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High-throughput single-cell analysis technologies produce an abundance of data that is cri-

tical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.

com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and compre-

hensive visualization of the heterogeneity captured in large single-cell datasets. In three mass

cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of

samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo

further outperforms state-of-the-art machine learning algorithms in classification tasks, and

identified immune-correlates of clinically-relevant parameters.
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H igh-throughput single-cell analysis technologies offer key
opportunities to investigate cellular heterogeneity at the
levels of both gene and protein expression. However,

uncovering a common set of phenotypically and functionally
distinct cell populations from hundreds of millions of cells over
hundreds of samples is a significant machine learning challenge
that can be further complicated by batch effects and noisy
measurements1.

Phenotypically-homogeneous cell populations can be identified
through both unsupervised1–6 and supervised7,8 approaches.
Single-cell data can further be linked to patient phenotypes
through the use of classification-based methods9,10 or through
rigorous statistical testing approaches6,11. CellCNN9 and
CytoDX10 use single cells as input, rather than features extracted
from computationally identified cell populations3. Independent
from directly specifying a classification problem, though still
making use of patient phenotypes, Diffcyt6 and Cydar11 belong to
an additional class of algorithms that use patient labels for sta-
tistical testing to identify differentially-abundant or functionally-
unique cell populations.

Unsupervised cell population discovery followed by feature
extraction facilitates biological interpretation and predictive
power in clinical applications3. Specifically, features engineered
from computationally-identified cell populations can capture
differences in cell-frequency or functional responsiveness between
phenotypic classes. Many of these clustering-based algorithms are
stochastic2,4,5 and lead to variable cell-to-cluster assignments
across algorithm runs. Previous work has acknowledged the
implications of stochasticity in the interpretation of automated
cell-population discovery results12 and systematically analyzed
the downstream effects of different sources of randomization in
single-cell analyses13. However, to the best of our knowledge, no
prior work has examined how stochasticity in cell-to-cluster
assignments can lead to variation in engineered features and
corresponding classification accuracy.

Motivated by the objective to efficiently engineer a set of
interpretable and biologically-meaningful features from single-
cell data, we examined the effects of clustering algorithm sto-
chasticity on classification accuracy. Our analysis revealed that
individual clustering solutions generated corresponding features
that lead to variability in classification accuracy. In this work, we
focused on how to leverage the diverse information content in
each individual solution obtained from a stochastic clustering
algorithm for improved prediction accuracy and interpretability
in clinical settings.

VoPo (The name VoPo is an abbreviation for the concept of
Vox Populi published by Sir Francis Galton in Nature more than
a century ago, where he demonstrated that heterogeneity in
estimations can be leveraged for more accurate predictions14) is a

machine learning algorithm focused on cell-population discovery,
robust predictive modeling, and visualization of the cellular
correlates of patient phenotype. VoPo’s cell-population discovery
method is readily scalable and enables the integration of a large
number of samples without any downsampling, ensuring that
rare cell types15 can be adequately identified. The clustering
component of VoPo does not rely on an individual cell-to-
population partition, but instead integrates multiple clustering
solutions to predict patient phenotype. In doing so, VoPo
increases classification accuracy and has less variability compared
to individual solutions. VoPo further links these identified cell
populations with additional clinical information to provide a
comprehensive understanding of the cell types and signaling
pathways associated with a particular clinical phenotype.

Results
Algorithm overview. Following single-cell profiling of a cohort of
subjects (Fig. 1a), VoPo performs individual-sample clustering
(Fig. 1b), between-sample repeated metaclustering and feature
engineering (Fig. 1c), unsupervised feature selection (Fig. 1d),
classification (Fig. 1e), and visualization (Fig. 2a–c). VoPo was
tested across three diverse immunological datasets profiling
immune response to surgery, normal term pregnancy16, and
recovery from stroke17.

VoPo uses a downsampling-free metaclustering strategy. The
metaclustering technique allows for the efficient integration of all
cells across all samples. All live cells (DNA+CD235−CD61−

cPARP−) from each sample are first clustered based on both
functional and phenotypical markers (Fig. 1b). Cluster centers
(e.g., the mean expression of the markers across all cells within a
cluster) identified across samples are then re-clustered to form
metaclusters (Fig. 1c). As stochastic clustering algorithms
produce different cell-to-metacluster solutions across individual
runs, the metaclustering step is run multiple times to produce
multiple independent cell-to-metacluster solutions for each
sample. For further downstream analysis and interpretation,
identified metaclusters are curated by an expert investigator and
mapped to known cell types based on median marker expression
(Fig. 2a–c).

For each metaclustering result, we engineer a set of frequency-
based features encoding the proportion of each sample’s cells
assigned to each metacluster. Since both phenotypical and
functional markers were used in the metaclustering steps, these
frequency-based features provide an efficient joint representation
of cellular phenotypes and functions. Running VoPo with K total
clusters per metaclustering iteration with I total metaclustering
solutions results in K × I total engineered frequency-based
features. As a result of repeated metaclustering, the engineered
features are distinct yet highly correlated. To reduce redundancy,
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Fig. 1 An overview of the VoPo pipeline for robust clinical outcome prediction. VoPo is an end-to-end bioinformatics pipeline for prediction and
visualization of high-throughput single-cell data. a Patient samples are collected and the immune system is profiled at a single-cell level (image created
with BioRender.com). b Cells from individual samples are first assigned to within-sample clusters. c A collection of cell populations (metaclusters) common
to all samples is defined through repeated metaclustering. Each uniquely colored graph is a schematic representation of a unique metaclustering solution,
with each node representing a metacluster. d Unsupervised Laplacian Score-based feature selection is applied independently to each metaclustering
solution to reduce feature redundancy. This results in a collection of features acquired collectively across the independent metaclustering solutions. The
color of a node (e.g., retained metacluster) schematically represents the metaclustering solution where it was produced (from c). e The features retained
across independent metaclustering solutions are integrated and used to classify patients according to clinical phenotype.
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an unsupervised feature selection approach18 is applied indepen-
dently to the set of engineered frequency features produced by
each metaclustering solution (Fig. 1d). Metaclusters passing
feature selection are used to construct a sample-by-feature matrix
to be input to a classification pipeline (Fig 1e). An ensemble
leave-group-out cross validation strategy is used to make multiple
predictions for each sample (see “Methods” section).

Applying VoPo to three mass cytometry datasets. VoPo was
tested in three datasets measuring whole system peripheral
immune responses through mass cytometry19. This assay allows
for the detailed phenotyping of major innate and adaptive
immune cell subsets and assessment of intracellular signaling
activities (Supplementary Tables 1, 2, and 3). Mass cytometry has
shown to be useful in a number of translational settings, including
graft versus host disease20, autoimmune diseases21, vaccine
response22, and selective T-cell differentiation23. In this work, the
tested datasets span diverse clinical applications, including, hip
surgery recovery (HSR)24, normal term pregnancy (NTP)16, and
longitudinal stroke recovery (LSR)17. For direct comparison, all
three datasets were evaluated with a case–control analysis. That is,
a supervised binary classification task was formulated based on
the frequency-based features computed across metaclustering
solutions.

We studied how integrating features generated through
repeated metaclustering leads to higher classification accuracy
than the average of those obtained from single metaclustering

solutions. Fifty metaclustering solutions were generated with
K′= 50 metaclusters in the HSR, NTP, and LSR datasets,
respectively. After applying unsupervised locality-preserving
feature selection to the collective set of metaclustering-based
features to retain 40 clusters per metaclustering iteration (see
Supplementary Figs. 3 and 17), the classification pipeline was run
and area under the receiver operator curve (AUC) was used as the
metric of success. The single clustering (black) and repeated-
clustering (pink) distributions of AUCs are visualized for each of
the three datasets in Fig 2d. To generate the distribution of
baseline classification accuracies (black), we repeatedly selected a
random individual metaclustering solution from the fifty that
were generated and input its associated features to the
classification pipeline. The procedure was repeated 100 times
with each datapoint corresponding to a unique, randomly
selected metaclustering solution from the fifty that were
generated. Similarly, the VoPo classification accuracy distribution
(pink) was generated by inputting the frequency features
(retained after feature selection) across all 50 metaclustering
solutions into the classification pipeline over 100 trials. Across the
three datasets, features obtained through repeated metaclustering
with VoPo lead to higher classification accuracy over the baseline,
with mean AUCs of 0.75, 0.71, and 0.72 in the HSR, NTP, and
LSR datasets, respectively. This compares to the mean baseline
AUCs in the HSR, NTP, and LSR datasets of 0.74, 0.68, and 0.70.
Notably, the variance in classification accuracy was significantly
decreased by building models based on features engineered from
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Fig. 2 Applying VoPo to three mass cytometry datasets. Single-cells across samples were projected into two dimensions using tSNE in the HSR (a), NTP
(b), and LSR (c) datasets. Cells were colored by their computed differentiation score, which depicts the degree of association with the clinical outcome of
interest. Cells that are brightly colored likely belong to cell populations that are strongly associated with a particular clinical outcome. The direction of
frequency differences between case and control samples is shown in Supplementary Figs. 7, 10, and 15. d Integrating features extracted over the fifty
metaclustering solutions with VoPo (pink boxplots) resulted in higher classification accuracy (AUC) over the baseline case where VoPo was not applied
(black boxplots) across the three datasets. The boxplots show median values, interquartile range, whiskers of 1.5 times interquartile range, and all individual
points.
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all metaclustering solutions, as opposed to choosing any of the
individual solutions. VoPo also resulted in higher classification
accuracy over several baseline algorithms across datasets (Fig. 3,
Supplementary Figs. 4–5).

Visualizing the immune correlates of clinical outcome. To
study the immunophenotypes associated with a clinical outcome,
VoPo computes user-defined statistics on the identified cell
populations and maps this information onto individual cells. Such
an approach enables a classic single-cell visualization with addi-
tional information related to the clinical variable of interest, as
opposed to cluster-level visualization3–5. In each dataset, thirty-
thousand cells were extracted across samples and projected into
two dimensions with t-SNE25 based on both phenotypical and
functional marker expression (Fig. 2a–c). Cell populations were
annotated using phenotypic and functional marker expression
(see Supplementary Figs. 6, 9, and 14 for HSR, NTP, and LSR
datasets, respectively). While we used t-SNE, the visualization
step is compatible with a variety of dimensionality reduction
algorithms (Supplementary Figs. 8, 11, and 16). Then, each cell is
colored based on its association with the clinical phenotype of
interest by computing a differentiation score. First, a similarity
measure is computed between each cell and each identified cell-
population (metacluster) based on both phenotypic and func-
tional markers. Each cell-population identified through meta-
clustering has an associated significance score (e.g., fold change)
reflecting the extent of frequency difference between case and
control samples (see “Methods” section). The differentiation

score for a particular cell is a linear combination of the sig-
nificance scores for each cluster, where the corresponding weights
are proportional to the cell-to-metacluster similarity. The
resulting visualization allows for the efficient identification of the
particular cell types that can differentiate patient phenotypes.

Because clustering is performed using live cells, all major
innate and adaptive immune cell populations contribute to the
classification task. For the purpose of interpretation, CD45+

CD66+ granulocytes, which are the most frequent among all cells,
are excluded during the visualization steps to ensure comprehen-
sion and enhance identification of smaller populations.

Results in the HSR, NTP, and LSR datasets. Longitudinal per-
ipheral blood samples were collected from 58 patients undergoing
hip surgery. Samples were collected before and at 1, 6, 24, 48 h,
and 2 weeks after surgery. Patients were either given the gluco-
corticoid (GC) methylprednisolone (N= 30) or a placebo treat-
ment (N= 28)24. This dataset consisted of 115 million cells from
331 samples. The respective classification task was to predict
whether a sample was collected from a patient (at any time point)
receiving GC or placebo treatment. Visualization of individual
cluster frequency differences between the two patient groups
(Fig. 2a) revealed broad alterations in innate and adaptive
immune cell frequencies. Consistent with prior studies, the most
prominent changes included decreased frequencies of monocytes
(including classical, cMCs, and nonclassical, ncMCs, monocytes)
and CD4+ T cell subsets (Supplementary Fig. 7) in GC-treated
patients. These cell types contain high levels of the signaling
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Fig. 3 Applying the VoPo framework across clustering algorithms. Implementing repeated metaclustering within the VoPo framework improved accuracy
and increased robustness across datasets and clustering algorithms. Regardless of whether PhenoGraph, FlowSOM, or k-means was used in the clustering
and metaclustering components of VoPo, repeated metaclustering with VoPo (pink boxplots) lead to higher average classification accuracy (AUC) with
less variability over the baseline case where VoPo was not applied (black boxplots). The boxplots show median values, interquartile range, whiskers of 1.5
times interquartile range, and all individual points.
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protein inhibitor of nuclear factor-kB (IkB), consistent with
known mechanism of action of GCs in innate and adaptive
cells26.

Ninety-three longitudinal peripheral blood samples from 31
women were collected during the first, second and third trimester
of pregnancy. Samples were also collected six weeks post-
partum16. The analysis classified first trimester (N= 31) from
the second trimester (N= 31) samples. This resulted in 18 million
cells over 62 samples included in the analysis. The most
prominent differences (Fig. 2b) included a decrease (Supplemen-
tary Fig. 10) in CD56loCD16+ NK cells, and B cells, and an
increase in cMC frequencies in second trimester compared to first
trimester samples. These changes between the first and second
trimester have previously been reported and are associated with
dynamic immunological adaptations to pregnancy27. To further
connect VoPo’s performance on the pregnancy dataset back to
previous work16, we also compared third trimester to postpartum
pregnancy samples (Supplementary Figs. 12 and 13) and observed
similar prioritized cell populations.

Longitudinal peripheral blood samples were collected from 24
patients who suffered from an ischemic stroke17. Samples were
collected for 1, 2, 3, 7, 14, 90 days, and 1 year after the stroke. In
this dataset, the one-year time point serves as a surrogate for the
state of a patient’s immune system before a stroke. Samples
collected at 48 h (N = 22) were classified from one year (N = 18)
samples. For this comparison, 40 samples from the cohort were
included, resulting in 13 million total cells. Consistent with prior
analyses of the LSR dataset, the most prominent differences
between 48 h and 1 year samples included decreased frequencies
(Supplementary Fig. 15) of NK cells and ncMC, and increased
cMC and B cell frequencies 48 h after stroke (Fig. 2c). These
differences are indicative of an acute inflammatory phase of the
stroke immune response 1–5 days after the stroke, characterized
by the relative decrease in abundance of regulatory subsets such
as NK cells, ncMC, and expansion of proinflammatory cMCs17.

In addition to recapitulating findings from prior studies, VoPo
revealed differences between patient groups that were overlooked
with previously applied gating strategies, and clustering
approaches. For example, in the HSR dataset, a subset of
activated ncMCs characterized by high pNFkB and pMK2 levels
had markedly decreased frequencies between GCs and placebo-
treated patient groups, highlighting differential effects of GCs in
functionally-distinct monocyte subsets (Fig. 2a). In the NTP
dataset, examination of the t-SNE plots colored by differentiation
score revealed a subpopulation of cMCs expressing a combination
of three functional markers (pMK2, pP38, and pERK1/2) that
differed between the first and second trimester of pregnancy,
which was not apparent in previous analyses of the same dataset
(Fig. 2b). This observation is in line with previously reported
increased responsiveness in myeloid cell populations, such as the
progressive activation of monocytes throughout pregnancy28,29.
In the LSR dataset, the VoPo analysis revealed differences in the
CD56loCD16+ NK cell subpopulation that differed between the
two observational time points after stroke and were not identified
in a prior analysis (Fig. 2c). This finding is particularly clinically
relevant as depletion of systemic NK cells early after stroke due to
their mobilization to the ischemic brain and their local
inflammatory activity has been associated with post-stroke
recovery30,31.

Overall, cell populations uniquely identified with VoPo were
often defined using a combination of phenotypic and functional
markers (e.g. subsets of populations labeled in blue in Fig. 2a–c,
e.g., IkBdim pNFkBdim pERK1/2− cMCs in LSR dataset). These
findings highlight an advantage of using an unsupervised
clustering approach that combines phenotypic and functional
information obtained at the single-cell level. Such information

enables the identification of immune cell populations with
biologically-meaningful differences between clinical study groups.
Detailed descriptions of cell populations associated with the
particular clinical phenotype and prioritized by VoPo are shown
in Supplementary Figs. 19 and 20.

Computational considerations. One particular advantage of
VoPo is its efficient run-time and scalability to a large number of
samples. As a result of the metaclustering strategy, the automated
cell-population discovery task can be easily parallelized across
individual samples for efficient implementation. In the analysis of
the HSR, NTP, and LSR datasets with 331, 62, and 40 samples,
respectively, the clustering, feature selection, and classification
pipelines were parallelized and run on a computer with 35 AMD
EPYC 7551 CPUs. The repeated metaclustering process resulted
in run-times of 39.63, 7.55, and 5.32 min, respectively. Similarly,
performing unsupervised feature selection followed by cross-
validated classification resulted in run-times of 115.2, 20.01, and
12.13 s in the HSR, NTP, and LSR datasets, respectively.

Automated cell-population discovery with VoPo lead to
features that facilitate superior classification accuracy over several
baseline methods (Fig. 3 and Supplementary Figs. 4–5).
Importantly, we also observed that particular unsupervised
clustering algorithm used is not as important as how it is being
applied. In particular, regardless of the clustering algorithm used,
integrating features engineered through the VoPo pipeline (pink)
lead to higher classification accuracy with less variability over the
baseline, where only a single metaclustering solution was used
(black). In Fig. 3, we repeated the analysis shown in Fig. 2d. In
these experiments, we compared using k-means in both
individual sample and metaclustering steps to the results obtained
using PhenoGraph or FlowSOM clustering. The grid of distribu-
tions in Fig. 3 shows classification trials of the baseline
distribution of AUCs (black) compared to 100 classification trials
from applying repeated metaclustering through VoPo (pink).
Across all three datasets and clustering algorithms, implementing
repeated metaclustering through the VoPo pipeline across k-
means, FlowSOM, and PhenoGraph results in higher classifica-
tion accuracy, on average, compared to the baseline results
obtained from using individual metaclustering solutions (black).

We further investigated how applying unsupervised feature
selection to the entire collection of features generated through
repeated metaclustering can lead to superior classification
accuracy. The unsupervised locality preserving feature selection
approach18 was applied to each metaclustering solution to
prioritize a subset of features that can best preserve pairwise
distances between samples. Such an approach therefore is
effective at removing redundant information (Supplementary
Fig. 17) that does not contribute additional information to the
understanding of interpatient variability (Supplementary Fig. 1),
prior to classification. We studied this across the three datasets by
looking at the distribution of classification accuracies from the
features obtained over the 50 metaclustering solutions with
(purple) and without (black) feature selection. The distributions
of AUCs over 100 classification trials are visualized in Fig. 4 and
show that in all the three datasets, unsupervised feature selection
achieves higher classification accuracy. The orange horizontal line
in each plot indicates the mean baseline AUC from the features
obtained from a single metaclustering solution. Repeated
metaclustering alone increases the performance from the baseline
in all three datasets, but feature selection leads to additional
competitive advantages. Such an analysis suggests that reducing
feature redundancy through a filter-based feature selection is
valuable for increasing classification accuracy across clinical
datasets.
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Discussion
In summary, VoPo exploits the variability encountered across
independent metaclustering solutions to enable clinically-relevant
prediction and comprehensive visualization from mass cytometry
data. In particular, VoPo uses the diversity of solutions returned
through repeated metaclustering to extract additional information
from all samples for improved classification accuracy. Such an
approach prevents a user from having to choose between one of
the variable cell-to-metacluster solutions returned by a stochastic
clustering algorithm. Additionally, VoPo’s novel single-cell
visualization approach can effectively convey the cell types and
signaling events associated with a particular clinical phenotype.
Such a visualization strategy therefore facilitates unbiased
hypothesis generation by mapping cluster-level statistics to
individual cells in a novel way. Here, we applied VoPo to three
clinical mass cytometry datasets and showed that it is amenable to
any clustering algorithm.

While our examples were focused on binary classification tasks,
the feature matrix produced by VoPo provides a flexible input for
a range of machine learning tasks, such as, multilabel classifica-
tion and regression tasks. A user can then further compute a
range of statistics on the identified cell populations reflecting how
they relate to an external variable of interest. In cases where the
external variable is continuous, for example, a user could build a
regression model based on the engineered features of the iden-
tified cell populations and use model coefficients as the statistic of
interest. Further, a promising possible extension of VoPo is to
create a so-called “multiview” representation of the immune
system, where features are engineered separately for each major
cell-type and combined using a multiview machine learning
algorithm32. Such an approach would enable an understanding of
each major cell-type and their overall contribution to the pre-
diction of the desired clinical phenotype. Finally, in its current
form, VoPo metaclustering and feature engineering must be re-
run if new patient samples are collected. An important area of
future work is to more readily accommodate new samples by
developing an adaptive clustering and feature engineering strat-
egy, based on an existing VoPo metaclustering result.

VoPo provides a general framework for linking particular cell
populations to clinical phenotype and inspires a range of future
directions. In regards to the cell-population discovery aspect of
VoPo, we could further consider how adding in supervision, such
as through specifying “landmark cells” and prior knowledge with
ACDC7 or by providing human insight into the gating process

with DeepCyTOF8 or flowDensity33 can aid in the interpretability
of identified cell populations.

Methods
Repeated metaclustering. Automated cell population discovery is achieved
through repeated unsupervised clustering. Both functional and phenotypic markers
are included in clustering to identify cell populations that are consistent across both
phenotype and function. Through repeated clustering, we obtain “multiple views”
of the immune system and therefore take advantage of the variability that arises
across various runs of a stochastic clustering algorithm. To reduce the computa-
tional burden of clustering millions of cells across a large number of samples, we
use metaclustering. First, we cluster cells from each of the S samples so that cells
from sample i have been assigned to one of ki clusters. This results in K ¼ PS

i¼1 ki
total clusters (or coherent cell-populations). The centers for these K clusters are
then then clustered into K 0 metaclusters, which are intended to represent the
functionally and phenotypically coherent cell-populations in the data. In practice
we use k-means for all clustering steps, but a user is free to use any clustering
method for this task.

After having generated K 0 clusters, we repeat this metaclustering step I times.
We denote K 0

m as the number of metaclusters defined in iteration in m. Moreover,
repeating the metaclustering step I times results in P ¼ PI

m¼1 K
0
m total overlapping

clusters. We subsequently build features for these P clusters, which serve as the
input to our classification algorithm.

A user is free to use any stochastic clustering algorithm in the metaclustering
steps. In this work, k-means clustering was used both in the within-sample
clustering and metaclustering steps. Each sample was first coarsely clustered into
1000 clusters (ki = 1000). We then defined K 0

m ¼ 50 metaclusters for each
clustering iteration in the HSR, NTP, and LSR datasets (Supplementary Fig. 18).

Markers used for clustering. Analogous to what is typically done in manual
gating, existing clustering algorithms for flow and mass cytometry data define cell-
populations based only on phenotypic markers2–5. This ensures that the
computationally-identified cell-populations are capturing cell phenotype, where the
expression of various functional markers can be studied further. Similar to the
process of manual gating, existing algorithms define frequency and functional
marker features for each identified cell population. After clustering, two com-
plementary types of features can then be defined for each sample. A frequency
feature for cluster i in sample s denotes the proportion of each sample’s s cells that
were assigned to cluster i. Alternatively, a functional feature for functional marker j
in cluster i in sample s is the mean or median expression functional marker
expression of functional marker j in cluster i in sample s. As feature engineering in
this manner implements what is done in the manual gating process, it ultimately
generates a very large number of features. In particular for each sample there will
be K + K × F total features, where K is the number of clusters and F is the number
of functional markers.

In this work, we take a different approach where we define cell-populations with
both functional and phenotypic markers to identify particular cell-populations that
are both phenotypically similar but also exhibit similar patterns of functional
marker expression. The motivation for doing this is that we are then able to define
only frequency-based features that capture both phenotype and function. For
example, if the expression of functional marker j is increased in a CD4+ T-cell
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Fig. 4 Applying unsupervised Laplacian score features selection to VoPo features. Unsupervised feature selection was applied independently to the
frequency-based features engineered from each metaclustering solution. Here, we show distributions of classification accuracies (AUC) with (purple
boxplots) and without (gray boxplots) feature selection applied to features extracted with VoPo. The dashed orange horizontal line shows the mean
baseline classification accuracy using the features obtained without the use of the VoPo pipeline. In all three datasets VoPo’s robust feature extraction
(gray) improved the results over baseline (orange boxplots). Additionally, VoPo’s robust feature selection followed by unsupervised feature selection
further improved classification accuracy (purple boxplots). The boxplots show median values, interquartile range, whiskers of 1.5 times interquartile range,
and all individual points.
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population in a subset of samples then those samples will also have a higher
frequency of CD4+ T-cells that have high expression of marker j.

Feature engineering from metaclusters. After having defined P total metaclus-
ters, we define frequency and functional marker mean expression features for each
cluster across all samples. We let F be the S × P matrix of frequency features, where
a particular entry Fij represents the proportion of sample i’s cells that were assigned
to metacluster j. Similarly, assuming that we have f functional markers, we define f
functional marker matrices reflecting the mean functional marker expression
across each of the clusters in each sample. Moreover, we let Xt be the S × P matrix
of functional marker expressions for a particular marker, t. An individual entry Xt

ij

is the mean expression of marker t in sample i in cluster j. We can horizontally
concatenate each of the f matrices into the full functional S × (P × f) marker feature
matrix, X* = [X1∣X2∣. . . . ∣Xf].

After having constructed the frequency and functional marker matrices, F and
X*, we can use them individually or in combination as the input to classification
tasks. One benefit of including the functional markers in the clustering step is that
the frequency features also carry information about the signaling activity in each
cluster. As we previously stated, the matrix X* has much higher dimension than F
and can therefore require more sophisticated machine learning techniques, such as,
feature selection or regularization for quality classification results. In
Supplementary Fig. 2, we show that using the frequency features encoded in F is
sufficient for high predictive accuracy across our three example datasets.

Unsupervised feature selection. Due to the high redundancy in the clusters
obtained through repeated metaclustering, the constructed feature matrices, F and X*

have many collinearities, or sets of features that are highly correlated with each other.
As a result, feature selection is a principled approach for reducing the high dimen-
sionality of F and X*, and for mediating the problems introduced by data colliniearity.
We chose to use a locality-preserving feature selection method, developed by He
et al.18. Intuitively, locality-preserving feature selection methods seek to identify a
smaller subset of features that maintain the general distribution of between-sample
similarities obtained when all features are used. This objective is enforced through the
construction of a k-nearest neighbor similarity network between the S samples. After
having constructed the similarity network, a function of the Graph Laplacian34 is used
to score each feature for its usefulness in maintaining the patterns of between-sample
similarity observed in the original data with all features included. In all three datasets,
we selected the top 40 out of the 50 total features per metaclustering iteration,
according to their computed Laplacian scores (Supplementary Fig. 3).

This unsupervised feature selection approach is performed on the computed
frequency-based data matrix prior to classification. It does not have access to any of
the patient phenotypes and therefore does not introduce any bias. This feature
selection step is used primarily to eliminate redundancy among features. After
applying feature selection, we obtain the input for the supervised analysis, which is
performed with leave-group-out cross validation.

Cross validation. In this work, we focus on binary classification problems. That is,
each dataset was analyzed as a case–control study between two clinical classes, with
S total collected samples. We let y be an S-length vector, where an individual entry
yi ∈ {0, 1} gives the binary classification label for sample i. In the presented work,
we use a Random Forest classifier. We note a user is free to use any classification
algorithm of their choice. While there are a variety cross validation (CV) strategies,
we use a ensemble-based leave-group-out approach. At a high level, this approach
repeatedly chooses a unique random subset of patients and their corresponding
samples to be used for training, and the remaining to be test samples. Our CV
approach uses B iterations of bootstrapping to iteratively and independently par-
tition all samples into training and test sets. In a particular CV iteration, we choose
a half of all patients to be members of the training set. Using the samples corre-
sponding to the selected training patient samples, we train the Random Forest
model. We then predict the labels of the samples corresponding to the unused
remaining subset of patients not included in the training set. In particular, the
predicted values for these samples reflect the probability of belonging to class “1”.
We then store these predicted probabilities that correspond to test set patient
samples. After completing B = 500 bootstrapped cross validation iterations, we
have multiple predicted probabilities of belongs to class “1” for each of the S
samples, noting that a sample only has a prediction for a particular bootstrapped
iteration if it corresponds to a patient that was assigned to the test set. We ulti-
mately predict the probability that a particular sample, i, belonging to the “1” class
as the median predicted probability over all iterations where i was included in the
test set. Finally, we define a length-S vector, y*, where the entry y�i encodes the final
predicted probability that sample i belongs to class “1”. Using the true response
vector, y, and the vector of predicted probabilities, y*, we can construct an ROC
curve and compute area under the ROC curve (AUROC) as the metric of success.

Visualization pipeline. We developed a visualization pipeline that allows for
interpretation of the cell types and signaling pathways contributing to a particular
clinical phenotype of interest. Our general approach is to sample a large subset of
all cells (30,000) across all S samples and to map significance scores computed for
each cluster to the single cells. Because we are using tSNE for dimensionality

reduction, we can only visualize a limited number of cells across all samples. We
note that a user is free to use any dimensionality reduction method of their choice.
Downsampling of cells is only required for the visualization aspect of VoPo but all
cells are used to engineer features for predictive modeling. In practice, we compute
univariate p-values for each cluster that reflect frequency or signaling differences
among samples in each class.

After sampling 30,000 total cells (excluding granulocytes) across all sample FCS
files, we constructed a cell × marker matrix, A, where the functional and
phenotypic markers are represented across the columns. We then create a two-
dimensional embedding of the cells using tSNE on A.

Each cell in the LargeVis representation can then be colored by its expression
for each of the phenotypic and functional markers to produce a series of plots (one
plot per marker). The major cell types were inferred according to phenotypic
marker expression.

The frequency of cells in each cluster across each sample is encoded in the matrix
F. Here we describe a method for specifying a “differentiation score”, which is intended
to be some quantitative measurement reflecting the frequency differences in some cell-
population between groups that can be used in a qualitative way to gain intuition
about important cell types and signaling pathways. Here, we discuss an example using
a two-sided Wilcoxon Rank Sum test to quantify the extent of frequency differences
between groups, with the caveat being that associated p-values are only being used to
order cell-populations and not being interpreted in a classical statistical way. Further, a
user is free to compute any statistic of choice to reflect the frequency difference of a
particular population between two groups. We use simple univariate p-values to
improve our understanding of which cell types have significant frequency differences
between classes. For each of the P clusters the univariate p-values are computed using a
Wilcoxon Rank Sum test35. We let xpa be the vector of frequencies features for cluster p
corresponding to samples in the “0” class. Similarly, we let xpb be the vector of
frequencies for cluster p corresponding to samples in the “1” class. After defining these
two vectors, the two-sided Wilcoxon Rank Sum test is used to test the null hypothesis
that the means of xpa and xpb are equal. The more significant the p-value, the larger the
difference in the frequency feature, p, between the two classes (“0” and “1”).

To gain insight into the true statistical significance of all features together, we
recommend using a regression model and interpreting the p-value of the model fit
to samples in the test set as a measure of the collective ability of features to
differentiate between distinct clinical outcome classes. A statistically significant
model p-value implies that some combination of features can be used to effectively
partition samples from different classes.

After having computed the univariate p-value for each of the P metaclusters (or
your statistic of choice), we seek to map this information onto our single cell
visualization. In other words, points should be colored based on some aggregate
representation of the p-values for each metacluster and a particular point’s likelihood
of belonging to a particular metacluster. We quantify the similarity of a point with
each cluster based on a function of the euclidean distance between the cluster’s center
and the original point in high dimensions. We let cj be the length-m vector encoding
the expression for each of the m total functional and phenotypic markers in cluster j.
We similarly let xi be the length-m expression profile over the m functional and
phenotypic markers for cell i. Then to define sji or the similarity between cluster j and
cell i, we compute, sji ¼ expð�αjjcj � xijj2Þ. Here, α is a user-defined constant.

In each metaclustering iteration, m, we compute sji for each of the K 0
m clusters, j

and each cell, i. We then assign cell i a differentiation score, defined by a linear

combination of univariate p-values across clusters, computed as, pmi ¼
P

j
sjiwjP
j
sji
.

Here, wj is the p-value computed for the rank sum test for cluster j. In general, this
quantity is a weighted average over all clusters in a particular metaclustering
solution, with higher weight given to the p-values corresponding to cluster centers
that are more similar to the point of interest. Ultimately, we compute pmi for each m
of the I total metaclustering solutions and determine the final p-value for cluster i
as the average significance score over the I metaclustering solutions. Here we
describe details for how differentiation scores were mapped onto cells in each
dataset, demonstrating the flexibility of the visualization approach.

While our task in the HSR dataset was to classify patients who had received MP
treatment from those who had not, we specifically focused on the difference
between control and MP samples 6 h after surgery in the visualization. This implies
that significance score (p-value) for each metacluster was computed based on only
the control and MP samples at the 6 hr timepoint. That is, for a particular
metacluster, p, we let xpa be the vector of frequencies for p corresponding to control
samples at the 6 hour (6 h) timepoint. Similarly, we let xpb be the vector of
frequencies of metacluster p for MP samples at the 6hr timepoint. Then the
significance score for cluster p is the p-value of the Wilcoxon Rank Sum test.
Moreover, the visualization in Fig. 2a. can be used to understand the differences in
cell population (metacluster) frequencies between control and MP samples at the
6h timepoint. This example demonstrates that the visualization method is capable
of taking a subset of sample IDs to compute the significance score of clusters and
therefore differentiation scores.

The classification task introduced in the NTP dataset was to classify first from
second trimester samples during human pregnancy. This is also the comparison
reflected in the visualization in Fig. 2b. That is for metacluster p we let xpa be the
vector of frequencies of metacluster p in samples from the first trimester. Similarly,
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xpb is the vector of cell frequencies of metacluster p among second trimester
samples. The significance score for metacluster p is therefore the p-value of the
Wilcoxon Rank Sum Test computed between xpa and xpb . These significance scores
are then mapped to single cells to define differentiation scores.

In the LSR dataset, we classified patient samples collected 48 h from those
collected 1 year after stroke. This is also the comparison reflected in the
visualization in Fig. 2c. That is for metacluster p we let xpa be the vector of
frequencies of metacluster p in samples from 48 h after stroke. Similarly, xpb is the
vector of cell frequencies in metacluster p among samples collected. The
significance score for metacluster p is therefore the p-value of the Wilcoxon Rank
Sum Test computed between xpa and xpb . These significance scores are then mapped
to single cells to define differentiation scores.

Mass cytometry methods. Mass cytometry is a high-parameter single-cell analysis
platform that enables the simultaneous interrogation of multiple signaling pathways
in precisely phenotyped cell subsets spanning the entire immune system36. This
technology provides unprecedented opportunities to describe the human immune
system as a network of correlated, cell type-specific attributes, and to investigate the
functional relationships between cells within and across hematopoietic lineages37,38.
Mass cytometry combines inductively coupled plasma and time-of-flight spectro-
metry with cytometry19 and allows for the examination of up to 50 analytes
simultaneously at the single cell level using metal-isotope-conjugated antibodies.

Ex vivo whole-blood immuno-assay. Whole blood was collected from study
subjects and processed within 60 min after blood draw. Individual aliquots were
processed using a standardized protocol for fixing with proteomic stabilizer (SMART
TUBE, Inc., San Carlos, CA) and stored at −80 °C until further processing.

Sample barcoding and minimization of batch effects. To minimize the effect of
experimental variability on mass cytometry measurements between serially collected
samples, samples corresponding to the entire time series collected from one partici-
pant were processed, barcoded, pooled, stained, and run simultaneously. To minimize
the effect of variability between study participants, samples sets of patients matched
for control and treatment (HSR dataset), or randomized for time of sampling
(NTP and LSR datasets). Further, the run was completed within consecutive days,
while carefully controlling for consistent tuning parameters of the mass cytometry
instrument (Helios CyTOF, Fluidigm Inc., South San Francisco, CA).

Antibody staining and mass cytometry. The mass cytometry antibody panel
included surface and intracellular antibodies that are used for phenotyping of
immune cell subsets and for the functional characterization of immune cell
responses. In Supplementary Tables 1–3 we provide a list of antibodies used in the
HSR, NTP, and LSR datasets, respectively. Antibodies were either obtained pre-
conjugated (Fluidigm, Inc.) or were purchased as purified, carrierfree (no BSA,
gelatin) versions, which were then conjugated in-house with trivalent metal iso-
topes utilizing the MaxPAR antibody conjugation kit (Fluidigm, Inc.). After
incubation with Fc block (Biolegend), pooled barcoded cells were stained with
surface antibodies, then permeabilized with methanol and stained with intracellular
antibodies. All antibodies used in the analysis were titrated and validated on
samples that were processed identically to the samples used in the respective study.
Barcoded and antibody-stained cells were analyzed on the mass cytometer.

Immune cell feature derivation. The mass cytometry data was normalized using
Normalizer v0.1 MATLAB Compiler Runtime (MathWorks)39. Files were then
debarcoded with a single-cell MATLAB debarcoding tool40. Manual gating was
performed using CellEngine (https://immuneatlas.org/) (Primity Bio, Fremont,
CA). In Supplementary Fig. 21, we show the gating strategy originally used for each
of the clinical datasets. The names of cell populations in blue were gated across all
three datasets. Conversely, cell populations colored orange and green represent
populations that were only identified in the HSR or LSR datasets, respectively (see
chart). For the VoPo pipeline, the data from each sample were analyzed using
manually gated singlet live leukocytes (DNA+cPARP−CD235−CD61−). FACS
gating strategies have been linked, in the Supplementary Figure legend, to the
corresponding data panels in the manuscript.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used are publicly available through flowrepository under experiment IDs FR-
FCM-ZY3Q, FR-FCM-ZY3R, FR-FCM-Z2AT, FR-FCM-ZYSB for the NTP training,
NTP validation, HSR, and LSR datasets, respectively.

Code availability
VoPo was implemented and tested with R version 3.4.4. Code to run all components of
VoPo, as well as to reproduce results is provided at https://github.com/stanleyn/VoPo.
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