air 
quality datasets, and (iv) a summary of the results and a recommenda-
tion of the overall approach for OpenLUR. 

5.1. Feature comparison 

In this section, we evaluate the performance of our feature set 
introduced in Section 3.1 and compare it with specialized — however 
only locally available — features from previous work (Hasenfratz et al., 
2014). For this, we train several air quality models using both sets of 
features on the four seasons introduced in Section 2. 

As a measure of absolute performance gain, we calculated the per-
formance difference of our novel feature set and the OpenSense features 
for each model and each season with regard to RMSE and R2, respec-
tively. Table 5 shows the results. For RMSE (R2) negative values (posi-
tive values) indicate a better model performance in favor of our 
proposed OSM features. Bold values indicate a statistically significant 
difference using the Wilcoxon signed-rank test (p < 0:05 with p values 
are provided in the supplementary materials). 

We observe that in nearly all cases, our novel features yield signifi-
cantly better results compared to the baseline features. That is, out of the 
32 differences, 24 show a significant improvement in model quality. 
Only in four cases there is a significant tendency towards the baseline 
features. For the remaining cases our features perform equally well. The 
latter cases focus on Season 3 pointing towards a very specific data 
configuration that does not seem to be representative across the evalu-
ated datasets (e.g., due to significant temperature drifts from October to 
December). 

Thus, our novel and open OSM features significantly improve the 
performance of all studied air quality models compared to specialized 
and possibly restricted data sources. The globally available features 
enable air quality models to be trained anywhere on earth where OSM 
data is available. 

5.2. Model comparison 

We further evaluate the potential of automated hyper-parameter 
tuning. We therefore focus on our OSM features since they promise to 
yield the overall best results. The results for the baseline features are 
listed in the supplementary material. The results in Table 6 show the 
performance of each model listed in Section 4 for each season with re-
gard to RMSE and R2. The models are also ranked from best (1) to worst 
(4) on their performance in each Season. To facilitate an overall com-
parison between the models, the table furthermore lists the mean rank 
across all seasons. 

We do not observe statistically significant differences between the 
regression models. Nevertheless, examining the mean ranks as an 
alternative evaluation measure, we clearly observe a tendency for 
models with automated hyper-parameter tuning to perform better than 
regular models. This holds with regard to both metrics and confirms that 
hyper-parameter tuning is an essential step for training land use 
regression models for air quality prediction. 

Of those methods featuring automated hyper-parameter tuning, 
RFOstochastic performs better on both metrics. We assume that due to 
our rather small dataset the AutoML approach based on Gaussian pro-
cesses can not exploit its full potential. On top of that Blum et al. (2015) 
showed, that the AutoML model needs a considerable amount of time to 
be able to outperform competitors like random forest (Blum et al., 
2015). However, we expect the AutoML-based methods to show their 
advantage on larger datasets, where training models is more expensive 
and selecting particularly promising sets of hyper-parameters is essen-
tial. This needs to be further investigated. 

Nevertheless, we have shown that advanced machine learning ap-
proaches employing automated hyper-parameter tuning, i.e., AutoML 
and RFOstochastic, are applicable to air pollution modeling and 
outperform the baseline methods when considering mean ranks across 
several experiments. We thus have shown that methods employing 
hyper-parameter tuning can alleviate manual effort while not compro-
mising on prediction quality. 

Fig. 4(a) depicts the spatial distribution of UFP in Zurich predicted by 
the RFOstochastic trained on OpenSense season 1 with our OSM fea-
tures. Some patterns are clearly distinguishable: The water area as well 
as the recreation area in the western central part of the predictions are 
less polluted than urban Zurich. The higher pollution along some major 
roads is also visible. Fig. 4(b) shows the standard deviation of multiple 
resampled OpenLUR runs. The standard deviations are low with values 
up to 1.6 [109particles

m3 ] while absolute predictions are values of up to 17 

[109particles
m3 ]. The deviations are equally low in areas with lower or higher 

Table 5 
The absolute performance gain of our OSM based features over the OpenSense 
features with regard to RMSE and R2 is shown. Negative (positive) RMSE (R2) 
values show a better model performance when using our openly available OSM 
features and are highlighted in gray. In nearly all cases, our OSM features yield 
significantly better air quality predictions (bold values indicate statistical 
significance).  

Season AutoML RFOstochastic RF GAM  

RMSE [
109particles

m3 ]   

1 ¡0.18 ¡0.24 ¡0.24 ¡0.30 
2 ¡0.06 ¡0.08 ¡0.07 ¡0.07 
3 � 0.05 0.06 0.06 0.10 
4 ¡0.34 ¡0.39 ¡0.40 ¡0.19  

R2   

1 0.11 0.16 0.16 0.18 
2 0.04 0.05 0.06 0.04 
3 0.03 � 0.02 ¡0.06 ¡0.06 
4 0.13 0.19 0.19 0.03  

Table 6 
RMSE and R2 metrics of the models using OSM features. Parenthesis show the 
rank of the model given a particular season for the corresponding metric. 
Generally, the model performances do not differ significantly. However, a clear 
tendency towards models featuring automatic hyper-parameter tuning can be 
observed judging by their mean rank over all seasons.  

Season AutoML RFOstochastic RF GAM  

RMSE [
109particles

m3 ] (rank)   

1 2.06 (3) 2.01 (2) 2.12 (4) 2.00 (1) 
2 1.75 (2) 1.74 (1) 1.82 (4) 1.75 (2) 
3 2.87 (1) 2.91 (2) 3.07 (3) 3.13 (4) 
4 3.55 (1) 3.55 (1) 3.69 (3) 3.73 (4) 
Mean rank 1.75 1.50 3.50 2.75  

R2 (rank)   

1 0.40 (3) 0.43 (1) 0.36 (4) 0.42 (2) 
2 0.38 (2) 0.39 (1) 0.32 (4) 0.37 (3) 
3 0.35 (1) 0.32 (2) 0.25 (3) 0.21 (4) 
4 0.19 (1) 0.19 (1) 0.11 (3) 0.08 (4) 
Mean rank 1.75 1.25 3.50 3.25  
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pollution, best visible in the western, higher polluted, region of Zurich. 
This means that the resampled models have a high agreement on the 
predictions, independent of the predicted pollution value. 

To show that the spatial dependence of the pollutant is modelled by 
the OSM features, as stated in Section 4, we computed the spatial cor-
relation of the residuals with each independent variable. The correlation 
coefficient c is between � 0:09 and 0.19. The coefficient of determina-
tion c2 describes the percentage of the residuals that can be explained by 
the independent variable (Taylor, 1990). With c2 < 4% the residuals are 
independent from our OSM features, meaning that the spatial depen-
dence of UFP is indeed modelled by the independent variables. 

In conclusion, the predictions achieved with OpenLUR are of a 
competitive prediction quality (c.f. Tables 5 and 6) and subjectively 
reasonable (c.f. Fig. 4(a)). 

5.3. Global applicability and cross-learning 

In this section, we utilize the LAEI dataset to show the applicability 
and potential of globally available land use features. We will first apply 
OpenLUR on the LAEI dataset and second demonstrate how the global 
applicability of our features can be used to improve the performance of 
LUR for small datasets through cross learning. 

We use our OSM features and the best working models from the 
previous experiment, namely AutoML and RFOstochastic. 

To show the global applicability of OpenLUR on datasets of different 
sizes, we first apply OpenLUR to different subsets (from 10 up to 1000 
datapoints) of the LAEI data. The results are shown in Table 7. While the 
results of the models do not differ significantly, the accuracy rises with 
the size of the training data with an especially strong increase below 200 

training samples. For a high number of training samples (� 300), 
AutoML seems to slightly (ΔR2 � 0:01), though not significantly, 
outperform RFOstochastic. 

Datasets in LUR scenarios however are mostly small (< 200 data 
points). We can exploit the potential of our globally available OSM 
features through cross-learning on multiple cities to overcome the limit 
of small datasets and enhance the model accuracy. For cross-learning we 
increase the size of our training dataset by adding data samples from 
another region. In our case, we added 180 OpenSense data points from 
season 1 to the LAEI training samples. 

Since both datasets measure different pollutants (PM10 and UFP 
respectively) the concentration values are in different ranges (see Sec-
tion 2). To just exploit the similar dependence of both pollutants on land 
use features, we standardized the measurements of both datasets to a 
mean of 0 and a standard deviation of 1. To retrieve pollutant pre-
dictions, the output of the resulting model has to be transformed back 
using the mean and standard deviation of the original dataset. 

The performance gain is shown in Table 8, where a positive value 
indicates a better performance through cross-learning. For small data-
sets, the enhancement of R2 is significant (up to a LAEI dataset size of 40 
for AutoML and 60 for RFOstochastic) with p < 0:05 (p-values are 
shown in the supplementary material). For bigger LAEI subsets, the 
performance gain is small and not significant. Especially for small 
datasets, cross-learning on multiple cities provides an opportunity to 
improve the model performance. Interestingly, for AutoML there is also 
a significant, however small (ΔR2 � 0:01), improvement for 1000 LAEI 
samples. The model enhancement through cross-learning on two cities 
gives a glimpse of the potential of our globally available features. 

Fig. 4. Predictions and standard deviations of OpenLUR trained on season 1 of the OpenSense data with values in [109particles
m3 ]. ©OpenStreetMap contributors (www. 

openstreetmap.org/copyright). 

Table 7 
R2of both models, RFOstochastic and AutoML, applied on subsets of the LAEI 
dataset. This shows, that OpenLUR performs well, when a sufficient amount of 
training data is available.  

Number of LAEI samples AutoML RFOstochastic 

20 � 0.08 0.01 
40 0.21 0.13 
60 0.29 0.27 
80 0.39 0.41 
100 0.42 0.41 
150 0.48 0.49 
200 0.51 0.51 
300 0.54 0.53 
400 0.58 0.57 
500 0.59 0.58 
1000 0.63 0.63  

Table 8 
R2 performance gain (difference of the R2 of models trained on both datasets and 
the R2 of models trained exclusively on LAEI data). Positive values show a 
performance gain through cross learning. Especially small datasets can signifi-
cantly take advantage of cross learning.  

Number of LAEI samples AutoML RFOstochastic 

20 0.29 0.21 
40 0.10 0.16 
60 0.05 0.10 
80 0.04 0.00 
100 0.02 0.02 
150 0.02 0.00 
200 � 0.01 0.00 
300 0.01 0.00 
400 0.00 0.01 
500 0.00 0.01 
1000 0.01 0.01  
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5.4. Recommended off-the-shelf approach for predicting air pollution 

For our OpenLUR approach, we recommend a combination of our 
novel OSM features and the AutoML model. With regard to the features, 
this recommendation is justified by the fact that the OSM features 
significantly outperformed the baseline features (Hasenfratz et al., 
2014) on the given dataset and have the advantages of being openly and 
globally available. The global availability enables land use regression 
even for small datasets through cross-learning. With regard to the un-
derlying model, the choice is less clear. While stochastically optimized 
random forests have a slight advantage with regard to the mean rank, we 
still recommend AutoML for its more sophisticated hyper-parameter 
tuning based on Gaussian processes which seems to yield a better pre-
diction performance on larger datasets. The gobal applicability of 
OpenLUR facilitates through cross-learning LUR studies on small data-
sets and could furthermore be used for multi-city or even global scale 
LUR research. Thus, with its novel openly and globally available feature 
set in combination with the notion of automated hyper-parameter tun-
ing to eliminate tedious parameter studies, OpenLUR provides a repro-
ducible, easily and widely applicable off-the-shelf land-use regression 
approach for air quality prediction even for small datasets that does not 
require expert knowledge in machine learning. 

6. Future work and implications 

In this section, we discuss several directions of future work as well as 
important implications of OpenLUR. In particular, (i) we discuss further 
potential features, approaches and models, (ii) we list some limitations 
of our dataset, and (iii) review the possibilities and limitations of glob-
ally available land use regression features. 

6.1. Features and machine learning methods 

While we have introduced an air quality regression pipeline that 
outperforms previously proposed methods, our novel features as well as 
our applied models can be further refined and extended: 

First, there is an endless amount of features to incorporate into air 
quality models: For example, based on OSM data, information about 
crossings, parks or specific venues like shops or sights has not been 
explored yet. Also, besides static land usage features, traffic models 
(Krauβ, 1998; Smith, 1993), open weather data or wind flow models 
could account for time-dependencies. However, the openly available 
code of OpenLUR provides the possibility to add custom features 
without restrictions to type or origin. 

Second, other machine learning algorithms than those covered in 
this work can be considered. In the supplementary material, we present 
some additional experiments. Concretely, we optimize random forests 
with auto-sklearn using Bayesian as well as stochastic optimization in 
combination with ensemble learning, but none was able to consistently 
outperform AutoML and RFOstochastic. Additionally, we evaluated two 
more recently applied methods as baselines: geographically weighted 
regression (Alam and McNabola, 2015) and feed forward neural net-
works (Hu et al., 2013) (results in the supplementary materials). How-
ever, with the limited amount of 200 datapoints, these models did not 
perform well. Nevertheless, models based on neural networks may be 
interesting to explore, as they may be able to alleviate the issue of 
deriving specific features from the OSM attributes by directly providing 
raw OSM data. 

Finally a disadvantage of most nonlinear state-of-the-art machine 
learning models as used in OpenLUR is the more difficult interpret-
ability: Unlike simple linear regression models, the influence of an in-
dependent variable is not measured by a single value — the respective 
slope — but is hidden in more complex model structures. Research to 
interpret these models has been conducted (Palczewska et al., 2014; 
Fabris et al., 2018). This is however out of the scope for this study and 
will be treated in future work. 

6.2. Dataset and measurements 

A crucial point for developing air quality regression models is the 
quality and quantity of measurement data. While traditional studies 
used stationary monitoring devices that resulted in a small number of 
datapoints (Montagne et al., 2015; Ragettli et al., 2014), recent studies 
show the potential of large amounts of mobile measurements. Mobile 
devices however are usually prone to inaccurate measurements and 
noise. To counteract short-term disturbances like bypassing trucks or 
simply wind, the measurements mostly get aggregated temporally or 
spatially which, analogously to the static case, results in fewer data-
points. Nevertheless, at least for our dataset, the spatial coverage was 
still a lot larger than using a handful of static devices. In future studies, it 
may be of interest to directly compare the quality of continuous mobile 
measurements with static approaches. This will require potentially very 
expensive, large scale measurement campaigns. 

6.3. Towards global land use regression models 

Because of the openly and globally available features, the models 
produced by OpenLUR can be applied in any city with comparable OSM 
data. With the LAEI data we have shown the global applicability as well 
as the ability for cross-learning. 

But locally differing characteristics of cities or the underlying OSM 
data (Davidovic et al., 2016), e.g., caused by structural difference of 
cities in different countries, conceptually differing ways of providing 
data within local OSM communities, or the general quality of the pro-
vided information, can lead to different dependencies of pollutants on 
the features. 

This points to the scientifically highly interesting area of the effects 
of local air pollution environments as well as the characteristics of area- 
specific OSM data. Neverthless, our results are promising and present an 
important step towards generalized global air pollution models. 
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