
Computational Approaches
for Connecting Maternal

Stress to Preterm Birth
Amin Mirzaei, MSa, Bjarne C. Hiller, MSa, Ina A. Stelzer, PhDb,
Kristin Thiele, PhDd, Yuqi Tan, PhDc, Martin Becker, PhDa,*
KEYWORDS

� Stress � Preterm birth � Machine learning � Artificial intelligence

KEY POINTS

� Multiple studies hint at a complex connection between maternal stress and preterm birth
(PTB), with PTB being the predominant cause of neonatal deaths globally.

� Novel technologies allow the profiling of stress exposures and responses in unprece-
dented ways and open avenues like the integration of multiple aspects of stress, contin-
uous monitoring, or biological multiomics profiling.

� Machine learning and artificial intelligence methods can help reveal the underlying pro-
cesses of stress and PTB but are currently not used to their full potential.
INTRODUCTION

Preterm birth (PTB), that is, a delivery before the 37th week of gestation, is the pre-
dominant cause of neonatal deaths,1 and it can lead to severe long-term complica-
tions for mother and child.2,3 Approximately 1 in 10 babies is born prematurely
in the United States, incurring societal costs estimated at US$25.2 billion in 2016.4

While the mortality rate of children aged under 5 years has significantly declined since
1990, the worldwide rate of PTB has, however, only been reduced slightly over the last
decade, 13.4 million estimated in 2020,1 urging for the development of effective and
accessible interventions.
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Various environmental, biological, and socioeconomic factors contribute to PTB,
such as maternal health, genetics, lifestyle choices, socioeconomic conditions, envi-
ronmental temperature, and, particularly, physiological and psychological stressors.3

Although the association between prenatal stress and PTB has been examined in
numerous studies,5 the complexity and heterogeneity of stress perception and its con-
sequences for maternal immune tolerance toward the fetus makes it difficult to gain a
comprehensive understanding of functional links.5 Therefore, to enable the process of
introducing stress-lowering interventions into routine pregnancy care, an in-depth un-
derstanding of the connections between stress and PTB are urgently required.
The term “stress” lacks precision and a universal definition is difficult. Stress can be

defined as an individual’s perceived capacity to manage external demands,6 which
may lead to disturbances, irritations, and/or anxiety and contribute to impairments
in mental and physical well-being. In this context, stress perception is personal and
based on internal stressors related to a person’s character and their own self-
expectations, aspirations, and perfectionism as well as external stressors including
various factors such as environmental noise or extreme temperatures, and personal
financial problems or life-changing events.7,8 Particularly, pregnant women face
“pregnancy-specific stress” involving the health of their fetus and their own well-
being, anxiety about labor, and concerns related to impending parenthood.9 However,
the impacts on mother and fetus strongly depend on the severity of the stressor, its
duration, time point of exposure during gestation, a person’s resilience, existing
coping strategies,10 and the availability of social support11 demonstrating the high
interindividual variabilities. Hence, a wide array of stress assessment tools is required
to capture the multifaceted range of stress factors and susceptibility.12,13

The underlying processes of how stress affects biological systems in PTB are also
complex. To ensure proper fetal growth and development, the maternal immune sys-
tem actively adapts to the semiallogeneic fetus to establish and maintain immune
tolerance.14,15 This includes the adjustment of the immunologic processes,16 which
are highly vulnerable to disruption by environmental factors including prenatal stress.
Stress responses are connected to the autonomic nervous system and the hypotha-
lamic–pituitary–adrenal (HPA) axis, which can affect various biological pathways,
including neuro-endocrine-immune balance. The associated increase in cortisol pro-
duction due to prenatal stress can reduce progesterone (P4) production and conse-
quently to the disruption of its immune suppressive capacity17 leading to immune
inflammation. In addition to this stress-induced neuro-endocrine-immune imbalance,
the cardiovascular system (eg, changing the heart rate, blood pressure of mother and
fetus), on the metabolic system (eg, release of glucose and fats to facilitate energy
availability), as well as the behavioral patterns (eg, such as harmful behaviors like
smoking) can also be impacted,3,18 which all can further aggravate endocrine and im-
mune system as well as other biological systems via indirect pathways.
The complex interaction between prenatal stress and PTB calls for a holistic

approach incorporating a full characterization of physiological and psychological
stressors and the study of underlying biological pathways. To this end, the use of vali-
dated questionnaires allows the evaluation of various factors across different psycho-
metric domains, electronic health records (EHRs) store demographic information and
patient history, and recent biotechnological advancements toward high-throughput,
multiomics approaches enable the measurement of biological systems in a compre-
hensive, untargeted manner,19 for example. Integrating these different modalities,
advanced computational tools from the field of machine learning (ML) and artificial in-
telligence (AI) hold the potential to untangle and understand the underlying processes
and risk factors for PTB. However, computational tools have only recently been
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employed to address PTB.20–22 Here, we provide an overview of the current ap-
proaches that apply modern computational tools to study the association between
stress and PTB. We also discuss how novel methods from the field of ML and AI
can further enhance the study of stress and PTB. We believe that applying these
methods can help shape the direction of future research in this domain. An overview
of the content covered here is illustrated in Fig. 1.
METHODS AND MODALITIES FOR ASSESSING AND QUANTIFYING STRESS

Stress is typically assessed from 2 perspectives23: (1) stressor exposures, that is,
discrete events with the potential to affect an individual’s psychological or physiologic
performance and (2) stress responses, which includes behavioral, cognitive, biolog-
ical, and emotional reactions to stressors. The following sections cover common as
well as ML-enabled methods for assessing stress.

Questionnaires for Measuring Stressor Exposures and Stress Responses

For the measurement of stressor exposures and stress responses, many different vali-
dated guidelines and tools exist, for example, as provided by the Stress Measurement
Network.12 This particularly includes questionnaires.
Negative life events, racism and discrimination,24 lack of social support,25 and do-

mestic abuse26 are examples of stressor exposures that are associated with PTB and
measured using questionnaires. Questionnaires have also been utilized to collect sur-
rogates for stressor exposures, such as sociodemographic data, social interaction,
and lifestyle profiles. In the context of PTB, commonly studied sociodemographic fac-
tors include age, race, socioeconomic status, marital status, education, income, med-
ical history, alcohol consumption, and smoking.27

In addition to measuring stressor exposures, questionnaires are also used to assess
stressor responses of the mothers before, during, and after pregnancy. The Center for
Epidemiological Studies Depression Scale, Prenatal Distress Questionnaire (PDQ),
Pregnancy Specific Anxiety Measures, and the Perceived Stress Scale (PSS) are
questionnaires used to measure stress responses, including depression, distress,
anxiety, and perceived stress during pregnancy.8

Toward Objective Methods for Stress Response Measurements with Machine
Learning

While using questionnaires to assess stress responses can be helpful to capture
personalized and compound effects, their results can be highly subjective due to self-
reporting of perceived stress and prone to questionnaire-specific limitations, such as
method biases or variabilities between individuals.23 Therefore, while potentially not
covering the full spectrum of perceived stress,28 the implementation of objective stress
response measures, such as biological or physiological markers, may be useful.
For example, biomarkers can be employed to assess stress response on a systemic

level. Cortisol in blood, salvia, and hair is a marker of short-term and long-term
stresses and reflects prolonged HPA axis activity. Significantly different levels have
been reported in mothers with term and PTBs in the third trimester.29,30 Also, serum
levels of various cytokines released from inflammatory pathways are indicative of
stress responses, for example, interleukin-6.31 At the same time, emerging high-
throughput multiomics technologies enable unprecedented insights into stress re-
sponses and PTB by using ML methods,32–34 demonstrating their potential to identify
pathways connecting stress, biology, and PTB. However, measuring and evaluating
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Fig. 1. Computational framework for analyzing the dynamic interplay between stress and PTB. (A) The image illustrates different assessment strategies
to assess stress exposure and responses, yielding diverse modalities (B). These data types can be integrated by multimodal (B) multitask (D) ML models
for a more holistic understanding of stress and PTB. (C) Similarly, unsupervised ML leverages identifies subgroups within across mothers and risk factors.
(E) Explainability methods help understand complex ML methods.
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biomarkers can be costly and time consuming and may be better suited for under-
standing underlying biological processes rather than for routine monitoring.
On the other hand, the Wearable Stress and Affect Detection dataset35 illustrates

more accessible and cost-effective tools that also enable long-term stress monitoring
by ML. It incorporates a breadth of physiologic factors measured by wearable devices
including blood volume, heart rate, electrical heart, skin, andmuscle monitoring, respi-
ration, body temperature, and physical activity, and uses ML methods to predict
stress. Similarly, using ML, behavioral markers for stress can even be derived from so-
cial media comments, or even patterns from keyboard or mouse usage.36,37 In the
context of maternal stress, Bilal and colleagues,38 collected a diverse dataset, incor-
porating questionnaire responses, mothers’ voices, mobility metrics, smartphone us-
age patterns, data usage, and sleep patterns through a smartphone app designed to
predict perinatal depression and PTB. Sarkar and colleagues39 estimated cortisol
levels, PSS, and PDQ stress scores of mothers from abdominal electrocardiograms
(aECG), both using artificial neural networks. Finally, Ravindra and colleagues40

employed a similar approach to predict gestational age at birth (GAB) from pregnant
women’s physical activity and sleep patterns, and indirectly established a connection
between maternal stress and PTB.41
COMPUTATIONAL APPROACHES FOR UNDERSTANDING THE CONNECTION
BETWEEN STRESS AND PRETERM BIRTH

The field of computational methods to study complex systems and their potential to be
applied to stress and PTB is large. Here, we briefly review common univariable
methods42 (studying the connection between PTB and a single stress-related variable)
as well as multivariable methods43 (modeling the connection between PTB and multi-
ple stress-related variables simultaneously). We then elaborate on ML methods that
either have been applied in the context of stress and PTB or have the potential to
significantly impact this domain. Table 1 provides an overview of studies representa-
tive of applying the methods mentioned in this section.

Univariable and Multivariable Methods

Univariable analyses focus on the associations of each individual variable in a dataset
(eg, anxiety level) to an outcome (eg, PTB). It can be used to study individual risk fac-
tors for PTB or to select variables for subsequent experiments or multivariable ana-
lyses.44 Univariable associations measured by relative risks, odds ratios, or
statistical tests have been used to identify potential stress-related risk factors related
to PTB, including unintended pregnancy, lack of perceived social support, and
pregnancy-related anxiety.24,45

In contrast to univariable methods, multivariable methods consider a combination of
multiple explanatory variables simultaneously (eg, various stress and demographic
factors) and assess their combined impact on the outcome—such as PTB or
GAB.46 While this collective approach may disregard individual effects of variables,
the joint effects of factors such as stress-related variables, negative life events, racism
and discrimination,24 lack of social support,25 and domestic abuse26 have shown as-
sociations with PTB beyond univariable results. Common multivariable methods
include linear regression, logistic regression, Poisson regression, and proportional
hazard regression.47 Note that such methods can be used to find multivariable rela-
tionships per se, or they can be used in predictive settings (eg, to estimate the risk
of PTB in unseen patients).47 However, particularly for predictive settings, ML
methods can capture more complex relationships.46



Table 1
Overview of selected supervised and unsupervised computational methods utilized in analyzing stress and preterm birth. An "x" marks the covered aspects
of the study.

Article, Year Objective Univariable Multivariable Supervised Unsupervised Multimodal Multitask Method Data Description

Sarkar et al,39

2021
Classification:

chronically
stressed
mothers vs
controls

Regression: PSS,
PDQ values,
and maternal
hair cortisol
level

— x x — — — Deep learning aECG data

Ravindra et al,40

2023
Regression:

Gestational
age

— x x — — — Deep learning Wearable sensor
data

Huang et al,22

2021
Classification:

PTB
x x x — x — Lasso logistic

regression,
SVM

Cortisol and
metabolites
along with
psychological
questionnaires

Waynforth
et al,52 2022

Classification:
PTB

— x x — — — Random forest Questionnaire-
based data

Becker et al,20

2022
Classification:

Pregnancy
complication

x x x — x x Deep learning Stress
questionnaires
and single-cell
immune system
data

Lee et al,51 2021 Classification:
PTB

— x x — x — Random forest Demographic,
socioeconomic,
particulate
matter in air

M
irza

e
i
e
t
a
l

6



Becker et al,21

2023
Classification:

PTB
x x x — — — SVM Chronic stress

and
psychosocial
factors

Garcı́a-Blanco
et al,53 2017

Regression:
Gestational
age

— x x — x — Parametric
survival model

Cortisol,
a-amylase, age,
parity

Vovsha et al,54

2014
Classification:

PTB
— x x — x — SVM and logistic

regression
Demographic,
vaginal
microbiota,
cervical
examination,
and cervical
and vaginal
fetal
fibronectin,
questionnaire-
based data

Maxson et al,60

2016
Subgroup

analysis
— x x x — — k-means

clustering
Psychosocial
health
measures

Molenaar et al,80

2023
Subgroup

analysis
x x x x — — Latent class

analysis
Self-reported
data

The breadth of applicable methods from ML and AI to understand the connection between stress and PTB is shown.
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Supervised Machine Learning Methods for Preterm Birth Prediction Based on
Stress-Related Variables

To fully capture the multilayered network of interactions between stress and PTB,
recent work moves toward methods from ML and AI, following similar trends in the
general study of adverse pregnancy outcomes48,49 allowing for nonlinear relation-
ships. Predominantly, the methods employed in this context are supervised (see
Table 1), aiming to establish relationships between stress and PTB and a multitude
of variables simultaneously by leveraging labeled data to predict outcomes like PTB
for unseen patients.

Multivariable machine learning
Many ML algorithms exist to predict an outcome like PTB from multiple variables
simultaneously in a nonlinear manner. This includes, for example, methods like sup-
port vector machines (SVMs) to predict PTB from stress-related variables.21 Other
applicable methods include random forests, XGBoost, or artificial neural networks.46

However, these methods work on tabular data only with a fixed set of variables per
patient and a single outcome limiting their capabilities to capture a holistic picture
of stress and PTB.

Multimodal machine learning
Multimodal ML considers multiple sources of information to predict outcomes.50 This
can be particularly useful when not only stress-related variables are of interest but also
information from other modalities such as multiomics data and biomarkers like
cortisol, cervical length, or selected EHR variables. Modern deep-learning methods
can even directly integrate imaging or time series data with limited manual prepro-
cessing.50 In the context of stress and PTB, a particular use case may be integrating
stress-related variables with imaging modalities such as transvaginal ultrasound.
Rudimentary versions of multimodal modeling have been applied in studies concern-
ing stress and PTB. For example, some articles combine different questionnaires to
assess the psychological, parental health, social, demographic, economic, and
behavioral risk factors of mothers and used SVMs or random forests to predict
PTB.21,51,52 Others incorporated more diverse modalities of measures such as
cortisol, a-amylase level, various metabolites, vaginal microbiota, cervical examina-
tion, and cervical and vaginal fetal fibronectin, alongside subjective measures.22,53,54

While such studies already demonstrate the potential of multimodal ML to simulta-
neously consider different aspects of stress, they do not yet fully exploit the capabil-
ities of directly integrating diverse modalities such as imaging, text, or time series data.
However, such approaches may hold the potential to better model and understand the
complex cross talk among stress, various biological systems, and PTB.

Multitask machine learning
Pregnancy complications are rightly interrelated.20,55 Thus, modeling multiple preg-
nancy complications together PTB can greatly improve the understanding of their in-
terrelations as well as increase the predictive power of the model.20 In this context,
multitask models are designed to predict multiple outcomes.56 While multitask
learning has been employed in different studies related to pregnancy and child
health,57,58 it is not employed frequently for studying the connection between stress
and PTB. Becker and colleagues20 first used multitask neural networks to predict mul-
tiple outcomes simultaneously including early gestational age (as a proxy for PTB) as
well as pre-eclampsia, superimposed pre-eclampsia, gestational diabetes, body
mass index, diabetes, and hypertension based on an extensive set of stress variables
assessed by questionnaires. The authors demonstrated that predicting GAB using a
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multitask ML approach can increase prediction power and help understand the rela-
tionship between pregnancy complications, compared to a single-task setup. This
points toward the potential of multitask approaches to capture more intricate relation-
ships of the underlying processes of adverse pregnancy outcomes like PTB and mo-
tivates a more holistic approach of studying the connection of stress and adverse
pregnancy outcomes rather than isolating PTB.

Unsupervised Machine Learning Methods

Unsupervised ML methods, in contrast to supervised ML methods, have no knowl-
edge about the modeled outcome (eg, PTB) and try to find hidden patterns in the
data.59 They can play an important role in stress and PTB studies by enabling the
exploration of patterns within complex datasets.49 Clustering, a fundamental unsuper-
vised technique can categorize pregnancies into groups based on similar stress pro-
files, aiding in the discovery of patterns associated with pregnancy outcomes such as
PTB. For example, the k-means algorithm has been used to discover clusters of stress
resiliency (defined based on measures of paternal support, perceived stress, social
support, depression, and self-efficacy) that were associated with different
pregnancy-related complications including PTB.60 Similarly, latent class analysis
was used in multiple studies to divide a population of pregnant women into several
subpopulations and then compare the rate of PTB in each subpopulation.61,62

Similar methods can be used to cluster stress-related variables to gain deeper in-
sights into the relationships between various stress factors and how groups of similar
stress-related variables are associated with PTB. For example, Becker and col-
leagues21 clustered stress-related variables according to their correlation profiles us-
ing k-means clustering. They found prominent clusters of similar variables, like
perceived pregnancy risk, health concerns, and emotional state, which were highly
associated with PTB.
Overall, unsupervised learning, especially cluster analysis, enables the discovery of

multidimensional stress-related phenotypes for PTB, potentially enabling more pre-
cise profiling and more effective stress interventions.

CONFOUNDING FACTORS AND CAUSALITY IN COMPUTATIONAL METHODS

By integrating increasingly complex data using ML and AI methods, particularly in pre-
dictive, that is, supervised, settings, unexpected confounders can cause misleading
interpretations.63 Similarly, the common focus of ML methods on predictive settings64

promotes associative analyses and neglects causal connections.

Confounders

Premature contractions, or previous premature delivery, can be considered to influence
stress and PTB simultaneously.65 However, even if such confounding variables are
excluded from the data, ML methods may pick up related signatures from other vari-
ables, for example, a combination of lifestyle factors or biological profiles.66 Thus, ac-
counting for such factors is essential, for example, by comparing the final results (eg,
trainedmodel for PTB prediction) withmodels derived from distinct subgroups of poten-
tial confounding factors67 (eg, groups with and without previous premature delivery).
Alternatively, propensity score matching is used to define case and control groups
where the influence of potential confounding factors is limited by creating groups that
are balanced in terms of observed covariates.68 Studies employing ML methods tend
to recognize potential issues with explicit as well as hidden confounding factors and
list them as limitation.20 However, novel studies applyingML needs to carefully consider
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confounding factors and appropriate counter measures due to the capability of ML to
uncover hidden and potentially unintended patterns.69,70

Causality
The sensitivity of MLmethods to confounders is rooted in their focus on predictive set-
tings,64 thus finding associations but not causal pathways. However, computational
tools exist that allow testing hypothesized (causal inference) and discovering novel
causal relationships (causal discovery).71 The field of causal inference is concerned
with testing whether 2 variables are related and assessing the impact of one on the
other. For example, Harris and colleagues72 found a causal association between a
preconception maternal stress and offspring birth. However, such approaches for
learning causal effects require hypothesizing causal structures. To address this, the
field of causal discovery aims to learn such relations directly from the data. A wide va-
riety of algorithms can address this issue.71 For example, Mesner and colleagues27

use the Peter–Clark algorithm to derive a causal graph illustrating the interactions be-
tween various stressors, demographic factors, and biomarkers in relation to different
pregnancy outcomes, including PTB. While this shows the potential of causal discov-
ery to understand the relation between risk factors and PTB and potentially derive
novel interventions, neither computational causal inference nor causal discovery
methods are common tools in this field.

INTERPRETABILITY AND EXPLAINABILITY OF MACHINE LEARNING MODELS

ML and, particularly, deep learning approaches often produce black box models, that
is, even if an ML model accurately predicts PTB risk from a set of stress-related fac-
tors, it may not be clear which factors it used and how they were used to derive the
risk. This can be a major hindrance in understanding the underlying processes.
Some studies use univariable analysis as a surrogate for identifying candidates for
the most influential stress-related variables associated with the PTB,21 others use
models that are inherently interpretable such as linear regression.45 However, most
state-of-the-art ML models like SVMs, gradient boosting machines, for example,
XGBoost, and particularly deep learning models73 remain opaque even to domain ex-
perts due to their high number of parameters. Although explainable AI (XAI) and inter-
pretable ML are still active fields of research, there is already a wide arsenal of post
hoc explanation methods available for these approaches.74 This includes Shapley
values, which originated from cooperative game theory to compute the contribution
of each player in a coalition game. In the context of predicting PTB from EHR data,
Shapley Additive Explanations (SHAP)75 have been used to determine the individual
contributions of clinical input features to PTB risk predictions,76 allowing to identify
the factors most relevant for the model’s decision. Similarly, Ada and colleagues77

used SHAP values to conclude that the number of consecutive stress minutes is highly
predictive for the physiologic stress of the next day, and PSS has the most effect on
the next day’s perceived stress. Thus, despite the limitations of state-of-the-art XAI
methods (eg, no integrated causal or effect modification discovery55,62), it is already
possible to overcome the black box nature of ML models74 to some extent to gain
deeper insights into the connection between stress and PTB, potentially leading to
the discovery of novel intervention methods.

DISCUSSION

The different aspects of stress exposure and response are hard to capture and isolate.
Thus, studying the underlying processes of the relationship between stress and
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adverse pregnancy outcomes like PTB is a challenging task. However, novel technol-
ogies, for example, wearable sensors,35 novel biomedical assays (eg, single-cell anal-
ysis),20 or social media monitoring,36 can give deeper insights by connecting objective
observations to the more common subjective information collected by question-
naires.13 However, the increasing amount and variety of data pose challenges on
how to integrate and analyze this data to connect the captured stress-related patterns
to PTB and from there derive accessible interventions. We believe that the quickly pro-
gressing development in the field of ML and AI can provide the tools to accomplish
this.
While we have seen that ML, in general, is already applied in a significant number of

studies relating stress to PTB, these studies currently do not exploit the full potential of
available ML and artificial ML methods. For example, while some studies combine
multiple modalities (eg, questionnaires and biomarkers), they are often limited to fea-
tures that are manually crafted from more complex modalities53 and do not employ
full-fledged multimodal models.50 The handcrafting process can severely limit the
amount of information extracted from modalities such as time series data (eg, accel-
erometer data, heart rate, ECG, or even continuous questionnaires collected via
smartphones)38 compared with allowing ML methods access to the complete time se-
ries. Similarly, multitask learning is an established field in the ML community and has
only recently been applied to study the connection between stress and PTB in order to
gain a more holistic picture by jointly modeling a variety of adverse pregnancy out-
comes.20 Beyond these relatively straightforward applications, the first articles already
point toward explicitly modeling joint connection of the pathway from stress over
biology to adverse pregnancy outcomes20 and motivate combining multimodal and
multitask methods as applied in other disciplines.78 Finally, novel developments like
large language models, for example, ChatGPT, may help to better understand the
complex connections in unstructured or even multimodal data.79

We have also pointed out the limitations of current ML models including their black
box and ultimately associative nature. Current research is actively developing
methods to mitigate these limitations including explainability as well as causal infer-
ence and discovery methods.27,72,77 Particularly, the latter may allow to go beyond
predictive settings ultimately leading to the development of novel interventions.

SUMMARY

Stress and PTB are tightly interwoven. We advocate a more holistic approach of
studying this connection enabled by computational methods: One the one hand, by
integrating not only commonly used subjective measurements of stressor exposures
and stress responses, but also objective measures, for example, physiological as well
as biological modalities. And on the other hand, by integrating PTB into the more ho-
listic context of other adverse pregnancy outcomes, we believe that ML and AI
methods have the potential to open novel avenues for studying the complex relation-
ship of stress and ultimately yield novel, easily accessible interventions.
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Best Practices
What is the current practice for employing computational methods to study the
connection between stress and PTB?

� Many different measurement modalities are used to assess stressor exposures and stress
responses and study its connection to PTB.

� Current methods are not exploiting the full potential of the quickly evolving fields of ML and
AI.

What changes in current practice are likely to improve outcomes?

� ML and AI can unlock novel and more comprehensive profiling of stress responses, for
example, through wearable devices or deep biological profiling.

� Multimodal andmultitask MLmay help to integratingmultiple modalities for understanding
the complex connections between stress and PTB as part of a more holistic view on adverse
pregnancy outcomes.

� XAI methods can help to derive insights into otherwise black box ML methods to help
identify novel stress-related interventions.
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