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Abstract. For the task of subgroup discovery, generalization-aware in-
teresting measures that are based not only on the statistics of the pat-
terns itself, but also on the statistics of their generalizations have recently
been shown to be essential. A key technique to increase runtime perfor-
mance of subgroup discovery algorithms is the application of optimistic
estimates to limit the search space size. These are upper bounds for the
interestingness that any specialization of the currently evaluated pattern
may have. Until now these estimates are based on the anti-monotonicity
of instances, which are covered by the current pattern. This neglects im-
portant properties of generalizations. Therefore, we present in this paper
a new scheme of deriving optimistic estimates for generalization aware
subgroup discovery, which is based on the instances by which patterns
differ in comparison to their generalizations. We show, how this technique
can be applied for the most popular interestingness measures for binary
as well as for numeric target concepts. The novel bounds are incorpo-
rated in an efficient algorithm, which outperforms previous methods by
up to an order of magnitude.

1 Introduction

Subgroup discovery [17] is a key technique for data mining and machine learning.
It aims at identifying descriptions for subsets of instances in a dataset, which
have an interesting deviation with respect to the distribution of a predefined
concept of interest. This task has been studied under different terminology such
as contrast set mining [7], emerging pattern mining [11], correlated itemset min-
ing [21], discriminative pattern mining [10] or association rule mining with a fixed
consequent [20]. While the specific goal of these tasks may vary, the algorithmic
challenges and approaches are very closely related, see [18,26].

The selection of patterns in the search space is commonly based on an in-
terestingness measure. These measures use statistics derived from the instances
covered by a pattern to determine a score for the pattern. The best patterns
according to this score are then returned to the user. As an example, con-
sider a dataset of patients and their medical data. Let the target concept be
surgery successful, which is true for 30% of the patients. Then a pattern like
gender=male ∧ smoker=false with a higher rate of successful surgeries, e.g.
50%, receives a higher score and is more likely to be included in the result.
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Practical applications have shown that results for traditional interestingness
measures often contain variants of the same pattern multiple times. To avoid
this problem, several authors postulated that a pattern should not only be eval-
uated with respect to its own statistics, but also with respect to the statistics
of its generalizations, see for instance [8,4,5,19]. Considering the example above
the pattern gender=male ∧ smoker=false would be rated as less interesting
if it can be explained by one of its generalizations alone, e.g., if the pattern
smoker=false already describes a set of patients with a 50% surgery success
rate. While the practical use of such generalization-aware interestingness mea-
sures has been widely acknowledged, the efficient mining in this setting has
received little attention. A key technique to improve runtime performance of
subgroup discovery in general is the application of optimistic estimates, that
is, upper bounds for the interestingness of any specialization of the currently
evaluated pattern. Although research has shown that improving the tightness of
the utilized bounds improves the runtime performance substantially [15], there
has been no extensive research so far concerning upper bounds for generaliza-
tion aware interestingness measures beyond the trivial transfer of bounds for
traditional measures.

In this paper we propose a novel method to exploit specific properties of
generalization-aware measures to derive additional optimistic estimate bounds,
which allow to speed-up the search. Unlike previous approaches, the bounds
are not exclusively based on the instances that are contained in the currently
examined subgroup, but on the instances that were excluded in comparison to
generalizations of the current pattern. We show, how this general concept can be
applied to exemplary interestingness measures in different setting, i.e., for sub-
group discovery with binary target concepts and with numeric target concepts
using a mean-based interestingness measure. The bounds are incorporated in a
novel apriori -based algorithm that allows efficient propagation of the required
statistics. Experiments show that exploiting the presented bounds results in sub-
stantial runtime improvements. The optimistic estimates are especially effective
in tasks that incorporate selectors, which cover a majority of the dataset.

The rest of the paper is structured as follows: Section 2 provides background
on subgroup discovery and the used terminology. Then, related work is discussed
in Section 3. Next, the new scheme to derive optimistic estimate bounds and
its application to different interestingness measures is presented in Section 4.
Afterwards, we explain, how the new optimistic estimate bounds can efficiently
be exploited in an algorithm in Section 5. Section 6 presents experimental results,
before we conclude in Section 7.

2 Background

Let A be an attribute space A = A1 × . . . × Am, where each set Ai represents
an attribute. A dataset is a tuple D = (I, A) with I ⊆ A. Each i ∈ I is called
a data instance. Selectors sel (also called basic patterns) are boolean functions
sel : I → {false, true} defined by selection expressions on the set of attributes. In
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the case of nominal attributes typical selection expressions are given by attribute-
value pairs, in the case of numeric attributes by intervals. For example, the
selector age =]12;∞[ is true, iff the attribute age has a value greater than 12.
A (complex) pattern (also called subgroup description) combines selectors into
a boolean formula. For a typical conjunctive description language, on which we
focus in this paper, a pattern P = {sel1, . . . , selk} is defined by a set of selectors
selj , which are interpreted as a conjunction, i.e., P = sel1 ∧ . . .∧ selk. Thus, an
instance i ∈ I is covered by pattern P , iff (∀sel ∈ P : sel(i) = true) or short
P (i) = true. A subgroup sg(P ) is given by the set of individuals covered by the
pattern P : sg(P ) = {i ∈ I|P (i) = true}. For short notation, iP = |sg(P )| is
the number of individuals covered by a pattern P . Furthermore we denote as
∆(A,B) = sg(A) \ sg(B) the instances, which are covered by A, but not by B.
We call a pattern G a generalization of its specialization S, iff G ⊂ S.

A pattern mining task is specified by a 5-tuple (D,T, q,Σ, k). D is a dataset.
The target concept T assigns a target value tc(i) to each instance. It can either
be defined by a pattern (binary case) or by a single numeric attribute (numeric
case). In the binary case, we write pP (nP ) for all individuals with a true (false)
target concept. q : 2Σ → R is a quality function that measures the interest-
ingness of a pattern with respect to the chosen target concept T . Σ defines the
search space by providing a set of selectors to build conjunctive patterns from.
k specifies the number of patterns contained in the result set. The overall task
is then to identify the best k patterns in the search space 2Σ according to the
quality function q (q � 0).

A huge amount of quality functions has been proposed in literature, cf. [17,13].
While the general approach of this paper could also be applied to other qual-
ity functions, we especially focus on the following popular measures: The most
popular interestingness measures trade-off the covered instances iP of a pattern
versus the deviation of the target share τP − τ∅, where τP = pP

pP+nP
is the ratio

of positive instances versus all instances in pattern P and τ∅ is the same ratio
for the overall population. This is formalized as:

qabin(P ) = iaP · (τP − τ0), a ∈ [0; 1]

This includes for example the weighted relative accuracy for the size parameter
a = 1, a simplified binomial function for a = 0.5, or the added value for a = 0.
For numeric target concepts this can easily adapted by replacing the target share
for the pattern and the overall population with the respective mean values µP
and µ∅ of the target attribute:

qanum(P ) = iaP · (µP − µ∅), a ∈ [0; 1].

This definition includes the mean test quality function [17] for a = 0.5 and the
impact quality function [23] for a = 1.

Consider a pattern P with an interestingly high target share τP . If another
selector sel with sel 6∈ P is added to the pattern P , which does either cover a
majority of the instances of P (sg(P ) ≈ sg(P ∧sel) or is statistically independent
from P and the target concept, then the pattern P ∧ sel will have roughly the
same target share as pattern P . Thus, this pattern may also receive a high
score according to the previously presented quality measures due to its high



4 F. Lemmerich, M. Becker, F. Puppe

target share. However, it should not be presented to users in the result set, since
the additional selector sel does not contribute to the increased target share.
To avoid such redundant output the minimum improvement constraint has been
introduced, see [8]. By using this additional filter, all patterns with a target share
that is lower or equal to the target share of any of its generalizations are removed
from the result set. Nonetheless, patterns that improve the target share only by
a small margin, e.g., due to noise, will still be contained in the result. Therefore,
more recent approaches incorporate the comparison of pattern statistics with the
statistics of its generalizations directly into the interestingness measure [5,14,19]
resulting in generalization-aware interesting measures. The target share (or the
mean value in case of numeric targets) within the pattern is not compared to the
target share (mean value) of the overall population but to the maximum target
share (mean value) of all its generalizations:

rabin(P ) = iaP · (τP − max
H⊂P

τH), a ∈ [0; 1]

ranum(P ) = iaP · (µP − max
H⊂P

µH), a ∈ [0; 1]

Thus, a pattern is only regarded as interesting if its target share (mean value) is
considerably higher than it is in all of its generalizations. Although other inter-
estingness measures can be adapted accordingly, we focus on these two families of
generalization-aware measures in this paper, since they are the only ones, which
have been described in previous literature and applied in practical applications.
We will also not argue about advantages of these functions in comparison to
traditional measures or other methods that avoid redundant output, such as
closed pattern [12], but focus on efficient mining for these generalization-aware
measures by introducing novel, difference-based optimistic estimates.

The concept of optimistic estimates has been introduced in order to speed up
the subgroup discovery task, see [22,25]. The basic idea of optimistic estimates
is as following: if one can guarantee that no specialization of the currently evalu-
ated pattern will have a quality, which is good enough to include the respective
pattern into the result set, then we can safely omit these patterns from the
search. In doing so we can substantially reduce the number of patterns, which
have to be evaluated, while maintaining the optimality of the results. In this
regard, we aim at as strict as possible bounds to reduce the remaining search
space and thus to speed up the search process. Formally, given a pattern P and
an interestingness measure q an optimistic estimate function oeq(P ) is a function
such that for each specialization S ⊃ P of P the quality is lower than the value
of the optimistic estimate function for pattern P : ∀S ⊃ P : q(S) ≤ oeq(P ).

3 Related Work

Subgroup discovery is a long studied field [17]. An essential technique for effi-
cient discovery showed to be pruning based on optimistic estimates [22,25]. As
Grosskreutz et al. showed, the efficiency of the pruning is strongly influenced
by the tightness of the bounds [15]. A more general method to derive optimistic
estimates for a whole class of interestingness measures, that is, convex measures,
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was introduced in [20] and later extended in [26]. In this paper, we provide a
different technique to determine optimistic estimates to another family of inter-
estingness measures, i.e., generalization-aware measures.

The necessity to consider also generalizations of patterns in selection criteria
has been recognized in [8,4]. These early approaches used a minimum improve-
ment constraint, which is applied only as a post-processing operation after the
mining algorithm. Webb and Zhang presented an efficiency improvement in min-
ing with this constraint in the context of association rules [24] by introducing
a pruning condition based on the difference in covering. While the method of
Webb and Zhang requires full coverage on all instances, the method presented in
this work can also be applied with only partial coverage. In addition our method
is used to derive upper bounds for interestingness measures instead of exploiting
constraints and is also applied in settings with numeric target concepts.

Recent approaches incorporate differences with respect to generalizations di-
rectly in the interestingness measure. This showed positive results in descrip-
tive [14,19] as well as predictive settings [6] for both binary and numeric target
concepts. However, these papers focus more on which patterns are to be se-
lected and not on efficient mining through pruning. As an exception, Batal and
Hausknecht utilized a pruning scheme in an Apriori-based algorithm that is based
exclusively on the positives covered by a subgroup [5]. This algorithm is used for
comparison in the evaluation section. Utilizing pruning in settings with numeric
concepts of interest is more challenging than in the binary case [2]. While for
the impact measure q1num an optimistic estimate has been employed [2,23] in the
standard subgroup setting, to the authors knowledge no other pruning bounds
for numeric generalization-aware measures have been proposed so far.

4 Estimates for Generalization-Aware Subgroup Mining

In this section, we introduce a novel scheme to derive optimistic estimates for
generalization-aware interestingness measures. These optimistic estimates help
to improve the runtime performance of algorithms by pruning the search space.
We start by generalizing estimates that have been previously presented for this
task to outline the conventional approach to derive estimates. Then, we present
the core idea of our new scheme to derive upper bounds: difference-based opti-
mistic estimates. Next, we show how this concept can be exploited by deriving
estimates for quality functions in the binary and the numeric case using the
quality functions rabin and ranum.

4.1 Optimistic Estimates Based on Covered Positive Instances

Traditionally, optimistic estimates for subgroup discovery are based only on the
anti-monotonicity of instance coverage. That is, when adding an additional se-
lector to a pattern P , then the resulting pattern only covers a subset of the
instances covered by P . To give an example for this traditional approach, the
following theorem generalizes the optimistic estimate bounds for rabin used in [5],
which covers only the special case using the parameter a = 0.5.
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Theorem 1. Let pP be the number of all positive instances covered by the cur-
rently evaluated pattern P and maxH⊂P (τH) the maximum of the target shares
for P and any of its generalizations. Then, optimistic estimate bounds for the
family of quality functions rabin are given by: oerabin = (pP )a · (1−maxH⊆P τH).

Proof. We first show that the quality of any specialization S does not decrease,
if all negatives are removed. Let ns be the number negatives in S. Then,

rabin(S) = (pS+nS)a ·( pS
pS + nS

−max
H⊂S

τH) =
pS

(pS + nS)1−a
−(pS+nS)a ·max

H⊂S
τH

We examine this term as a function of nS , nS ≥ 0: The first summand decreases
with increasing nS , since 1 − a ≥ 0. The second, negative summand increases
with increasing nS , as maxt ≥ 0. Thus, the maximum is reached for nS = 0. We
can conclude that:

rabin(S) = (pS + nS)a · ( pS
pS + nS

−max
H⊂S

τH)

≤ (pS)a · (pS
pS
−max
H⊂S

τH) ≤ (pP )a · (1− max
H′⊆P

τH′),

as the number of positives in the specialization S is smaller than the number of
positives in the more general pattern P , and the generalizations of S include all
generalizations of P . ut

As has been exemplified in [5] this bound can already achieve significant runtime
improvements. Note, that these bounds use only the anti-monotonicity of the
covered positive instances. In contrast, we will show in the next sections, how
we can exploit additional information on the difference of negative instances
between patterns and their generalizations to derive additional bounds.

4.2 Difference-based Pruning

Next, we provide the core idea for our novel scheme to derive optimistic esti-
mates. It utilizes that the instances by which a pattern and its specialization
differ are – in a certain way – anti-monotonic. More specifically, we will exploit
the following lemma to derive optimistic estimates:

Lemma 1. Let P = A ∧ B be any pattern with A,B potentially being a con-
junction of patterns themselves and B 6= ∅. Then for any specialization S ⊃ P
there exists a generalization γ(S) ⊂ S, such that ∆(γ(S), S) ⊆ ∆(A,B).

Proof. Consider for any specialization S = A ∧ B ∧ X (X being potentially a
conjunction itself) the pattern γ(S) = A ∧X, which is a real generalization of
S, since B 6= ∅. Then, ∆(γ(S), S) = sg(A ∧ X) \ sg(A ∧ B ∧ X) = (sg(A) ∩
sg(X)) \ (sg(A) ∩ sg(B) ∩ sg(X)) = sg(X) ∩ (sg(A) \ (sg(A) ∩ sg(B)) =
sg(X) ∩ (sg(A)\sg(B)) = sg(X) ∩ ∆(A,B), which is a subset of ∆(A,B). ut

The subset property implies directly that for each specialization S the gener-
alization γ(S) contains at most isg(S) + i∆(A,B) instances. Additionally, in the
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case of a binary target, we can estimate the number of negative instances in this
generalization: nγ(S) ≤ nS +n∆(A,B). Furthermore, in the case of a numeric tar-
get, the minimum target value of ∆(γ(S), S) is higher than the minimum target
value in ∆(A,B). In mining algorithms, statistics for ∆(A,B) can be computed
with almost no additional effort. For instance, nA and nA∧B are both required
anyway in order to evaluate the pattern A∧B with rabin. Then, n∆(A,B) is given
by n∆(A,B) = nA − nA∧B .

As an example, assume that the pattern A covers 20 positive and 10 negative
instances and the evaluation of the pattern A ∧ B shows that this pattern also
covers 10 negative instances. That is, B covers all negative instances, which are
covered by A, n∆(A,B) = 0. Now consider any specialization S of this pattern.
According to the lemma, S has another generalization γ(S) that contains the
same number of negative instances as S since nγ(S) ≤ nS + n∆(A,B). As S (as a
specialization of γ(S)) additionally has no more positive instances than S, the
target share in S is equal or smaller than for its generalization γ(S). Thus, the
quality of S according to any generalization-aware measure rabin is ≤ 0. Since
this is the case for any specialization of A ∧ B, specializations of A ∧ B can be
pruned from the search space without influencing the results.

This is an extreme example: all negative instances of A are also covered by
A ∧ B. Now assume that A ∧ B had covered only 8 negative instance, thus
n∆(A,B) = 10 − 8 = 2. In this case the lemma guarantees that S has a general-
ization γ(S) with at most 2 negative instances more than S. If S itself covers a
decent amount of instances, the target share in S cannot be much higher than
in γ(S). Thus, either S is small or there is only a small increase (or a decrease)
in the target share comparing S and its generalization γ(S). In both cases, the
interestingness of S according to rabin is low.

Overall we conclude that, if the difference of covered instances between A and
A∧B is small, then the interestingness score for all specializations is limited. In
the next sections we formalize these considerations by deriving formal optimistic
estimate bounds that can be used to prune the search space.

4.3 Difference-based Optimistic Estimates for Binary Targets

Following, we provide for generalization-aware measures rabin = iaP ·(τP−max
H⊂P

τH)

with binary targets new optimistic estimates, which are based on the difference
of pattern coverage in comparison to the coverage of generalizations.

Theorem 2. Consider the pattern P with pP positive instances. P ′ ⊆ P is
either P itself or one of its generalizations and P ′′ ⊂ P ′ a generalization of P ′.
Let n∆ = nP ′′ − nP ′ be the difference in coverage of negative instances between
these patterns. Then, an optimistic estimate of P for rabin is given by:

oerabin(P ) =


pP ·n∆
pP+n∆

, if a = 1
n∆

1+n∆
, if a = 0

p̂a·n∆
p̂+n∆

, with p̂ = min(a·n∆1−a , pP ), else



8 F. Lemmerich, M. Becker, F. Puppe

Proof. Let S be any specialization of P and G = γ(S) the generalization with
∆(G,S) ⊆ ∆(P ′, P ′′), which exists according to the previous lemma, since S is
also a specialization of P ′. The number of negatives in G is equal to the number
of negatives covered by S plus the number of negatives, which are covered by G,
but not by S: nG = nS + n∆(G,S). By construction it holds that n∆(G,S) ≤ n∆.
Additionally, we can assume pS > 0, that is, S contains at least one positive
instance, since rabin(S) ≤ 0 otherwise.

In the proof, we will first derive an upper bound that depends on the number
of positives in the specialization S, which is unknown at the time P is evaluated.
In a second step we therefore determine the maximum value of this function. The
quality of S is given by:

rabin(S) = (pS + nS)a · (τS −max
H⊂S

τH) (1)

≤ (pS + nS)a · (τS − τG) (2)

= (pS + nS)a · ( pS
pS + nS

− pG
pG + nS + n∆(G,S)

) (3)

≤ (pS + nS)a · ( pS
pS + nS

− pS
pS + nS + n∆(G,S)

) (4)

= (pS + nS)a · (
pS · (pS + nS + n∆(G,S))− (pS · (pS + nS))

(pS + nS)(pS + nS + n∆(G,S))
) (5)

=
pS · n∆(G,S)

(pS + nS)1−a(pS + nS + n∆(G,S))
(6)

≤
pS · n∆(G,S)

(pS)1−a(pS + n∆(G,S))
(7)

=
paS · n∆(G,S)

(pS + n∆(G,S))
(8)

≤ paS · n∆
(pS + n∆)

:= fa(pS) (9)

The transformation to line 2 is possible, since G ⊂ S. In line 4 it is used that
pS ≤ pG, as the positives of S are a subset of the positive of its generalization G.
In line 7 it is exploited that the denominator is strictly increasing with increasing
nS , because 1 − a ∈ [0; 1]. Therefore, the smallest denominator and thus the
largest value for the overall term is achieved by setting nS = 0. The term in
line 8 is strictly increasing as a function of n∆(G,S). Since n∆(G,S) ≤ n∆, line 9
follows.

In the final line 9, the function fa(pS) is defined, which provides an upper
bound on the interestingness of P that depends on the number of positives within
the specialization. This number is not known, when the pattern P is evaluated.
Intuitively, for large number of positives in the specialization removing n∆ neg-
ative instances will not change the target share in the subgroup much, therefore
the interestingness of the generalization is limited. On the other hand, for small
numbers of positive instances S is overall small and possibly not interesting for
that reason. pS is at least 1, since S otherwise is not interesting anyway and
at most pP , as the number of positives for S is smaller than for its generaliza-
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tion P . Next, we analyze for which value of pS the function fa(pS) of line 9
reaches its maximum in the interval [1; pP ]. This depends on the parameter a of
the interestingness measure:

1. For a = 1 it holds that f1(pS) = pS ·n∆
pS+n∆

. This function is strictly increasing
in pS . That is, the more positive instances are contained in S, the higher is
the derived upper bound. The maximum is reached at highest value in the
domain of definition: max(f1(pS)) = f1(pP ) = pP ·n∆

pP+n∆
.

2. In contrast for a = 0, f0(pS) = n∆
pS+n∆

is strictly decreasing. Thus, the

maximum value of f0 is reached for pS = 1, the minimum possible value of
pS : max(f0(pS)) = f0(1) = n∆

1+n∆
.

3. For 0 < a < 1, fa reaches a maximum for a certain value p∗ within the
domain of definition. To determine that, we compute the first derivative of
fa using the quotient rule.

d

d pS
fa(pS) = n∆ ·

d

dpS

paS
pS + n∆

= n∆
(n∆ + pS) · a · pa−1S − paS

(n∆ + pS)2

= n∆ · pa−1S

an∆ + a · pS − pS
(n∆ + pS)2

:= (fa)′

The only root of this derivative is at p∗ := a·n∆
1−a . As can be easily shown,

(fa)′(pS) is greater than zero for pS smaller than p∗ and lower than zero
for pS greater than p∗. Therefore, p∗ is the only maximum of fa(pS). Thus,
if pP > p∗, then p∗ is the maximum value of fa, otherwise the maximum
is reached at the highest value of the domain of definition: max(fa(pS)) =

fa(p̂) = p̂a·n∆
p̂+n∆

,with p̂ = min(a·n∆1−a , pP ).

Overall, for any specialization S it holds that rabin(S) ≤ fa(pS) ≤ max fa(pS) =
oerbina (P ), with the function maxima as described above, therefore oerbina (P )
as defined in the theorem is a correct optimistic estimate. ut

For any pair of generalizations of P (P ’ and P ′′) as well as for any pair of P
(P ′ = P ) and one of its generalization (P ′′), this theorem provides an optimistic
estimate of P . The optimistic estimate bound is dependent on the number of
positives in the subgroup and the difference of negative instances between P ′

and P ′′. It is low, if either there are only few positives in P or the difference of
negative instances between the pair of generalizations is small (or a combination
of both). Since the number of positives in P is independent of the chosen pair
P ′, P ′′, the pair with the minimum difference of negative instances implies the
tightest upper bound, which should be used to maximize the effects of pruning.

As a special case the theorem includes that the interestingness of any pattern
is ≤ 0, if n∆ is 0. To the authors knowledge, it is the first measure that includes
these differences in optimistic estimate bounds for subgroup discovery.
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4.4 Difference-based Optimistic Estimates for Numeric Targets

Next, we will show that a related approach can be used to obtain optimistic
estimates for generalization-aware interestingness ranum = iaP · (µP −max

H⊂P
µH) in

settings with numeric target concepts.

Theorem 3. In a task with a numeric target concept, consider the pattern P
with iP instances and a maximum target value of maxP . P ′ ⊆ P is either P
itself or one of its generalizations and P ′′ ⊂ P ′ is a generalization of P ′. Let
i∆ = |∆(P ′′, P ′)| be the number of instances contained in P ′′, but not in P ′ and
min∆ the minimum target value contained in ∆(P ′′, P ′). Then, an optimistic
estimate of P for the generalization aware quality function ranum is given by:

oeranum(P ) = max(0, oe′ranum(P )),

oeranum(P )′ =


i∆·iP
iP+i∆

· (maxP −min∆), if a = 1
i∆

1+i∆
· (maxP −min∆), if a = 0

îa·i∆
î+i∆

· (maxP −min∆), with î = min(a·i∆1−a , iP ), else

Proof. We consider any specialization S ⊃ P and its generalization G = γ(S)
according to Lemma 1. Then we can estimate the interestingness of S:

ranum(S) = iS
a · (µS −max

H⊂S
µH) (1)

≤ iS a · (µS − µG) (2)

= iS
a · (

∑
i∈sg(S)

tc(i)

iS
−

∑
i∈sg(S)

tc(i) +
∑

j∈∆(G,S)

tc(j)

iS + i∆(G,S)
) (3)

= iS
a−1 · (

∑
i∈sg(S)

tc(i)−
iS · (

∑
i∈sg(S)

tc(i) +
∑

j∈∆(G,S)

tc(j))

iS + i∆(G,S)
) (4)

= iS
a−1 · (

i∆(G,S)

∑
i∈sg(S)

tc(i)− iS
∑

j∈∆(G,S)

tc(j)

iS + i∆(G,S)
) (5)

≤ iS a−1 · (
i∆(G,S) · iS ·max

i∈S
tc(i)− iS · i∆(G,S) · min

j∈∆(G,S)
tc(j)

iS + i∆(G,S)
) (6)

=
i∆(G,S) · iS a

iS + i∆(G,S)
· (max

i∈S
tc(i)− min

j∈∆(G,S)
tc(j)) (7)

≤ i∆ · iS a

iS + i∆
· (max

P
−min

∆
) = f(iS) · (max

P
−min

∆
) (8)

In line 2 it is used that G is a generalization of S, then it is exploited that
sg(G) = sg(S) ∪∆(G,S), S ∩∆(G,S) = ∅. In line 6 we utilize that the sum of
any set of values is bigger than the minimum appearing value times the size of
the set, but smaller than the maximum appearing value times the size of the set.
Line 8 uses that i∆(G,S) ≤ i∆.
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fa is a function over the unknown number of all instances in the special-
ization, which can be any number in [1; iP ]. fa is always positive. Therefore,
if (maxP −min∆) ≤ 0, the optimistic estimate is given by 0. Else, the max-
ima of fa, which have already been derived in the proof of Theorem 2, deter-
mine the bound: fa(iS) is strictly increasing for a = 1, strictly decreasing for
a = 0 and reaches a maximum at a·i∆

1−a or at iP otherwise. Thus: ranum(S) ≤
(fa(iS)) · (maxP −min∆) ≤ max(fa(iS) · (maxP −min∆). The bounds follow
directly from the inserting the resp. maxima values. Since this holds for any
specialization S of P , oeranum(P ) is a correct optimistic estimate for P . ut

Similar to the optimistic estimate in the binary case, the derived optimistic
estimate is low, if either the number of instances covered by P is low, or if
the difference in the number of instances covered between the generalizations
P ′′ and P ′ is low (or a combination of both). However additionally, the bound
also considers the range of the target variable in these patterns, that is, the
maximum occurring target value in P and the minimum target value in the
difference set of instances. As a result, the bound gets zero, if the minimum
target value removed by adding a selector to a generalization of P was higher
than the maximum remaining target value in P .

5 Algorithm

The presented optimistic estimates can in general be applied in combination
with any search strategy. In this paper we focus on adapting an exhaustive
algorithm, i.e., apriori [1,16]. This approach is especially suited for the task of
generalization-aware subgroup discovery, since its levelwise search strategy guar-
antees that specializations are always evaluated after their generalizations and
the highest target share found in generalizations can efficiently be propagated
from generalizations to specializations, see [5]. Therefore, and for better com-
parability with previous approaches, we chose apriori as a basis for our novel
algorithm. Using the following adaptations the algorithm is not only capable
of determining the proposed optimistic estimates. The algorithm also propa-
gates the required information very efficiently. Due to limited space, we will
not describe the base algorithm, which has been extensively described in litera-
ture [1,20,16,5], but instead focus only on the differences. We start by describing
the binary case.

Apriori performs a levelwise search, where new candidate patterns are gen-
erated from the last level of more general patterns. In our adaptation of the
algorithm additional information is stored for each candidate. This includes the
maximum target share in generalizations of this pattern, the minimum number
of negatives covered by any generalization and the minimum number of nega-
tives that were removed in generalizations of this pattern. After the evaluation
of a pattern the number of positives, the number of negatives and the resulting
target share are additionally saved in each candidate. The minimum number
of negative instance in a generalization is required to compute the minimum
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number of instances, which are contained in the pattern, but not in a general-
ization. The other statistics are directly required to compute either the quality
or the optimistic estimates of the pattern. Whenever a new candidate pattern
P is generated in apriori, it is checked for all its direct generalizations G, if it is
contained in the last levels candidate set. During this check, the statistics for the
maximum target share in generalizations, the minimum number of negatives in a
generalization and the minimum number of negatives that were removed in any
generalization of this pattern can be computed by using the information stored
in the generalizations and simple minimum/maximum functions. In doing so,
the statistics required to compute the quality of the pattern and the optimistic
estimates are propagated very efficiently from one level of patterns to the next
level of more specific patterns.

In the evaluation phase (the counting phase in classical apriori) each candi-
date is evaluated. This requires to determine the coverage of the pattern. Com-
bined with previously computed statistics about generalizations this is used to
compute the interestingness according to the chosen generalization-aware mea-
sure. Subgroups with sufficient high score are placed in the result set, potentially
replacing others in a top-k approach. Afterwards the target share in generaliza-
tions and the minimum number of removed negative instances are updated by
using the statistics of the current patterns coverage. After the evaluation of a
pattern all optimistic estimates, that is, traditional estimates (see theorem 1)
and difference-based estimates are computed from the information stored for a
candidate. If any optimistic estimate is lower than the threshold given by the
result set for a top-k pattern, then the pattern is removed from the list of current
candidates. Thus, no specializations of this pattern are explored in the next level
of search.

The approach for numeric target concepts is very similar, except that mini-
mum/maximum and mean target values as well as overall instance counts of the
candidate patterns are stored instead of counts of positives and negatives. When
determining the pruning bounds, a pattern is compared with all its direct gen-
eralizations. For each generalization an optimistic estimate bound is computed
based on the difference of instances between the generalization and the special-
ization and the stored minimum/maximum target values. The tightest bound
can be applied for pruning.

For the experiments, the algorithm was implemented in the open-source en-
vironment VIKAMINE [3]. The implementation utilizes an efficient bitset-based
data structure to determine the coverage of patterns efficiently.

6 Evaluation

In this section, we show the effectiveness of the presented approach in exper-
iments using well-known datasets from the UCI [9] repository. As a baseline
algorithm we use a variant of the MPR-algorithm presented in [5], as this is
the most recently proposed algorithm for this task. The algorithm was slightly
modified to support top-k mining and to incorporate the bounds of Theorem 1
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for any a. Since this algorithm follows the same search strategy as our novel al-
gorithm, that is, apriori, it allows to determine the improvements that originate
directly from the advanced pruning bounds presented in this paper. Results be-
low are shown for k = 20, a realistic number for practical applications, which was
also used for example as beam size in [26]. Different choices of k lead to similar
results. For the numeric attributes an equal-frequency discretization was used,
using all half-open intervals from the cutpoints as selectors. The experiments
were performed on an office PC with 2.8 Ghz and 6 GB RAM.

In the first part of the evaluation we investigated the setting of a binary
target concept using different generalization-aware quality functions rabin. We
compared the runtimes of the presented algorithm with traditional pruning only
and with the novel generalization-aware bounds. The results show, that utilizing
difference-based pruning leads to significant runtime improvements in almost all
tasks, see Table 1. The improvements range from a factor of about 2 to over
20 in the datasets hypothyroid, audiology and spammer. For a more detailed
analysis we investigated these tasks more closely. It turned out that the search
space for these datasets contained multiple selectors that covered a vast ma-
jority of the instances. Conjunctive combinations of subsets of these selectors
still cover a large part of the dataset and especially of the positive instances.
As traditional optimistic estimates are based on this number of covered posi-
tive instance, pruning cannot be applied on these combinations efficiently. In
contrast, since the number of negative instances, by which those patterns differ
from generalizations, is often very low in these cases, such combination can be
pruned often using the difference-based optimistic estimates presented in this
paper. This leads to the massive improvements. We can conclude that our new
pruning scheme is especially efficient, if many selectors cover a majority of the
dataset. In some cases the algorithms did not finish due to out of memory errors
despite the large amount of available memory. This does occur less often using
the novel bounds, see for example the results for the vehicle dataset, since less
candidates are generated in apriori, if more advanced bounds are applied.

In the second part of the evaluation the interestingness measure r0.5bin, a
generalization-aware variant of the binomial-test, was further analyzed by com-
paring the runtimes for different search depth (maximum number of selectors
in a pattern), see Table 2. As before, almost all tasks finished earlier using the
novel difference-based pruning. While the improvement is only moderate for low
search depth, massive speedups can be observed for d = 5 and d = 6. For d = 6
many algorithms with only traditional pruning did not finish because of limited
memory. When additionally using the novel bounds, this happened only in two
datasets, as less candidates were generated.

In the last part of the evaluation the improvements in a setting with numeric
target concepts and quality functions qanum were examined. For subgroup discov-
ery with numeric targets and generalization-aware quality functions no optimistic
estimates have been proposed so far. To allow for a comparison nonetheless,
we use the optimistic estimate bound ōe1num =

∑
x:tc(x)>µ∅

(tc(x) − µ∅), which

has been shown to be a correct optimistic estimate for q1num. Since ranum(P ) ≤
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Table 1. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different size parameters a for quality functions rabin. The maximum
number describing selectors was limited to d = 5. ”-” indicates that the algorithm did
not finish due to lack of memory.

a 0.0 0.1 0.5 1.0
pruning dpb std dpb std dpb std dpb std

adults 1.1 1.0 17.8 48.7 1.6 8.1 1.0 1.7
audiology 0.2 62.3 24.9 51.6 0.6 51.7 0.1 57.4
census-kdd 16.4 16.2 - - 107.9 2954.3 18.5 94.0
colic <0.1 <0.1 1.7 4.8 0.4 5.1 0.1 1.2
credit-a <0.1 <0.1 2.6 4.1 1.2 3.6 <0.1 0.4
credit-g 0.2 0.2 24.4 42.5 4.0 35.2 0.4 4.6
diabetes 1.0 3.8 5.9 12.6 1.2 9.3 <0.1 0.7
hepatitis 1.5 11.8 2.3 4.9 0.8 3.3 <0.1 0.5
hypothyroid 0.1 1.2 2.0 37.1 1.7 39.0 <0.1 21.2
spammer 4.3 5.5 133.0 - 29.3 172.2 0.5 27.6
vehicle 2.3 2.7 - - 15.6 - 0.9 -

Table 2. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different maximum numbers d of describing selectors in a pattern.
As quality functions the generalization-aware mean test r0.5bin was used. ”-” indicates
that the algorithm did not finish due to lack of memory.

d 3 4 5 6
pruning dpb std dpb std dpb std dpb std

adults 1.0 1.1 0.9 1.8 1.6 8.1 1.7 30.2
audiology 0.1 0.1 0.1 2.8 0.6 51.7 - -
census-kdd 17.9 20.6 37.2 99.8 107.9 2954.3 267.5 -
colic 0.1 0.2 0.3 1.1 0.4 5.1 0.4 16.4
credit-a 0.1 0.1 0.3 0.7 1.2 3.6 1.2 12.9
credit-g 0.2 0.2 1.5 4.0 4.0 35.2 7.0 -
diabetes 0.1 0.1 0.5 1.3 1.2 9.3 2.0 67.1
hepatitis <0.1 0.1 0.2 0.6 0.8 3.3 0.3 11.9
hypothyroid 0.1 0.2 0.5 2.7 1.7 39.0 - -
spammer 1.3 1.6 5.7 15.5 29.3 172.2 88.3 -
vehicle 1.0 1.3 4.8 57.8 15.6 - - -

r1num(P ) ≤ q1num(P ) this can also be used as a (non-tight) optimistic estimate
for any generalization-aware quality function ranum. Results are shown in Ta-
ble 3. Since the applied traditional bound is tight for a = 1, the runtimes in this
case are relatively low already for the studied datasets, leaving only little room
for improvement. For lower values of a, significant runtime improvements can
be observed, which reach a full order of magnitude (e.g., for the datasets con-
crete data and housing). The relative runtime improvement is on average highest
for a = 0.5. This can be explained by the fact that for lower values of a even
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small subgroups can be considered as interesting. This makes it more difficult to
exclude subgroups by pruning also when using the difference-based bounds.

Table 3. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different size parameters a for quality functions ranum for numeric
target concepts. The maximum number describing selectors was limited to d = 5.

a 0.0 0.1 0.5 1.0
pruning dpb std dpb std dpb std dpb std

adults 19.6 92.5 22.5 89.6 14.8 64.7 3.9 14.9
concrete data 4.7 20.8 6.2 20.1 1.3 11.2 0.1 0.3
credit-a 3.7 14.1 5.1 13.8 3.1 9.7 0.4 0.8
credit-g 6.6 53.0 8.5 54.5 7.9 40.3 0.5 1.0
diabetes 5.6 20.4 8.5 18.6 5.2 15.0 0.3 0.7
forestfires 2.3 10.4 3.4 11.1 2.7 9.6 2.4 6.5
heart-c 3.5 17.5 5.6 17.5 2.9 13.2 0.2 0.5
housing 2.0 28.2 3.4 26.4 1.7 23.8 0.1 3.0
yeast 3.1 14.3 3.5 13.9 1.5 8.4 0.1 0.8

7 Conclusions

In this paper we proposed a new scheme of deriving optimistic estimates bounds
for subgroup discovery with interesting measures that take statistics of gener-
alizations into account. In contrast to previous approaches the bounds are not
only based on the anti-monotonicity of instances, which are contained within
the subgroup, but also on the number of instance that are covered by a pattern,
but not by its generalization. The optimistic estimates have been incorporated
in an efficient algorithm that outperforms previous approaches by up to an order
of magnitude. The speed-up is especially high, if the dataset contains selection
expressions that cover a large part of the dataset.

In the future we plan to extend this approach to explore novel interestingness
measures that take generalizations into account. Furthermore, an analysis of
different search strategies, e.g., reverse-depth-first search, for this task is an
interesting direction.
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