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Abstract The semantics hidden in natural language are an essential build-
ing block for a common language understanding needed in areas like NLP
or the Semantic Web. Such information is hidden for example in lightweight
knowledge representations such as tagging systems and folksonomies. While
extracting relatedness from tagging systems shows promising results, the
extracted information is often encoded in high dimensional vector represen-
tations, which makes relatedness learning or word sense discovery computa-
tionally infeasible. In the last few years, methods producing low-dimensional
vector representations, so-called word embeddings, have been shown to yield
extraordinary structural and semantic features and have been used in many
settings. Up to this point, there has been no in-depth exploration of the
applicability of word embedding algorithms on tagging data. In this work,
we explore different embedding algorithms with regard to their applicability
on tagging data and the semantic quality of the produced word embeddings.
For this, we use data from three different tagging systems and evaluate the
vector representations on several human intuition datasets. To the best of
our knowledge, we are the first to generate embeddings from tagging data.
Our results encourage the use of word embeddings based on tagging data, as
they capture semantic relations between tags better than high-dimensional
representations and make learning with tag representations feasible.

1 Introduction

Automatically assessing the degree of semantic relatedness between words, i.e., the
relatedness of their actual meanings, in such a way that it fits human intuition is an
important task with a variety of applications, such as ontology learning for the Se-
mantic Web [3], tag recommendation [17], word sense disambiguation [27], semantic
search [15] or query expansion [25]. Semantic relatedness information of words has
been extracted from a variety of sources like plain text [9], website navigation [26,
32] or social metadata [7, 10, 21]. Among others, tagging data from social tagging
systems like BibSonomy3 or Delicious4 are useful to extract high-quality semantic
relatedness information, e.g., for ontology learning [3].

Traditionally, assessing the degree of semantic relatedness between tags utilizes
sparse, high-dimensional vector representations of those tags, which are constructed
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from tag contexts based on posts in social tagging systems [10]. The semantic re-
latedness can then be estimated using the cosine measure of the corresponding tag
vectors [21]. Finally, evaluating the quality of the estimated scores is usually per-
formed by directly correlating them to human intuition [8, 13, 30]. In recent years,
many techniques have been proposed to represent words by dense, low-dimensional
vectors [24, 28, 33]. These so-called word embeddings have been shown to yield ex-
traordinary structural features [19, 23] and are applied in machine translation or text
classification. Furthermore, word embeddings often outperform high-dimensional
representations in tasks such as measuring semantic relatedness [1, 18, 19].
Problem Setting. Traditionally, tags are represented by sparse, high-dimensional
vectors [10, 31, 34]. However, although Cattuto et al. have shown that tagging data
contain meaningful semantics [10], the correlation of semantic relatedness scores
from those vectors with human intuition still leaves room for improvement. Fur-
thermore, the high dimensionality renders many algorithms based on vector repre-
sentations of tags computationally expensive.5 Up to this point, there have been
no extensive attempts to generate word embeddings from social tagging data. All
prior studies rely on high dimensional tagging vectors or reduce the vector space
arbitrarily by cutting the dimensionality of the space by a fixed number, which in
turn decreases the fit of the resulting relatedness scores to human intuition.
Contribution. We contribute a thorough exploration of the applicability and op-
timization of three well-known embedding algorithms on tagging data. We first
analyze the parameters of each algorithm, before we optimize these settings to pro-
duce the best possible word embeddings from tagging data. Then, we compare the
embeddings of each algorithm with each other as well as with traditional sparse
representations by evaluating them on human intuition. We show that all produced
embeddings outperform high-dimensional vector representations. We discuss the re-
sults in the light of other semantic relatedness approaches and show that we reach
competitive results, on par with recent work on extracting semantic relatedness.
Structure of this work. We first cover the related work in Section 2 and any es-
sential theoretical background of this work in Section 3. Afterwards, we investigate
three well-known algorithms with respect to their applicability on tagging data
in Section 4. In Section 5, we describe the datasets we used in our experiments.
Section 6 outlines our experiments, where we compare all generated vector repre-
sentations with regard to their semantic content. Section 8 concludes this work.

2 Related Work

The related work to this paper can be roughly put in two groups: Word Embedding
algorithms and semantics of tagging data as well as their applications.
Word Embeddings. The concept of word embeddings, i.e., word representations
in low dimensional vector spaces dates back at least to 1990, when Deerwester pre-
sented LSA [11], which by factorizing a term-document matrix effectively produced
a dimension reduction of the term vector space. In 2003, Bengio et al. presented
their neural probabilistic language model [2]. The goal of this work was to overcome
the curse of dimensionality and learn a distributed representation for words in a

5 This is also sometimes referred to as the curse of dimensionality



low-dimensional vector space. However, the wide-spread use of word embeddings
only really took off in 2013, when Mikolov et al. presented a similar, yet scalable
and fast approach to learn word embeddings [24]. Generally, such methods train a
model to predict a word from a given context [2, 6, 24]. Other embedding methods
focus on factorizing a term-document matrix [11, 28]. In [1], Baroni et al. showed
that all those methods generally exhibit a notably higher correlation with human in-
tuition than the standard high-dimensional vector representations proposed in [31].
There also exist several graph embedding algorithms. The LINE algorithm [33] at-
tempts to preserve the first-order and second-order proximity of nodes in a graphs in
their corresponding embedding relations. Perozzi et al. [29] proposed “DeepWalk”,
a graph embedding approach based on random walks on graphs and the subsequent
embedding using Word2Vec.
Social Tagging Systems. In [14], Golder and Huberman noted that with increas-
ing use, usage data from social tagging systems exhibited an emerging structure,
which was later called a folksonomy [35]. Mika noted that these emerging structures,
i.e., folksonomies, could even represent light-weight ontologies [22]. Using the folk-
sonomy structure, it was possible to extract information about semantic relatedness
between tags [10, 21]. The evaluation of this semantic relatedness information on
human intuition showed that tagging data contain a considerable amount of seman-
tic information, thus enabling further applications of tagging data. Applications
of these emerging structures can be found in tag recommendation [17], ontology
learning [4] and tag sense discovery algorithms [27]. For an excellent overview of
extracting semantics from tagging data, the reader can also be referred to [3].

3 Technical Background

In the following, we will describe the technical background for this paper. First,
we define the term folksonomy. Secondly, we introduce how to extract information
about semantic relatedness from folksonomies.
Folksonomy Definition. Folksonomies are the data structures emerging from so-
cial tagging systems. The term has been coined by Van der Wal in 2005 as a port-
manteu of “folks” and “taxonomy” [35]. In these systems, users collect resources
and annotate them with freely chosen keywords, so-called tags. Examples are Bib-
Sonomy, Delicious, FlickR or last.fm. We follow the definition given by [16]:

A folksonomy is a tuple (U, T,R, Y ) of sets U , T , R and a tripartite rela-
tion Y ⊆ U × T ×R. The sets U , T and R represent the sets of users, tags
and resources, respectively, while Y represents the set of tag assignments.
A post is the collection of tag assignments with the same user and same
resource.

Extracting Semantic Relatedness from Folksonomies. After Golder and Hu-
berman argued that the emerging structure of folksonomies contains considerable
semantic information [14], Cattuto et al. proposed a way to extract this informa-
tion [10]. They used a context-co-occurrence based vector representation for the
tags and experimented with different context choices, such as tag-tag-context or
tag-user-context. The best context to estimate semantic relatedness as perceived



by humans was shown to be the tag-tag-context, i.e., all assigned tags of a posted
resource by a specific user. In this work, we generally use the tag-tag-context. The
resulting vector representations follow the definition given in [31] and are based on
the co-occurrence counts of tags in their respective contexts. More concretely, a vec-
tor representation vi of a tag ti ∈ V in a given vocabulary is then a |V |-dimensional
vector, where vij := #cooccpost(i, j). To finally receive a notion of the degree of
semantic relatedness between two tags i and j, one can compare the corresponding

vectors vi and vj using the cosine measure cossim(vi, vj) :=
〈vi,vj〉
‖vi‖·‖vj‖ [21].

4 Applicability of Embedding Algorithms on Tagging Data

This section describes the different embedding algorithms that we explored. For
each algorithm, we give a short summary, enumerate the parameters for each model
and shortly discuss how it can be applied to tagging data.

Word2Vec The most well-known embedding algorithm used in this work is the
Word2Vec algorithm [24]. Word2Vec is actually comprised of two algorithms, Skip-
Gram and CBOW (Cumulative Bag of Words).6 Word2Vec trains a shallow neural
network on sequences of words to predict a word from its context, i.e., from its
neigboring words in a given context window.
Parameterization. Word2Vec takes two parameters. The first parameter is the
window size, which determines the amount of neighboring words in a sequence
considered as context from which a word will be predicted. The second parameter
is a minimum occurrence count of words to be considered as sufficiently meaningful
in a context. We only make use of the first parameter, as we already filtered our
datasets in a preparation step.
Applicability. The Word2Vec algorithm normally processes sequential data. How-
ever, the sequence of tags normally does not hold any meaning, so this could possibly
pose a problem if the window size is chosen too small. In order to be able to apply
Word2Vec on tagging data, we grouped the tag assignments into posts and fed the
random succession of tags as sentences into the algorithm.

GloVe GloVe is an unsupervised learning algorithm for obtaining vector represen-
tations for words [28]. Its main objective was to capture semantic relations such
as king − man + woman ≈ queen. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus.
Parameterization. The main parameters of the GloVe algorithm are xmax and α.
xmax denotes an influence cutoff for frequent tags while α determines the importance
of infrequent tags. According to [28], GloVe worked best for xmax = 100 and α =
0.75. We will choose these as initial values in our experiments.
Applicability. Since GloVe depends on co-occurrence counts of words in a corpus,
it is very easy to apply on tagging data. For this, we construct the tag-tag-context
co-occurrence matrix and can then directly feed it into the algorithm.

6 In the course of this work, every time we refer to Word2Vec, we talk about the CBOW
algorithm, as is recommended by [24] for bigger datasets.



LINE The goal of the LINE embedding algorithm is to create graph embeddings
where the first- and second-order proximity of nodes are preserved [33]. The first-
order proximity in a network is the local pairwise proximity of two nodes, i.e., the
weight of an edge connecting these two nodes. The second-order proximity of two
nodes in a network is the similarity between their first-order neighborhoods.

Parameterization. LINE takes two different parameters: The amount of edge sam-
ples per step and the amount of negative samples per edge. To decrease complexity
of solving the proposed model in [33], the authors employed a noise contrastive
estimation approach as proposed by [24] using negative sampling. Furthermore, to
avoid high edge weights to outweigh lower weights by letting the gradient explode
or vanish, LINE employs a sampling process of edges and then ignoring their weight
instead of actually using the edge weights in its objective function.

Applicability. Similar to GloVe, this algorithm processes a network with weighted
edges, such as a co-occurrence network. Thus, we only have to construct the co-
occurrence network from the tagging data and apply LINE on that network.

Common Parameters While each of the following algorithms can be tuned with
a set of different parameters, there are some parameters common to all algorithms.
First, the embedding dimension determines the size of the produced vectors. A
higher embedding dimension allows for more degrees of freedom in the expressive-
ness of the vector, i.e., it can encode more information about word relations. Stan-
dard ranges for low dimensions are between 25 and 300. Secondly, the initial learning
rate of an algorithm determines its convergence speed. Fine-tuning that parameter
is crucial to receive optimal results, because if chosen badly, the learning process
either converges very slowly or might be unable to converge at all.

5 Datasets

In this work, use two different kinds of datasets to evaluate embedding algorithms
on tagging data. That is, the actual tagging datasets which provide tagging meta-
data and human intuition datasets (HIDs) which we employ to evaluate semantic
relatedness. In the following we first describe three datasets containing tagging data
from which we later derive tag embeddings. Then we introduce all human intuition
datasets containing human-assigned scores of similarities to word pairs.

5.1 Tagging Datasets to Derive Word Embeddings

We study datasets of three public social tagging systems. In order to ensure a
minimum level of commonly accepted meaning of all tags, each dataset is restricted
to the top 10k tags. Additionally, we only considered tags from users who have
tagged at least 5 resources and resources which have been used at least 10 times.
We also removed all invalid tags, e.g., containing whitespaces or unreadable symbols.

BibSonomy. The social tagging system BibSonomy provides users with the possi-
bility to collect bookmarks (links to websites) or references to scientific publications



and annotate them with tags [5]. We use a freely available dump of BibSonomy, cov-
ering all tagging data from 2006 till the end of 2015.7 After filtering, it contains 9,302
distinct tags, assigned by 3,270 users to 49,654 resources in 630,962 assignments.
Delicious. Like BibSonomy, Delicious is a social tagging system, where users can
share their bookmarks and annotate them with tags. We use a freely available
dataset from 2011 [36].8 Delicious has been one of the biggest adopters of the tagging
paradigm and due to its audience, contains tags about design and technical topics.
After filtering, the Delicious dataset contains 10,000 tags, which were assigned by
1,685,506 users to 11,486,080 resources in 626,690,002 assignments.
CiteULike. We took a snapshot of the official CiteULike page from September
2016.9 Since CiteULike describes itself as a “free service for managing and discov-
ering scholarly references”, it contains tags mostly centered around research topics.
After filtering, the CiteULike dataset contains 10,000 tags, which were assigned by
141,395 users to 4,548,376 resources in 15,988,259 assignments.

5.2 Human Intuition Datasets (HIDs)

As a gold standard for semantic relatedness as it is perceived by humans, we use
several datasets with human-generated relatedness scores for word pairs. In the
following, we will describe all of the used datasets briefly.
WS-353. The WordSimilarity-35310 dataset consists of 353 pairs of English words
and names [12]. Each pair was assigned a relatedness value between 0.0 (no re-
lation) and 10.0 (identical meaning) by 16 raters, denoting the assumed common
sense semantic relatedness between two words. Finally, the total rating per pair
was calculated as the mean of each of the 16 users’ ratings. This way, WS-353 pro-
vides a valuable evaluation base for comparing our concept relatedness scores to an
established human generated and validated collection of word pairs.
MEN. The MEN Test Collection [8] contains 3,000 word pairs together with human-
assigned similarity judgments, obtained by crowdsourcing using Amazon Mechanical
Turk11. Contrary to WS-353, the similarity judgments are relative rather than ab-
solute. Raters were given two pairs of words at a time and were asked to choose the
pair of words was more similar. The score of the chosen pair, i.e., the pair of words
that was more similar, was then increased by one. Each pair was rated 50 times,
which leads to a score between 0 and 50 for each pair.
Bib100. The Bib100 dataset has been created in order to provide a more fitting
vocabulary for the research and computer science oriented tagging data that we
investigate.12 It consists of 122 words in 100 pairs, which were judged 26 times each
for semantic relatedness using scores from 0 (no similarity) to 10 (full similarity).
MTurk. In [30], Radinsky et al. created an evaluation dataset specifically for news
texts.13 We use this dataset as a topically remote evaluation baseline in order to get
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Table 1: Spearman correlation values for the co-occurrence baseline. For all evaluation
datasets, we gave the total number of pairs in the original dataset and the number of
matched pairs, i.e., where both words were present in the tagging corpus.

WS-353 (353) MEN (3000) MTurk (287) Bib100 (100)

BibSonomy 0.433 (158) 0.415 (463) 0.604 (62) 0.623 (100)
Delicious 0.486 (202) 0.577 (1376) 0.508 (103) 0.632 (94)
CiteULike 0.186 (139) 0.423 (404) 0.469 (53) 0.270 (87)

Table 2: Initial parameter values for each algorithm.

Algorithm initial learning rate dimension samples per step negative samples (xmax, α) window size

LINE 0.025 100 100 · 106 5 - -
GloVe 0.05 100 - - (100, 0.75) -
Word2vec 0.025 100 - 5 - 5

a notion how intrinsic semantic relations are captured by both the tagging data and
the generated embeddings. The dataset at hand consists of 287 word pairs and 499
words. 23 humans judged relatedness on a scale from 1 (unrelated) to 5 (related).

6 Experimental Setup and Results

In the following, we describe the conducted experiments and present the results for
each experiment. Due to space limitations, we only report results for MEN. A full
presentation of all result figures will be made publicly available.14

6.1 Preliminaries

Evaluating Word Vector Representations Very often, the quality of semantic
relatedness encoded in word vectors is assessed by how well it fits human intuition.
Human intuition is collected in HIDs as introduced in Section 5. The most widely-
used method to evaluate semantic relatedness on such datasets is the Spearman
rank correlation coefficient which compares the ranking of word pairs given by the
human relatedness scores in the HID with the ranking implied by the semantic
relatedness measure [1, 13, 24, 28].

Baseline: Tag-Tag-Context Co-Occurrence Vectors As a baseline, we pro-
duced high dimensional co-occurrence counting vectors from all three tagging da-
tasets. As described in Section 3, co-occurrence of tags was counted in a tag-tag-
context, i.e., the context of a tag was given as the other tags annotated to a given
resource by a certain user [10]. Since there is no option to vary the dimension of
the tag-tag-context co-occurrence vectors except truncating the vocabulary, we only
report the values for a truncated vocabulary of 10,000 tags in Table 1. Still, we give
all of the reported results as baselines in the subsequent figures.

14
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Table 3: Best parameter values for each algorithm for the MEN dataset on Delicious data.

Algorithm initial learning rate dimension samples per step negative samples (xmax, α) window size

LINE 0.1 100 100 · 106 15 - -
GloVe 0.1 120 - - (100, 0.75) -
Word2vec 0.1 100 - 20 - 5

Parameter Settings For each of the following algorithms, we conducted the ex-
periments as follows: As initial parameter setting, we used the standard settings that
come with the implementation of each algorithm. The corresponding values are given
in Table 2. We then varied the initial learning rate for each algorithm in the range
of 0.01 to 0.1 in steps of 0.01. After that, we varied the embedding dimension on
the set of {10, 30, 50, 80, 100, 120, 150, 200}. For Word2Vec and LINE, we now var-
ied the number of negative samples on the set of {2, 5, 8, 12, 15, 20}. For GloVe, we
varied xmax ∈ {25, 50, . . . , 200} and α ∈ {0.5, 0.55, . . . , 1} simultaneously. Finally,
for Word2Vec, we varied the context window size between {1, 3, 5, 8, 10, 13, 16, 20},
while for LINE, we varied the number of samples per step on {1, 10, 100, 1000, 10000}·
106. To rule out influence of a random embedding initialization, each experiment
was performed 10 times and the mean result was reported. After each experiment,
we chose the best performing parameter settings on the respective tagging datasets
across the four evaluation datasets and used them for all other experiments.

6.2 Embedding Evaluation Results

We will now present the evaluation results. For each algorithm, Table 3 gives the
parameter settings which produced the highest-scoring embeddings. In each figure,
we report both the evaluation results of the embeddings for a given parameter
as well as the corresponding baselines produced by the high-dimensional vector
representations given in Table 1. The generated embeddings are publicly available.15

Word2Vec Although Word2Vec is meant to be applied on sequential data, as op-
posed to the bag-of-words nature when assigning tags, the generated embeddings
yielded better correlation scores with human intuition than their high-dimensional
counterparts. However, we did not shuffle the tag sequence in posts, which is left
to future work. Figure 1a shows that fine-tuning the initial learning rate exhibits
a great effect on the quality of word embeddings from BibSonomy, with general
peak performance at α = 0.1, while Delicious data seem unaffected. Increasing the
embedding dimension only improves the embeddings’ semantic content up to a cer-
tain point, which is mostly reached at around a very low number of dimensions
between 30 and 50 (Figure 1b). Anything above that does not notably add to the
performance of the embeddings. The number of negative samples seems to be suffi-
cient at around 10 samples and even earlier for Delicious and CiteULike (Figure 1c)
The influence of the context window size on the semantic content of the generated
embeddings was negligible (Figure 1d).
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GloVe GloVe generates embeddings from co-occurrence data. As mentioned in Sec-
tion 4, GloVe is parameterized by the learning rate, the dimension of the generated
embeddings as well as by the weighting parameters xmax and α, which regulate the
importance of low-frequency co-occurrences in the training process. While the learn-
ing rate does not seem to have great effect on embeddings generated from Delicious
data, fine-tuning influences the semantic content of CiteULike and BibSonomy em-
beddings notably (Figure 2a). Mostly, peak performance is reached at an embedding
dimension around 100 or even earlier, except for Delicious (Figure 2b) Furthermore,
BibSonomy is quite sensitive to poor choices of xmax and α, i.e., if both are chosen
too high, performance suffers greatly (Figure 2c). However, Delicious and CiteULike
seem unaffected by those parameters, at least in our experimental ranges (Figures
2d and 2e).

LINE LINE generates vertex embeddings from graph data, preserving the first-
and second-order proximity between vertices. Its parameters are the initial learning
rate, the embedding dimension, the number of negative samples per edge and the
number of samples per training step. While influence of the initial learning rate is
visible, it is not as great as with GloVe. Also, the embedding dimension gives similar
results above 50 and only lets performance suffer if chosen too small. Interestingly
enough, the number of negative samples seems to have almost no effect on the
generated embeddings across all tagging datasets. In contrast, choosing the number
of samples per step exerts great influence of the resulting embeddings.
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Figure 1: Evaluation results for embeddings generated by Word2Vec on MEN. For CiteU-
Like and BibSonomy, tuning the learning rate notably improves results. The embedding
dimension seems to be the best for all tagging dataset at 100; afterwards the quality of
BibSonomy embeddings decreases again. As reported by [24], a number of around 10 neg-
ative samples seems sufficient for small datasets such as BibSonomy, while a lesser number
of samples fits for bigger datasets.
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Figure 2: Evaluation results for embeddings generated by GloVe on the MEN dataset. The
initial learning rate only influences the smaller tagging datasets, while Delicious profits
most from increasing dimension. BibSonomy is influenced by a high cutoff xmax the most.
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Figure 3: Evaluation results for embeddings generated by LINE on the MEN dataset.
While the initial learning rate, the embedding dimension and the amount of samples per
step exert a notable influence on the evaluation result, increasing the number of negative
samples per edge only slightly improves results.

7 Discussion

Across all algorithms, fine-tuning the initial learning rate greatly improves results
for embeddings based on BibSonomy, especially with GloVe. The effect of the em-
bedding dimension is much less pronounced across all three embedding algorithms.
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Figure 4: Evaluation results for embeddings generated by the best parameter settings across
the different tagging datasets. GloVe mostly produces the best embeddings and is the only
algorithm to always outperform the baseline.

Peak evaluation performance is often reached with an embedding dimension between
50 and 100 and stays quite stable with increasing dimension. Varying the number
of negative samples influences evaluation results of BibSonomy, but only at a very
high number of 20 negative samples. In contrast, Delicious and CiteULike only show
small performance changes already with 3 to 5 samples. Finally, GloVe’s weighting
factors xmax and α negatively influence results on BibSonomy, while barely affect-
ing evaluation performance on Delicious and CiteULike, due to BibSonomy being
our smallest tagging dataset with rarely any co-occurrences above a high xmax.

Generally we can see that all investigated embedding algorithms produce usable
and high-quality embeddings from tagging data. Although in [10] it was found
that tagging data contain high-quality semantic information, the standard high-
dimensional vector representation proposed there does not seem to capture this
information very well, when evaluated on human judgment (see Table 1). In contrast,
the generated embeddings seem better suited to capture that information, as they
almost always outperform the tag-tag-context based co-occurrence count vectors
(Section 6.2). Furthermore, the best result achievable on WS-353 in this work is
from Delicious data using the GloVe algorithm of around 0.7 (cf. Figure 4b), which
is on par with with other well-known works, such as ESA [13], which is based on
Wikipedia text, achieving correlation around 0.748, or the work done by Singer et
al. on Wikipedia navigation [32] with the highest correlation at 0.76, but generally
achieving scores around 0.71.

8 Conclusion

In this work, we explored embedding methods and their applicability on tagging
data. We conducted parameter studies for three well-known embedding algorithms
in order to achieve the best possible embeddings based on tagging data regarding
their fit to human intuition of semantic relatedness. Generally, tagging data provide
a viable source to generate high-quality semantic embeddings, even on par with
current state-of-the-art methods. Future work includes investigation the influence
of different vector representations on tagging-based real-world applications, such as
tag recommendations in social tagging systems, tag sense discovery and ontology
learning algorithms. Furthermore, we want to try to improve the fit of tagging
embeddings to human intuition by applying metric learning approaches or alignment
approaches to external knowledge bases, e.g., WordNet or DBPedia.
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[17] Robert Jäschke et al. “Tag Recommendations in Folksonomies.” In: PKDD. Ed. by Joost N. Kok

et al. 2007.
[18] Omer Levy, Yoav Goldberg, and Ido Dagan. “Improving distributional similarity with lessons

learned from word embeddings.” In: TACL 3 (2015).
[19] Omer Levy, Yoav Goldberg, and Israel Ramat-Gan. “Linguistic Regularities in Sparse and Ex-

plicit Word Representations.” In: CoNLL. 2014.
[20] K. Lund and C. Burgess. “Producing high-dimensional semantic spaces from lexical co-occurrence.”

In: Behavior Research Methods Instruments and Computers 28.2 (1996).
[21] Benjamin Markines et al. “Evaluating Similarity Measures for Emergent Semantics of Social

Tagging.” In: WWW. 2009.
[22] Peter Mika. “Ontologies Are Us: A Unified Model of Social Networks and Semantics.” In: Web

Semant. 5.1 (Mar. 2007).
[23] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in Continuous Space

Word Representations.” In: HLT-NAACL. 2013.
[24] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their Composi-

tionality.” In: NIPS. 2013.
[25] Apostol (Paul) Natsev et al. “Semantic Concept-based Query Expansion and Re-ranking for

Multimedia Retrieval.” In: MM. 2007.
[26] Thomas Niebler et al. “Extracting Semantics from Unconstrained Navigation on Wikipedia.” In:

KI - Künstliche Intelligenz (2015).
[27] Thomas Niebler et al. “How Tagging Pragmatics Influence Tag Sense Discovery in Social Anno-

tation Systems.” In: ECIR. 2013.
[28] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global Vectors for

Word Representation.” In: EMNLP. Vol. 14. 2014.
[29] Bryan Perozzi, Rami Al-Rfou’, and Steven Skiena. “DeepWalk: online learning of social repre-

sentations.” In: KDD. Ed. by Sofus A. Macskassy et al. 2014.
[30] Kira Radinsky et al. “A Word at a Time: Computing Word Relatedness Using Temporal Semantic

Analysis.” In: WWW. 2011.
[31] H. Schütze and J.O. Pedersen. “A cooccurrence-based thesaurus and two applications to infor-

mation retrieval.” In: Information Processing & Management 33.3 (1997).
[32] Philipp Singer et al. “Computing Semantic Relatedness from Human Navigational Paths: A Case

Study on Wikipedia.” In: IJSWIS (2013).
[33] Jian Tang et al. “LINE: Large-scale Information Network Embedding.” In: WWW. 2015.
[34] Peter D. Turney and Patrick Pantel. “From Frequency to Meaning: Vector Space Models of

Semantics.” In: J. Artif. Int. Res. 37.1 (Jan. 2010).
[35] Thomas Vander Wal. Folksonomy Definition and Wikipedia. Nov. 2005.
[36] Arkaitz Zubiaga et al. “Harnessing Folksonomies to Produce a Social Classification of Resources.”

In: IEEE Trans. on Knowl. and Data Eng. 25.8 (Aug. 2013).

http://arxiv.org/abs/cs.DL/0508082

	Learning Word Embeddings from Tagging Data: A methodological comparison

