
pysubgroup: Easy-to-Use Subgroup
Discovery in Python

Florian Lemmerich1(B) and Martin Becker2

1 RWTH Aachen University, Aachen, Germany
florian.lemmerich@humtec.rwth-aachen.de

2 University of Würzburg, Würzburg, Germany
becker@informatik.uni-wuerzburg.de

Abstract. This paper introduces the pysubgroup package for subgroup
discovery in Python. Subgroup discovery is a well-established data min-
ing task that aims at identifying describable subsets in the data that
show an interesting distribution with respect to a certain target concept.
The presented package provides an easy-to-use, compact and extensi-
ble implementation of state-of-the-art mining algorithms, interestingness
measures, and visualizations. Since it builds directly on the established
pandas data analysis library—a de-facto standard for data science in
Python—it seamlessly integrates into preprocessing and exploratory data
analysis steps. Code related to this paper is available at: http://florian.
lemmerich.net/pysubgroup.

Subgroup discovery [1,5,7] is a data mining method that assumes a population
of individuals and a property of these individuals a researcher is specifically
interested in. The goal of subgroup discovery is then to discover the subgroups
of the population that are statistically “most interesting” with respect to the
distributional characteristics of the property of interest, cf. [12]. A typical sub-
group discovery result could for example be stated as “While only 50% of all
students passed the exam, 90% of all female students younger than 21 passed.”
Here, “female students younger than 21” describes a subgroup, the exam result
is the property of interest specified by the user for this task, and the difference
in the passing rate is the interesting distributional characteristic. Subgroup dis-
covery identifies such groups in a large set of candidates. Subgroup discovery
has been an active research area in our community for more than two decades in
order to find more efficient algorithms, improved measures to identify potentially
interesting groups, and interactive mining options. It has also been successfully
used in many practical applications, see [5] for an overview.

State-of-the-art implementations of subgroup discovery are available in Java
(VIKAMINE [2] and Cortana [10]) and R (rsubgroup1 and SDEFSR2). In
Python, however, there is only a basic implementation included in the Orange
1 https://cran.r-project.org/web/packages/rsubgroup/rsubgroup.pdf.
2 https://cran.r-project.org/web/packages/SDEFSR/vignettes/SDEFSRpackage.

pdf.

c© Springer Nature Switzerland AG 2019
U. Brefeld et al. (Eds.): ECML PKDD 2018, LNAI 11053, pp. 658–662, 2019.
https://doi.org/10.1007/978-3-030-10997-4_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10997-4_46&domain=pdf
http://florian.lemmerich.net/pysubgroup
http://florian.lemmerich.net/pysubgroup
https://cran.r-project.org/web/packages/rsubgroup/rsubgroup.pdf
https://cran.r-project.org/web/packages/SDEFSR/vignettes/SDEFSRpackage.pdf
https://cran.r-project.org/web/packages/SDEFSR/vignettes/SDEFSRpackage.pdf
https://doi.org/10.1007/978-3-030-10997-4_46

pysubgroup: Easy-to-Use Subgroup Discovery in Python 659

workbench.3 A full featured subgroup discovery implementation that easily inte-
grates with numpy and pandas libraries, which provide for one of the overall
most popular setups for data analysis nowadays, is missing so far. The here
presented package pysubgroup aims to fill this gap.

1 The pysubgroup Package

The pysubgroup package provides a novel implementation of subgroup discovery
functions in Python based on the standard numpy and pandas data analysis
libraries. As a design goal, it aims at a concise code base that allows easy access to
state-of-the-art subgroup discovery for researchers and practitioners. In terms of
algorithms it currently features depth-first-search, an apriori algorithm [6], best-
first-search [13], the bsd algorithm [9], and beam search [3]. It includes numerous
interestingness measures to score and select subgroups with binary and numeric
targets, e.g., weighted relative accuracy, lift, χ2 measures, (simplified) binomial
measures, and extensions to generalization-aware interestingness measures [8].
It also contains specialized methods for post-processing and visualizing results.

Emphasizing usability, subgroup discovery can be performed in just a few
lines of intuitive code. Since pysubgroup uses the standard pandas DataFrame
class as its basic data structure, it is easy to integrate into interactive data explo-
ration and pre-processing with pandas. By defining concise interfaces, pysubgroup
is also easily extensible and allows for integrating new algorithms and interest-
ingness measures. Based on the Python programming language, pysubgroup can
be used under Windows, Linux, or macOS. It is 100% open source and available
under a permissive Apache license.4 The source code, documentation and an
introductory video is available at http://florian.lemmerich.net/pysubgroup. The
package can also be installed via PyPI using pip install pysubgroup.

Although pysubgroup is currently still in a prototype phase it has already
been utilized in practical applications, e.g., for analyzing user motivations in
Wikipedia through user surveys and server logs [11].

2 Application Example

Next, we present a basic application example featuring the well-known titanic
dataset to demonstrate how easy it is to perform subgroup discovery with pysub-
group. In this particular example, we will identify subgroups in the data that
had a significantly lower chance of survival in the Titanic disaster compared to
the average passenger. The complete code required to execute a full subgroup
discovery task is the following:

3 http://kt.ijs.si/petra kralj/SubgroupDiscovery/.
4 Other licenses can be requested from the authors if necessary.

http://florian.lemmerich.net/pysubgroup
http://kt.ijs.si/petra_kralj/SubgroupDiscovery/

660 F. Lemmerich and M. Becker

import pysubgroup as ps

import pandas as pd

data = pd.read csv("../data/titanic.csv")

target = ps.NominalTarget (’survived’, True)

searchspace = ps.createSelectors(data, ignore=[’survived’])

task = ps.SubgroupDiscoveryTask (data, target, searchspace ,

resultSetSize=5, depth=2, qf=ps.ChiSquaredQF())

result = ps.BeamSearch().execute(task)

Fig. 1. Visualizations of result subgroups. In the bar visualization on the left, blue
bars represent discovered subgroups, green bars their complement in the data. Bar
heights indicate the ratio of instances with the property of interest, bar widths show
the number of covered instances. On the right, the embedding of the result subgroups
in ROC-space is shown. (Color figure online)

The first two lines import the pandas data analysis environment and the
pysubgroup package. The following line loads the data into a standard pandas
DataFrame object. The next three lines specify a subgroup discovery task. In
particular, it defines a target, i.e., the property we are mainly interested in
(‘survived’), the set of basic selectors to build descriptions from (in this case:
all), as well as the number of result subgroups returned, the depth of the search
(maximum numbers of selectors combined in a subgroup description), and the
interestingness measure for candidate scoring (here, the χ2 measure). The last
line executes the defined task by performing a search with an algorithm—in this
case beam search. The result is then stored in a list of discovered subgroups
associated with their score according to the chosen interestingness measure.

pysubgroup also offers utility functions to inspect and present results. In that
direction, the result subgroups and their statistics can be transformed into a
separate pandas DataFrame that can be resorted, spliced or filtered. Addition-
ally, pysubgroup features a visualization component to generate specialized sub-
group visualizations with one-line commands, e.g., to create bar visualizations

pysubgroup: Easy-to-Use Subgroup Discovery in Python 661

(cf. Fig. 1a) or to show positions of subgroups in ROC-space [4], i.e., the sub-
group statistics in a true positive/false positive space (cf. Fig. 1b). Furthermore,
pysubgroup enables direct export of results into LaTeX via utility functions. For
example, a single function call generates the LaTeX sources for Table 1.

Table 1. Example LaTeX table generated by pysubgroup.

Quality Subgroup size sg target share sg

365.887 sex = male 843 19.1%

365.887 sex = female 466 72.7%

304.403 sex = male ∧ parch: [0:1[709 16.6%

233.201 sex = female ∧ pclass = 1 144 96.5%

225.957 sex = male ∧ embarked = S 623 17.0%

3 Conclusion

This demo paper introduced the pysubgroup package that enables subgroup dis-
covery in a Python/pandas data analysis environment. It provides a lightweight,
easy-to-use, extensible and freely available implementation of state-of-the-art
algorithms, interestingness measures and presentation options.

References

1. Atzmueller, M.: Subgroup discovery. Wiley Interdiscipl. Rev. Data Min. Knowl.
Discov. 5(1), 35–49 (2015)

2. Atzmueller, M., Lemmerich, F.: VIKAMINE – open-source subgroup discovery,
pattern mining, and analytics. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 842–845. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33486-3 60

3. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283
(1989)

4. Flach, P.A.: The geometry of ROC space: understanding machine learning metrics
through ROC isometrics. In: International Conference on Machine Learning, pp.
194–201 (2003)

5. Herrera, F., Carmona, C.J., González, P., Del Jesus, M.J.: An overview on subgroup
discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2010)

6. Kavšek, B., Lavrač, N.: APRIORI-SD: adapting association rule learning to sub-
group discovery. Appl. Artif. Intell. 20(7), 543–583 (2006)

7. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271. American Asso-
ciation for Artificial Intelligence (1996)

https://doi.org/10.1007/978-3-642-33486-3_60

662 F. Lemmerich and M. Becker

8. Lemmerich, F., Becker, M., Puppe, F.: Difference-based estimates for
generalization-aware subgroup discovery. In: Blockeel, H., Kersting, K., Nijssen,
S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 288–303.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3 19

9. Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup
patterns. In: International Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS), pp. 428–433 (2010)

10. Meeng, M., Knobbe, A.: Flexible enrichment with Cortana-software demo. In: Pro-
ceedings of BeneLearn, pp. 117–119 (2011)

11. Singer, P., et al.: Why we read Wikipedia. In: International Conference on World
Wide Web (WWW), pp. 1591–1600 (2017)

12. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9 108

13. Zimmermann, A., De Raedt, L.: Cluster-grouping: from subgroup discovery to
clustering. Mach. Learn. 77(1), 125–159 (2009)

https://doi.org/10.1007/978-3-642-40994-3_19
https://doi.org/10.1007/3-540-63223-9_108

	pysubgroup: Easy-to-Use Subgroup Discovery in Python
	1 The pysubgroup Package
	2 Application Example
	3 Conclusion
	References

