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Abstract Assessing the degree of semantic relatedness between words is
an important task with a variety of semantic applications, such as ontology
learning for the Semantic Web, semantic search or query expansion. To ac-
complish this in an automated fashion, many relatedness measures have been
proposed. However, most of these metrics only encode information contained
in the underlying corpus and thus do not directly model human intuition. To
solve this, we propose to utilize a metric learning approach to improve exist-
ing semantic relatedness measures by learning from additional information,
such as explicit human feedback. For this, we argue to use word embeddings
instead of traditional high-dimensional vector representations in order to
leverage their semantic density and to reduce computational cost. We rigor-
ously test our approach on several domains including tagging data as well
as publicly available embeddings based on Wikipedia texts and navigation.
Human feedback about semantic relatedness for learning and evaluation is
extracted from publicly available datasets such as MEN or WS-353. We find
that our method can significantly improve semantic relatedness measures by
learning from additional information, such as explicit human feedback. For
tagging data, we are the first to generate and study embeddings. Our results
are of special interest for ontology and recommendation engineers, but also
for any other researchers and practitioners of Semantic Web techniques.

1 Introduction

Automatically assessing semantic relatedness as perceived by humans is a task with
many applications related to semantic technologies, such as ontology learning for
the Semantic Web, semantic search or query expansion. Recent work has shown that
semantic relatedness between words can successfully be extracted from a wide range
of sources, such as tagging data [6, 17], Wikipedia article texts [13, 23] or Wikipedia
navigation [20, 25]. In particular, such approaches usually encode semantic informa-
tion of words in continuous word vectors [27]. The semantic relatedness between two
words can then be measured by the cosine similarity of their corresponding word
vectors. While the above-cited methods come close to human intuition of semantic
relatedness, they are only able to encode information contained in the underlying
corpus. Thus, they do not explicitly represent the actual notion of semantic related-
ness as expected and employed by humans. The natural way to solve this problem
is to incorporate additional information, such as explicit human feedback, in order
to account for the deviations of the respective semantic relatedness measure from



human intuition. Furthermore, such feedback could be helpful to adapt semantic
relatedness measures to specific domains and tasks or to personalize them in order
to improve recommendation approaches or retrieval methods for search engines.
Problem Setting and Approach. Consequently, this work addresses the issue
of incorporating additional information such as explicit human feedback about se-
mantic relatedness into relatedness measures operating on vector representations
of words. To this end, we apply a metric learning approach where we encode the
additional information in the form of constraints. This manipulates the original
relatedness measure and ultimately yields a better fit with human intuition.

There are many domains from which semantic relatedness has been extracted.
Thus, we aim to propose a universally applicable approach. To illustrate the flexibil-
ity of this method, we apply it to Wikipedia article texts, navigational traces on the
Wikipedia page network, and tagging data. To represent words in these application
domains we use word embeddings, i.e., low-dimensional, dense vector representa-
tions, which reduce the computational complexity of our metric learning approach
and have been shown to outperform high-dimensional representations in measuring
semantic relatedness [1]. While word embedding approaches have been applied to
several Wikipedia domains (texts or navigation) [8, 15, 21], we are, to the best of our
knowledge, the first to derive tag embeddings and study the relationship between
their dimensionality and their semantic expressiveness.

Independent of the domain, we show that our approach can significantly improve
the quality of the given semantic relatedness measures. As mentioned earlier we
confirm this on different domains by learning from and evaluating on a variety of
well known semantic relatedness datasets generated from human intuition. In this
context, we study the influence of the amount of information used for learning
and investigate if the improved semantic relatedness measures generalize between
different human intuition datasets.
Contribution. Our contribution is twofold: First, we introduce the metric learning
setting (with relative constraints) to the domain of semantic relatedness and —
by exploiting human feedback — show that it is possible to use metric learning
to improve semantic relatedness measures to better fit human intuition. This also
opens a new connection for the field of semantic relatedness research to a popular
field in machine learning and can lead to another fruitful combination of both.
We explicitly show how to adopt the metric learning scenario for our relatedness
learning setting. Secondly, we are the first to generate and study embeddings from
tagging data, which allows for effectively and efficiently performing metric learning.

Overall, our work describes a way to improve semantic relatedness measures
based on additional semantic information, e.g., explicit human feedback. This en-
ables us to increase the fit of these measures to human intuition significantly and
even introduce user-specific information into the corresponding semantics. Our re-
sults are of special interest for ontology and search engineers, but also for any other
practitioners of Semantic Web techniques.
Structure. The rest of this paper is structured as follows: in Section 2, we introduce
our approach of learning semantic relatedness using metric learning. In Section 4,
we describe the conducted experiments and present the results, which we discuss in
Section 5. Section 6 gives an overview of other work related to this paper. Finally,
Section 7 concludes this work and gives directions for future research.



2 Metric Learning to Learn Semantic Relatedness

In this section, we first formulate the goal of learning semantic relatedness in terms
of metric learning. We then argue that the notions of distance and semantic re-
latedness are equivalent when restricting the setting to a transformed unit sphere.
Finally, we introduce our method to formulate human feedback as constraints for
the metric learning algorithm we employ. Figure 1 shows a sketch of the steps that
we apply in our approach to learn semantic relatedness.
Learning Semantic Relatedness in Terms of Metric Learning. To learn a
metric, standard metric learning algorithms parameterize the Mahalanobis distance,
dM (x, y) =

√
(x− y)TM(x− y), by finding a (symmetric, positive definite) matrix

M . To this end, most algorithms expect a set of constraints C. In this work, we
apply the LSML algorithm [16], which learns from relative distance constraints of
the form C := {(x, x′, y, y′) : d(x, x′) < d(y, y′)} .

However, instead of learning a distance dM (x, y) : Rn × Rn → [0;∞) we want
to learn a semantic relatedness measure relM (x, y) : Rn × Rn → [−1; 1]. Accord-
ingly, instead of formulating constraints based on a distance d, they are based on a
relatedness measure rel, i.e., in our case the cosine (cos). Overall, this amounts to
learning a symmetric, positive definite matrix M such that the parametrized cosine
measure cosM (x, y) := xTMy · (‖x‖M‖y‖M )−1, where ‖x‖M :=

√
xTMx, suffices

all constraints C which are derived from human intuition on semantic relatedness
(instead of distance). In the following, we show that — when restricting the set-
ting to a transformed unit sphere — learning a distance measure and a semantic
relatedness measure is equivalent when specifying the constraints correctly.
Equivalence of Distance and Relatedness for Metric Learning. In the fol-
lowing, we first show the equivalence of distance and relatedness (as measured by
the Mahalanobis metric and the parameterized cosine measure, respectively) on the
transformed unit sphere Sn−1M := {x ∈ Rn|‖x‖M = 1}. This allows us to formulate
constraints in a way to learn semantic relatedness.

For all vectors on the transformed unit sphere x, y ∈ Sn−1M parametrized by M ,
the Mahalanobis distance metric and the parameterized cosine measure cosM (x, y)
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Figure 1: The pipeline of our approach. We preprocess raw data in order to create
word embeddings, which serve as vector input for the metric learning algorithm.
Simultaneously, we transform a portion of the user feedback information H to relat-
edness constraints C for the metric learning algorithm. The output of the algorithm
is a relatedness measure cosM , characterized by a symmetric, positive-definite ma-
trix M . Later, this matrix together with a portion of the explicit user feedback is
used for the evaluation, which is explained in Section 4.1.



can be expressed as each other. That is, since xTMx = 1 and because of M being
symmetric (xTMy = yTMx), it holds that: d2M (x, y) = 2 · (1− cosM (x, y)). This is
in line with the intuition that if two words are more closely related, the distance
of their vector representations is lower and vice versa. Thus, we can directly apply
the metric learning approach to learning semantic relatedness measures on word
vectors, if the constraints are correctly specified. To this end, we use the fact that
the previous equation trivially implies:

dM (x, x′) < dM (y, y′)⇔ cosM (x, x′) > cosM (y, y′)

Thus, we can formulate the constraints based on a relatedness notion rel instead
of a distance d by specifying C := {(x, x′, y, y′) : rel(x, x′) > rel(y, y′)}, i.e., the
comparison operator is inverted.
Obtaining Relatedness Constraints from Human Feedback. To obtain suit-
able constraints to train the metric learning algorithm for learning semantic re-
latedness, we propose to exploit human intuition datasets. Such datasets contain
word pairs together with human-assigned relatedness scores (see also Section 3.3)
which can be interpreted as explicit human feedback. Formally, such datasets can
be expressed as a set H := {(wi, w

′
i, ri)}, where wi and w′i are words and ri is the

human-assigned score which describes an intuitive notion of the degree of related-
ness between the two corresponding words. As such relatedness scores are commonly
collected in a crowdsourcing task [5, 12], they thus represent explicit human feed-
back. To obtain constraints in the form (x, x′, y, y′) to use in the metric learning
algorithm, one can simply combine all pairs of examples (wi, w

′
i, ri), (wj , w

′
j , rj) ∈ H

with ri < rj and thus receive a set of relatedness constraints C =
{

(wi, w
′
i, wj , w

′
j)
}

.
Since we want to emphasize the importance of some constraints in the optimiza-

tion step of the algorithm, we place higher weights on those constraints to make
sure that they are fulfilled. The LSML algorithm allows to assign weights to all con-
straints. In order to put a high emphasis on a constraint with one very unrelated pair
of words, e.g., (wi, w

′
i, ri), and another very related pair of words, e.g., (wj , w

′
j , rj)

with ri � rj , we can define the weight of this constraint according to the difference
of the respective human relatedness scores of the corresponding word pairs. The
extended constraints can then be written as Cweighted :=

{
(wi, w

′
i, wj , w

′
j , rj − ri)

}
.

In the remainder of this work, we always employ this kind of weighted constraints.

3 Datasets

In this work, use two different kinds of datasets to evaluate our metric learning ap-
proach to integrate user feedback to relatedness measures. That is, domain datasets
which provide a set of word vectors representing the words to calculate semantic
relatedness for, and human intuition datasets (HIDs) which we employ to learn
semantic relatedness and to test our results. In the following we first describe two
domain datasets containing tagging data from which we later derive tag embed-
dings. Then we review two domain datasets based on Wikipedia which come with
pre-trained word vectors. Finally, we introduce all human intuition datasets con-
taining human-assigned scores of similarities to word pairs.



3.1 Tagging Datasets to Derive Word Embeddings

In our work, we study datasets of two public social tagging systems. We use data
from BibSonomy, which has a more academic audience. The second dataset is a
subset of the Delicious social tagging system, where the audience is focused on
design and technical topics.

Each dataset is restricted to the top 10k tags to reduce noise. Additionally, we
only considered those tags from users who have tagged at least 5 resources and only
those resources which have been used at least 10 times. We also removed all invalid
tags, e.g., containing whitespaces or unreadable symbols.

BibSonomy. The social tagging system BibSonomy provides users with the possi-
bility to collect bookmarks (links to websites) or references to scientific publications
and annotate them with tags [3]. We use a freely available dump of BibSonomy, cov-
ering all tagging data from 2006 till the end of 2015.3 After filtering, it contains
10,000 distinct tags, which were assigned by 3,270 users to 49,654 resources in
630,955 assignments.

Delicious. Like BibSonomy, Delicious is a social tagging system, where users can
share their bookmarks and annotate them with tags. We use a freely available
dataset from 2011 [33].4 Delicious has been one of the biggest adopters of the tagging
paradigm and due to its audience, contains tags about design and technical topics.
After filtering, the Delicious dataset contains 10,000 tags, which were assigned by
1,685,506 users to 11,486,080 resources in 626,690,002 assignments.

3.2 Pre-trained Embedding Datasets Based on Wikipedia

In order to demonstrate the applicability of our approach on any kind of word
embeddings, we also use two publicly available datasets of pre-trained vectors. Both
are related to Wikipedia, which has been shown time after time to yield high quality
semantic content [8, 13, 20, 23, 25].

WikiGloVe. The authors of the GloVe embedding algorithm [21] trained several
datasets of vector embeddings on various text data and made them publicly avail-
able.5 Because it has been demonstrated several times that the textual content of
Wikipedia articles can be exploited to calculate semantic relatedness [13, 23], we
use the vectors based on Wikipedia as a reference for word embeddings generated
from natural language. This dataset consists of 400,000 vectors with dimension 100.

WikiNav. Wulczyn published a set of word embeddings generated from navigation
data on the Wikipedia webpage [30] using Word2Vec [18]. Word2Vec was originally
intended to be applied on natural language text, though it can also be applied on
navigational paths [8]. While technically the generated embeddings represent pages
in Wikipedia, most pages also describe a specific concept and can thus be used
interchangeably. It has been shown that exploiting human navigational paths as a
source of semantic relatedness yields meaningful results [20, 25, 29]. The dataset
at hand consists of 1,828,514 vectors with 100 dimensions. The vector embeddings

3
http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/

4
http://www.zubiaga.org/datasets/socialbm0311/

5
https://nlp.stanford.edu/projects/glove/

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
http://www.zubiaga.org/datasets/socialbm0311/
https://nlp.stanford.edu/projects/glove/


Table 1: Overview of all Human Intution Datasets (HIDs). For each HID, we give
the number of word pairs, the number of unique words and the number of judgments
per word pair. Also, for each embedding dataset, we give the number of matchable
pairs, where both words are present in the dataset’s vocabulary.

dataset pairs words matches
BibSonomy Delicious WikiNav WikiGloVe

Bib100 100 122 100 94 42 98
MEN 3000 751 465 1376 1227 3000
WS-353 353 437 158 202 173 353

have been created from all navigation data in the month of January 2017 and are
publicly available.6

3.3 Human Intuition Datasets (HIDs)

As a gold standard for semantic relatedness as it is perceived by humans, we use
several datasets with human-generated relatedness scores for word pairs, so called
human intuition datasets (HIDs). They will provide training as well as test data. In
the following, we will describe all used HIDs briefly. Table 1 gives an overview of the
dataset sizes and the overlap as well as the Spearman correlation for the matchable
pairs for all embedding datasets.
WS-353. The WordSimilarity-3537 dataset consists of 353 pairs of English words
and names [12]. Each pair was assigned a relatedness value between 0.0 (no re-
lation) and 10.0 (identical meaning) by 16 raters, denoting the assumed common
sense semantic relatedness between two words. Finally, the total rating per pair
was calculated as the mean of each of the 16 users’ ratings. This way, WS-353 pro-
vides a valuable evaluation base for comparing our concept relatedness scores to an
established human generated and validated collection of word pairs.
MEN. The MEN Test Collection [5] contains 3,000 word pairs together with human-
assigned similarity judgments, obtained by crowdsourcing using Amazon Mechanical
Turk8. Contrary to WS-353, the similarity judgments are relative rather than abso-
lute. Raters were given two pairs of words at a time and were asked to choose the
pair of words was more similar. The score of the chosen pair, i.e., the pair of words
that was more similar, was then increased by one. Each pair was rated 50 times,
which leads to a score between 0 and 50 for each pair.
Bib100. The Bib100 dataset has been created in order to provide a more fitting
vocabulary for the more research and computer science oriented tagging data that
we investigate.9 It consists of 122 words from the top 3,000 words of the BibSonomy
dataset and combined them into 100 word pairs, which subsequently were judged
26 times each for semantic relatedness using crowdsourced scores between 0 (no
similarity) and 10 (full similarity).

6
https://figshare.com/articles/Wikipedia_Vectors/3146878

7
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html

8
http://clic.cimec.unitn.it/~elia.bruni/MEN

9
http://www.dmir.org/datasets/bib100

https://figshare.com/articles/Wikipedia_Vectors/3146878
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
http://clic.cimec.unitn.it/~elia.bruni/MEN
http://www.dmir.org/datasets/bib100


4 Experimental Setup and Results

In this section, we perform several sets of experiments in order to demonstrate the
usefulness of metric learning for learning semantic relatedness. First, we describe
how we evaluate the quality of a learned semantic relatedness measure. Then we
study the procedure of generating word embeddings from tagging data and perform
a qualitative evaluation. Finally, we train several metrics on a range of domains
considering different amounts of user feedback, investigate whether it is possible to
transport trained semantic knowledge across different collections of user feedback
and finally assess the robustness of the learned semantic relatedness measures. We
publish our code to enable reproducibility of our experiments.10

4.1 Evaluating the Quality of Semantic Relatedness Measures

Most of the time, the quality of semantic relatedness measures is assessed by how
well it fits human intuition [13, 18, 25]. Human intuition is collected in Human In-
tuition Datasets (HID) as introduced in Section 3.3. The most widely-used method
to evaluate semantic relatedness on such datasets is the Spearman rank correlation
coefficient which compares the ranking of word pairs given by a HID with the rank-
ing implied by the semantic relatedness measure. While there exist other evaluation
approaches like analogy matching [15, 18] or concept categorization [1], they do not
fit our setting, because we exclusively want to improve measuring relatedness.

4.2 Word Embeddings from Tagging Data

We evaluate our approach on several domains. This includes semantic relatedness
extracted from tagging data. However, vector representations of words extracted
from tagging data are traditionally high-dimensional [6, 17], making metric learning
in this domain infeasible due to a more than quadratic runtime with regard to
the number of vector dimensions [16]. Thus, similar to our Wikipedia examples we
employ the notion of (low-dimensional) word embeddings which have been shown to
outperform their high-dimensional counterparts in terms of correlation with human
intuition of semantic relatedness [1]. This can also be confirmed when using tagging
data as input (see Table 2, cf. ρhigh vs. ρemb). In this section, we justify our choice
of using GloVe to embed words based on tagging data and study the influence of
dimensionality on the respective semantic content.
Choosing an Embedding Algorithm. In this work, we apply the GloVe al-
gorithm [21], which learns word embeddings from a word co-occurrence matrix.
Other candidates are the well-known Word2Vec approach by [18] and the LINE
algorithm [26]. However, Word2Vec relies on the meaningfulness of the sequential
order of words which is not available from tagging data. LINE — which learns node
embeddings preserving the first and second order neighborhood of the nodes in the
graph — is more applicable. However, we found that it has a tendency to perform
even worse than standard high dimensional representation for calculating semantic
relatedness. Thus, overall we only report results on GloVe, since it was directly
applicable to tagging data and showed the best results in our experiments.

10
http://dmir.org/semmele

http://dmir.org/semmele


Table 2: Spearman correlation scores for both the high-dimensional representation
(ρhigh) and word embeddings (ρemb) of both tagging datasets. It can be seen that
the word embeddings encode semantic relations which are more in line with human
judgment than the high-dimensional representations.

datasets BibSonomy Delicious
ρhigh ρemb ρhigh ρemb

Bib100 0.621 0.726 0.640 0.675
MEN 0.436 0.483 0.581 0.752
WS-353 0.395 0.575 0.454 0.690

25 50 75 100 125 150 175 200
Embedding dimension

0.4

0.5

0.6

0.7

Sp
ea

rm
an

 c
or

re
la

tio
n

bib100 men ws353

(a) BibSonomy

25 50 75 100 125 150 175 200
Embedding dimension

0.4

0.5

0.6

0.7

Sp
ea

rm
an

 c
or

re
la

tio
n

bib100 men ws353

(b) Delicious

Figure 2: Impact of the vector dimension and random initialization of the embedding
algorithm on the evaluation result on different HIDs across several vector dimension
settings. The error bars show the standard deviation, the dots depict the mean of
the evaluation results across 10 runs with the same parameter settings.

Embedding Dimension. One decision to make when generating word embeddings
is choosing their dimension: We want the number of dimensions to be small to re-
duce the complexity of the metric learning approach, but it needs to be large enough
to encode the necessary semantic information. In order to find a good embedding
representation of the tags, we experimented with the dimension of the generated
vector embeddings on the Delicious and BibSonomy tagging data measuring se-
mantic relatedness using the standard cosine measure. Due to the internal random
initialization of GloVe, we ran the vector embedding generation process 10 times for
each number of dimensions in order to study the corresponding standard deviations.

The results for both experiments are shown in Figure 2. For BibSonomy the in-
fluence of the random initialization of GloVe on the semantic content of the vectors
decreases with increasing dimensionality, as indicated by the error bars. For the
larger and denser Delicious dataset, there is less room for the random initialization
to influence the results. This explains the hardly visible standard deviations. With
regard to the semantic content of the embeddings, the increase in semantic qual-
ity settles around a dimension of 100 for BibSonomy. For Delicious, adding more
dimensions keeps increasing the semantic content. However, the 100 mark also signi-
fies a drastic inhibition of the growth-rate. Thus, considering the quadratic training
complexity of the LSML algorithm in terms of vector space dimension, we decided
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Figure 3: Results on different levels of user feedback training data. The dashed lines
show the mean Spearman correlations on the test data, using the trained metrics,
together with the standard deviation of the results. The continuous lines report the
Spearman values when applying the standard cosine on the test data.

to perform all of the following experiments on tagging data with 100-dimensional
embeddings.

4.3 Integrating Different Levels of User Intentions

In this section we investigate how the amount of human feedback used for training
influences the quality of the learned semantic relatedness measure. To this end,
we evaluate various training set sizes extracted from the HIDs on the different
embedding sets (pre-trained or extracted by GloVe, cf., Section 3).

For each HID, we first randomly sampled 20% of all matchable pairs as test
sets. We gathered 5 such test datasets. For each test set, we sample training sets of
different sizes (10% - 100%) on which we train a metric each. This metric is evalu-
ated on the 20% of previously sampled test data. We repeat sampling training sets
and learning 25 times. Then, for each training set size, we take the mean and the
standard deviation over all experiments. As a baseline, we also report the Spearman
correlation using the pure cosine measure on the test datasets. Figure 3 shows that
we can indeed inject user feedback information about semantic relatedness into our



relatedness measure. The results indicate that we can best learn semantic related-
ness with the human intuition encoded in the MEN dataset. This is consistent across
all datasets except the BibSonomy embeddings. While it is also sometimes possible
to use the knowledge from the WS-353 dataset to improve our semantic related-
ness measure, it does not improve results as much as knowledge from other human
intuition datasets. On the Delicious embeddings, it even decreases performance to
learn from WS-353 knowledge. Surprisingly, while the Bib100 dataset yields the best
results on the BibSonomy embeddings using the plain cosine measure, we cannot
exploit the contained knowledge enough to learn semantic relatedness from it. Also,
across all four embedding sets, the Bib100 dataset shows the biggest variance of re-
sults, while the standard deviation of the MEN dataset results are tightly bounded.
We can generally observe that using vectors from WikiGloVe for training seems to
be beneficial for our approach, as we can always improve the fit of our measure to
human intuition significantly, regardless of the choice of training data.

4.4 Transporting User Intentions

The previous experiments showed that the integration of a dedicated HID into a
relatedness measure results in higher agreement of the measure with human intu-
ition. Now, in order to transfer different user intentions across different settings, we
trained metrics on one complete HID and evaluated them on a different HID. For
example, training was done using all WS-353 relations but the metric was evaluated
on the MEN HID. By this we evaluate if the learned knowledge generalizes from
one notion of semantic relatedness (represented by a specific HID) to another.

Results are given in Table 3. For each line, its header defines the dataset on
which the metric was trained, while the column header is the dataset on which
the trained metric was then evaluated. In each cell, the first value denotes the
Spearman correlation of the cosine measure with the human relatedness scores in the
evaluation dataset. The second value is the Spearman correlation of the relatedness
scores calculated from the trained metric with the human relatedness scores in the
evaluation dataset. Depending on whether the trained metric increased or decreased
correlation with human intuition, we depict upwards or downwards arrows.

From Table 3, we can see some interesting results: Generally, training a metric
on BibSonomy embeddings almost always yields bad transfer results. The only im-
provement using BibSonomy embeddings is on the WS-353 dataset, when evaluating
the metric trained on MEN. The Delicious embeddings are only useful for improving
relatedness scores when the trained metric is evaluated on the MEN dataset. The
most interesting part of these results is that, using WikiGloVe embeddings, we can
always increase correlation with human intuition by a notable margin. However,
on the WikiNav embeddings, the results differ only by smaller margins. The only
exception here is a notable improvement on the Spearman correlation value of WS-
353, when using a metric trained on MEN data. Overall, it is generally possible to
transfer knowledge from one HID to another. However, this is highly dependent on
the underlying word representations.



Table 3: Results for user intention transport experiments. We trained a metric
on all word pairs from the dataset given at the start of each line and evaluated
them on the dataset given in the column header. The first value is the Spearman
correlation for the cosine measure on the evaluation dataset, the second value is
the Spearman value for the trained metric. The arrow denotes if we could transfer
relevant information from one dataset to another or not.

(a) BibSonomy

MEN WS-353 Bib100

MEN - 0.576↗0.591 0.726↘0.673
WS-353 0.484↘0.475 - 0.726↘0.687
Bib100 0.484↘0.462 0.576↘0.557 -

(b) Delicious

MEN WS-353 Bib100

MEN - 0.690↘0.682 0.676↘0.644
WS-353 0.752↗0.766 - 0.676↘0.652
Bib100 0.752↗0.772 0.690↘0.679 -

(c) WikiGloVe

MEN WS-353 Bib100

MEN - 0.533↗0.604 0.658↗0.726
WS-353 0.693↗0.729 - 0.658↗0.700
Bib100 0.693↗0.727 0.533↗0.601 -

(d) WikiNav

MEN WS-353 Bib100

MEN - 0.729↗0.751 0.738↘0.737
WS-353 0.709↘0.703 - 0.738↘0.715
Bib100 0.709↗0.715 0.729↘0.718 -

4.5 Robustness of the Learned Semantic Relatedness Measure

Here we inject wrong semantic relatedness information into our learning process.
The goal is to show that i) wrong ratings do not collapse the relatedness measures,
which ultimately makes our approach robust for different users with different intu-
itions of relatedness, and ii) that the promising results of the previous experiments
are indeed caused by the successful injection of user feedback.

The setup is the same as with the random sampling experiment (Section 4.3),
except that we randomly reassign the relatedness scores of the training pairs. This
way, we evaluate on valid human intuition, but learn from false information. In
Figure 4, we can see that shuffled relatedness scores exhibit a negative influence on
the learned metric relatedness measure, as expected. On BibSonomy embeddings,
only the measures trained on the MEN dataset yielded increasingly bad results,
while the measures trained on the Bib100 or WS-353 datasets did not change very
much, though they did not improve correlation either. All measures trained on De-
licious embeddings dropped in performance. WS-353-trained measures stayed bad
and showed even worse results, Bib100-trained measures also decreased in perfor-
mance. Most notably, all embedding datasets except BibSonomy seem to be very
receptive for changes induced by MEN relations: While performance increased in
the first experiment, here, it decreased by a notable margin. Nevertheless, the de-
crease of all tested measures is mitigated by the inherent semantic content of the
embeddings. Overall, this shows the robustness as well as the consistency of our
approach, as was the goal of this experiment.

5 Discussion of the Results

Integrating Different Amounts of User Feedback. It can be seen that in the
random sampling experiments, the information in the MEN dataset is generally best
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(d) WikiNav

Figure 4: Results for the robustness experiment. For each split, the scores of the
word pairs in the training dataset were shuffled. The test dataset stayed the same.

suited to learn semantic relatedness. While this might be due to its big size, it might
also be due to this dataset was created11: Using crowdsourcing, each human worker
was shown two pairs of words and had to determine which of both pairs is more
related. The higher a word pair in MEN is rated, the more often it was considered
more related than the other one that was given. Our approach exploits very similar
constraints for learning. Keeping this explanation in mind, we are able to give
a recommendation on how to gather human feedback in order to learn semantic
relatedness with our method. The bad performance of MEN on the BibSonomy
embeddings, both with the baseline and the metric, could be attributed to the very
low overlap of the BibSonomy vocabulary and the MEN pairs (see Table 1) as well
as the small size of the BibSonomy tagging data. On all other embedding datasets,
where MEN is very useful to learn the metric, the pair overlap is notably higher.
Throughout all settings in this experiment, we observed that using more data results
in better relatedness scores, if there was a positive effect.

Transporting User Intentions. The most notable result here is that knowledge
transfer from one HID to another works best and with large improvements on the
WikiGloVe embeddings. These embeddings are generated from the by far biggest

11
https://staff.fnwi.uva.nl/e.bruni/MEN
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word collections, i.e., the Wikipedia of 2014 as well as the Gigaword5 corpus.12 It
thus seems plausible that the embedding vectors encode a large portion of the se-
mantic information of the underlying corpus and thus benefit most from the injected
knowledge in our approach. It also shows that we are able to adapt the metric and
transfer the knowledge if the vectors representations contain all necessary informa-
tion. This is also in line with the notion that BibSonomy is the smallest corpus in
our collection, which seems too sparse to properly learn semantic relatedness. Ta-
ble 3a shows almost only deteriorating correlation scores when applying a learned
relatedness measure, except for the MEN-trained measure evaluated on WS-353.
Finally, results on WikiNav do not change very much, except when training the
measure on MEN and evaluating it on WS-353, which is a similar phenomenon as
on the BibSonomy embeddings.

Robustness. On all four embedding datasets, evaluation performance decreases no-
tably with the MEN dataset, with the worst performance loss on BibSonomy, where
MEN does not perform well anyway. We observe similar responses on WikiGloVe.
These results confirm (again) that word embeddings successfully manage to en-
code semantic information, and also that we cannot just “unlearn” it. Furthermore,
all embedding sets except BibSonomy react the most when used with a measure
trained on MEN. We attribute this to the same reasons as why MEN is seemingly
best suited to learn semantic relations from, i.e., it is constructed in a very similar
way to the form of the constraints that the learning algorithm is parameterized
with. Another consequence of this is that the promising results of the previous ex-
periments are indeed caused by the successful injection of semantic side information
into the relatedness measure.

Additional remarks. We are well aware that with our current set of vector em-
beddings, we do not improve upon the current state-of-the-art evaluation results on
WS-353 and MEN. However, this was not our goal in this work, as we wanted to
demonstrate the feasibility of our metric learning approach to inject prior knowledge
from human feedback into a semantic relatedness measure.

6 Related Work

In the following, we will report the most relevant work in these fields of metric
learning as well as semantic relatedness learning algorithms.

Metric Learning. Since we focus on the adaptation of metric learning on semantic
relatedness constraints, we give a short overview of different types of metric learning
algorithms. Metric learning algorithms can be roughly split in two classes according
to the nature of the exploited constraints.

The first class of metric learning algorithms utilizes link-based constraints, i.e.,
we have explicit information if two items are either similar or dissimilar. As one of
the first to propose an approach to learn a distance metric, Xing et al. [31] pro-
posed to parameterize the Euclidean metric with a Mahalanobis matrix M in order
to improve kNN clusterings by incorporating side knowledge. Weinberger et al. [28]
presented the LMNN algorithm, which aims to improve kNN clustering by placing

12
https://nlp.stanford.edu/projects/glove/
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items with similar classes near to each other, while pushing away items with differ-
ent classes by a large margin. The metric learning algorithm proposed in [9] makes
use of quadruplets (x, x′, y, y′) and distance constraints u and l. These parameters
can be translated to constraints d(x, x′) > u and d(y, y′) < l. While the form of the
constraints seems very similar to those of our approach, the constraints still only
encode two classes of similar and dissimilar items. Finally, Qamar and Gaussier [22]
propose an algorithm to learn a generalized cosine measure to improve kNN clas-
sification. This approach is similar to ours, as we also learn a generalized cosine
measure, but their algorithm again exploits similarity and dissimilarity constraints
with a large margin.

The other class of metric learning algorithms is based on relative constraints,
e.g., for three items x, y, z, a constraint could be x is more similar to y than x to
z. This setting is much more in line with the idea of actually measuring a con-
tinuous degree of relatedness instead of a preprocessing step for classification or
clustering. In [24], Schultz and Joachims propose an early distance metric learning
approach based on Ranking Support Vector Machines. Their algorithm takes sets
of triplets (xi, xj , xk) which encode the constraints d(xi, xj) < d(xi, xk), i.e., xi is
more similar to xj than to xk. These constraints are extracted from clickthrough
data, where explicit preference information of a list of items compared to a reference
item is available. This is however not the case in our scenario, as our constraints are
based on distance comparisons between four different items instead of only three.
The algorithm proposed in [16] makes use of relative distance comparisons encoded
in quadruplets (x, x′, y, y′), which encode relative comparisons d(x, x′) < d(y, y′)
without a separation margin, in order to learn a metric. This is a more general
approach than the one provided by [24], as it is easy to convert triplet constraints
to quadruplet constraints, but not the other way round.
Learning Semantic Relatedness. While the task to correctly determine the se-
mantic relatedness of words or texts has been around for a long time, there are still
few approaches which actually learn semantic relatedness.

Lately, many unsupervised approaches to learn semantic relatedness in low di-
mensions have been proposed. These methods are also often called word embedding
algorithms. Such methods train a model to predict a word from a given context [2, 7,
18, 26]. Other embedding methods focus on factorizing a term-document matrix [10,
21]. These methods all have in common that they do not inject any external knowl-
edge. Anyhow, [1] showed that all those methods generally exhibit a notably higher
correlation with human intuition than the standard high-dimensional vector repre-
sentations proposed by [27].

Bridging the gap between unsupervised relatedness learning approach and hu-
man intuition by injecting side knowledge can be accomplished with post-processing
methods or with directly injecting this knowledge in the embedding process. Both
[14] and [19] propose approaches to inject synonymy and, in the case of the lat-
ter, also antonymy constraints into semantic vector representations. They aim to
maximize the similarity of synonymous words, while minimizing the similarity of
antonyms. Hereby, synonymy constraints acted as attractors in the semantic vector
space, while the antonymy constraints acted as repellants. [11] presented a method
to fit the embedding vectors to the neighborhood defined by relations in semantic
lexicons. In a way, also this algorithm is based on similarity constraints, as the



distance between similar vectors is minimized. However, all of these works did not
incorporate the actual degree of relatedness into their approaches, which is what
we do in this work. There also exist methods which incorporate side knowledge
directly into the embedding process, e.g., [4, 32]. However, our metric learning ap-
proach works on any already existing set of vector embeddings instead of actually
training new word embeddings from raw data.

7 Conclusion

In this work, we presented an approach to learn semantic relatedness from human
intuition based on word embeddings. Our approach is scalable and fast in terms
of constraints and produces significantly improved results compared to the widely
used cosine measure, while yielding competitive results on human evaluation data-
sets. We argued for the use of word embeddings instead of high-dimensional vector
representations for tagging data due to an improvement in their semantic content
and their clear reduction of computational complexity when learning a metric.

Concretely, we could show that we can exploit semantic relatedness informa-
tion from HIDs to more realistically assess semantic relatedness, regardless of the
underlying embedding dataset. Aditionally, we were able to encode and transfer
knowledge from one HID to another, sometimes with a very large increase of corre-
lation with human intuition. When training a metric on false information to assess
the robustness of our approach, we argued that this actually supports our results,
as the algorithm yields negative results, as we expected. Transferred to our previous
positive results, we are indeed able to inject valid knowledge into our relatedness
measure to produce a better fit to human intuition than only with word embeddings.

Future work includes the exploration of other graph embedding algorithms for
tagging data, the exploration of crowdsourcing strategies to best gather data suit-
able for metric learning and further adaptation of metric learning algorithms to
specific properties of social tagging systems.
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