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Abstract Sequential traces of user data are frequently observed online and offline, e.g.,
as sequences of visited websites or as sequences of locations captured by GPS. However,
understanding factors explaining the production of sequence data is a challenging task,
especially since the data generation is often not homogeneous. For example, navigation
behavior might change in different phases of browsing a website, or movement behavior may
vary between groups of users. In this work, we tackle this task and propose MixedTrails, a
Bayesian approach for comparing the plausibility of hypotheses regarding the generative
processes of heterogeneous sequence data. Each hypothesis is derived from existing literature,
theory or intuition and represents a belief about transition probabilities between a set of
states that can vary between groups of observed transitions. For example, when trying to
understand human movement in a city and given some observed data, a hypothesis assuming
tourists to be more likely to move towards points of interests than locals, can be shown to
be more plausible than a hypothesis assuming the opposite. Our approach incorporates such
hypotheses as Bayesian priors in a generative mixed transition Markov chain model, and
compares their plausibility utilizing Bayes factors. We discuss analytical and approximate
inference methods for calculating the marginal likelihoods for Bayes factors, give guidance
on interpreting the results, and illustrate our approach with several experiments on synthetic
and empirical data from Wikipedia and Flickr. Thus, this work enables a novel kind of
analysis for studying sequential data in many application areas.

1 Introduction

Sequential data over a discrete state space emerges in a variety of settings, including sequences
of weather conditions [21], DNA sequences [54], Web navigation [44], or real-world travel
sequences over locations [26,42]. Understanding the underlying processes that generate
such sequences can be useful for a wide range of applications, such as improving network
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Fig. 1 Illustrating example. In this figure, we show an illustrating soccer example: We are interested in
a team’s strategy in a specific game. We start with data on passes and shots (a). Using a simple Markov
chain, we can model these as transitions between states (b). The previously proposed HypTrails approach
allows researchers to compare homogeneous hypotheses about sequential data that express beliefs in transition
probabilities (d-g, strength of belief indicated by line width). Utilizing Bayesian inference, it then determines
the evidence of the data (b) under these hypotheses (d-g) and ranks the hypotheses based on their plausibility;
in this case, the uniform hypothesis (d) is the relatively most plausible one. However, HypTrails is limited to
homogeneous data, and does not allow for more fine-grained hypotheses. Indeed, (c) reveals that splitting the
data into halftimes allows for a significantly better explanation of the data: A hypothesis that assumes offense
(e) in the first halftime and defense (g) in the second appears to be a lot more plausible. MixedTrails enables
the comparison of such hypotheses on heterogeneous data.

structures, predicting user clicks on websites, or enhancing recommendations, and has been a
challenge and complex research objective in our community for years.

Background. The (first-order) Markov chain model is one of the most elementary, yet
versatile, models for transitions between sequence states. It follows the Markovian assumption
that the probability of the next state in a sequence depends exclusively on the current state.
Building upon this basic model, the recently proposed HypTrails approach [52] allows
to compare hypotheses about sequential data, where hypotheses represent beliefs in state
transition probabilities that are derived from existing literature, theory, or intuition with regard
to the respective application domain. For example, by studying Wikipedia user data, we found
that the hypothesis that users preferably click on links at the top of a page provides a better
explanation of user navigation than a hypothesis that assumes transitions to semantically
similar pages [16].
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Figure 1 shows a concrete example on soccer data. It features passes between players
and shots at the goal (a). In this scenario, we are interested in the strategy a team has used
in a game, e.g., an offensive strategy, a defensive strategy, or just random passing. For this
purpose, we construct a Markov transition model using the players and the goal as states, and
the passes and shots as transitions between these states (b). With HypTrails [52], researchers
can then express and compare hypotheses (d-g) about pass sequences by specifying different
beliefs in transitions. For instance, a simple hypothesis could state that all transitions are
equally likely (d). Other hypotheses may express predominance of offensive passing (e), a
left-flank strategy (f), or defensive play (g). Given such hypotheses, HypTrails calculates
the Bayesian evidence of the data under each hypothesis based on which we can rank their
relative plausibility. Given the transition data in Figure 1(a), the approach would rank the
uniform hypothesis (d) as the most plausible one, as it resembles the overall data (b) best.

Problem and objectives. Simple Markov chain models, and consequently also the HypTrails
approach, assume homogeneous sequence data. As such, they cannot take into account
behavior stemming from several underlying processes. For instance, research on mobility has
found starkly differing user groups such as tourists and locals [38], and there exist different
phases of Web navigation with distinct patterns [63]. Reconsidering our soccer scenario of
Figure 1, we can observe that the play style substantially differs for the 1st and 2nd half of
the game (dashed and solid arrows). As a consequence, a hypothesis that assumes offensive
play for the first halftime and defensive play for the second halftime (cf. Figure 1 (e) and
(g)) could provide a better explanation for our data, but cannot be compared with existing
approaches.

To that end, our goal in this paper is to propose a method that lets researchers intuitively
formalize and compare hypotheses about heterogeneous sequence data, such as “The team
played according to the offense hypothesis in the first halftime, and according to the defense
hypothesis in the second halftime.” In this context, we aim at a general and flexible approach:
allowing to group transitions by a variety of features, like user groups, state properties, or the
set of antecedent transitions on the one hand, and enabling users to formulate probabilistic
group assignments as in the context of smooth behavioral shifts or uncertain classifiers on
the other hand.

Contributions. In this paper, we introduce the MixedTrails approach, which covers all
necessary aspects to enable the comparison of hypotheses on heterogeneous sequence data:
(i) We suggest a method to formalize hypotheses as belief matrices and probabilistic group
memberships; (ii) We propose the Mixed Transition Markov Chain (MTMC) model that
allows to capture such hypotheses; (iii) We show how to elicit priors for this model according
to the given hypotheses; (iv) We discuss exact and approximate inference for our model; (v)
We provide guidance in the interpretation of the result plots. Finally, we demonstrate the
benefits of our approach with synthetic and real world datasets.

Overall, we present a novel approach for specifying and comparing hypotheses about
heterogeneous sequence data that involve varying behavior in parts of the observed transitions.
This will enable researchers and practitioners to perform a new kind of analysis on such data.

2 Background and Notation

In this section, we shortly introduce HypTrails [52] which our approach MixedTrails builds
on and cover its building blocks, i.e., Markov chains and Bayesian model comparison. An
overview of all important notations used throughout this article can be found in Appendix B.

Markov Chain Model. A Markov chain model MMC [34,53] is a random process mod-
eling a sequence of random variables X1,X2, . . . ,Xl as transitions between a set of states
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S = {s1,s2, . . . ,sn}. In this work, we focus on first-order Markov chains, which describe a
memoryless process meaning that the next state s j in a sequence only depends on the current
one siτ , i.e.: Pr(Xτ+1 = s j|X1 = si1 , . . . ,Xτ = siτ ) = Pr(Xτ+1 = s j |Xτ = si) = θi, j. The
parameters of a Markov chain model MMC are the transition probabilities θi, j between states
si and s j represented by a transition matrix θ = (θi, j). As the model is stochastic, each row
of the transition matrix sums to 1, i.e. ∀i : ∑ j θi, j = 1. Thus, given a transition dataset D with
transition counts ni, j between states si and s j, the likelihood of observing these transitions is:

Pr(D|θ,MMC) = ∏
tk∈D

θik , jk = ∏
si,s j∈S

θ
ni, j
i, j

In the Bayesian setting, prior beliefs in transition probabilities are updated after observing
data. The choice of the prior distribution over the transition probabilities θ is crucial for
calculating the posterior or examining the marginal likelihood. As detailed below, in this
paper, we employ independent Dirichlet priors for each state i, i.e., θsi ∼ Dir(αsi) where αsi

are the parameters of the Dirichlet distribution.

Bayesian model comparison. Given a set of models {M1, . . . ,Mm} and some data D,
Bayesian model comparison establishes a partial order on the set of models Mi vM j vMk
based on the marginal likelihood Pr(D|Mi) of the data D given each model Mi. The marginal
likelihood represents the plausibility of the model. The strength of evidence in favor of a
model Mi compared to a model M j can then be formally measured by a Bayes factor Bi, j [33].
It represents the factor by which the prior odds in favor of one of two compared models
change after seeing the data (posterior odds):

Pr(Mi|D)

Pr(M j|D)︸ ︷︷ ︸
posterior odds

= Bi, j ·
Pr(Mi)

Pr(M j)︸ ︷︷ ︸
prior odds

, with Bi, j =
Pr(D|Mi)

Pr(D|M j)︸ ︷︷ ︸
Bayes factor

(1)

Bayes factors can also be utilized for conducting Bayesian hypotheses comparison if
priors encode theory-induced hypotheses as advocated in [35,50,60]; we use this throughout
this article. For judging significance, we refer to Kass and Raftery’s interpretation table [33].

HypTrails. HypTrails [52] operationalizes Bayesian model comparison for hypotheses on
Markov chain models MMC in order to establish a partial order v on a set of hypotheses
H = {H1, . . . ,Hn} based on their plausibility given the data. A hypothesis H is expressed
as a prior probability distribution Pr(θ|H,MMC) over all instances of transition probability
matrices θ, which is required to compute the marginal likelihood used by the Bayes factor:

Pr(D|H,MMC)︸ ︷︷ ︸
marginal likelihood

=
∫

Pr(D|θ,MMC)︸ ︷︷ ︸
likelihood

Pr(θ|H,MMC)︸ ︷︷ ︸
prior

dθ

If we now assume all hypotheses to be equally likely a-priori (as often done in Bayesian
model comparison), the Bayes factor directly implies the posterior probabilities, cf. the
derivation of Bayes factor in [33].

To express a hypothesis H about transition probabilities Pr(θ|H,MMC), HypTrails uses
Dirichlet priors, i.e., for each state si an individual Dirichlet prior Dir(αsi) is specified
which defines beliefs about transition probabilities from that state si to all other states. The
parameters αsi are vectors of positive numbers, i.e., αsi = (αi,1, . . .αi,n), αi, j ∈ R+. That is,
given a hypothesis H and a fixed number of imaginary (pseudo) transitions originating from
state si, αi, j−1 denotes the expected number of observed transitions from state si to state s j.
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The process of expressing a belief as a formal hypothesis H and transforming it into
prior parameters (pseudocounts) is called elicitation. For elicitation, HypTrails assumes a
two step process: First, a transition probability distribution φsi = (φi,1, . . . ,φi,n) is specified
for each state si, resulting in a stochastic transition matrix φ= (φi, j). Then, a concentration
factor κ ∈N+

0 is set in order to derive the hyperparameters αi, j by calculating: α= κ ·φ+1,
where κ is proportional to the amount of pseudocounts we assign to each state 1. The +1
adds the proto-prior that is necessary to ensure proper priors. Also, if κ = 0, every transition
probability configuration is equally likely (referred to as a flat prior, cf. [52]). The higher
we set the concentration factor κ , the more we “believe” in our hypothesis, i.e., we get
higher marginal likelihood values if we are correct, but we are also penalized more if the
hypothesis is off. The lower we set the concentration factor κ , the more “slack” we allow
for our hypothesis, i.e., we are not as strongly penalized for errors, but we also cannot reach
large marginal likelihood values if we are correct. Note that in the general framework of
Bayesian model comparison, choosing priors for the corresponding model parameters is not
an easy task, since usually a variety of information has to be taken into account including
relevant data, literature, or certainty in the belief. HypTrails somewhat alleviates this issue
by formalizing the suggestion from [33] to compare several prior instantiations by using
a range of concentration factors κ= {κ1,κ2, ...}. This allows for a structured and detailed
comparison of hypotheses. Also see Section 3.5 for a discussion on alternative approaches.

3 MixedTrails: Bayesian Hypothises Comparison in Heterogeneous Sequence Data

In this section, we introduce our approach MixedTrails for comparing hypotheses about het-
erogeneous sequence data using Bayesian model comparison. To this end, we first elaborate
on the specific problem setting (Section 3.1) and explain how hypotheses for heteroge-
neous sequence data are structured. Then, we introduce the Mixed Transition Markov Chain
(MTMC) model (Section 3.2) — an extension of the basic Markov chain model — that allows
to model such heterogeneous data. By incorporating hypotheses as elicited priors over the
model parameters (Section 3.3), we can utilize Bayesian model comparison to make relative
judgements about the plausibility of the given hypotheses. Finally, we derive an approach for
model inference (Section 3.4) and give guidelines for interpreting the results (Section 3.5).
For illustrative purposes, we will refer to the soccer example visualized in Figure 1.

3.1 Problem statement and approach

The goal of this paper is to compare hypotheses about heterogeneous sequence data. That is,
considering a dataset of transitions D = {t1, . . . , tm} between a set of states S = {s1, . . .sn},
we want to establish a partial orderingv on a set of given hypotheses H = {H1,H2, . . .} that
express how the observed transitions may have been generated. Extending HypTrails [52],
we focus on transitions generated by several independent processes.

Hypotheses We describe a heterogeneous hypothesis H = (γ,φ) by two components. First,
the group assignment probabilities γ associate each transition t ∈ D in the dataset D with a

1 Note that this is a slightly simplified version of the original Trial Roulette method from the HypTrails
paper [52] regarding two aspects. First, we do not distribute chips but multiply by a concentration factor which
is effectively equivalent and easier to compute. Second, we assume in this paper the same weight in each
row of the Markov chain which makes formulating hypotheses and interpreting results easier. However, these
simplifications are not required and reverting them is straightforward.
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group assignment probabilities γ·|t
for each transition t ∈ D

transition probabilities φg
for each group g ∈ G

Kicker Receiver γ1|t

Player (1) Player (3); 1.0
Player (3) Player (5) 1.0
Player (3) Goal (5) 1.0
Player (2) Player (4) 1.0
... ... ...
Player (4) Goal (2) 1.0
Player (2) Player (1) 1.0

0 1/4 1/4 1/4 1/4
1/4 0 1/4 1/4 1/4
1/4 1/4 0 1/4 1/4
1/4 1/4 1/4 0 1/4




φuniform

Kicker Receiver γ1st half|t γ2nd half|t

Player (1) Player (3) 1.0 0.0

Player (3) Player (5) 1.0 0.0

Player (3) Goal (5) 1.0 0.0

Player (2) Player (4) 1.0 0.0
... ... ...
Player (4) Goal (2) 0.0 1.0
Player (2) Player (1) 0.0 1.0

0 0 3/4 1/4 0
0 0 1/4 3/4 0
0 0 0 0 1
0 0 0 0 1




φoffense

0 1 0 0 0
1 0 0 0 0
1/4 0 0 3/4 0
0 1/4 3/4 0 0




φdefense

Fig. 2 Hypotheses for heterogeneous sequence data. In MixedTrails, we formulate hypotheses about hetero-
geneous sequence data. E.g., in the soccer example, we define two hypotheses: The homogeneous hypothesis
Hhom (a) assumes that players just randomly pass the ball around; the heterogeneous hypothesis Hhet (b)
assumes an offensive strategy in the first half of the game and a defensive strategy in the second half, cf.
Figure 1. This is formalized based on two components: group assignment probabilities γ, i.e., probability
distributions over a set of groups for each transition, and a belief matrix of group transition probabilities φg
for each group g. The soccer example features a special case, where group assignments are deterministic, i.e.,
the probabilities are either 0 or 1.

probability distribution γt over a set of groups G = {g1, . . . ,go} defined by the corresponding
hypothesis. We write all group assignment probabilities for a hypothesis as γ = {γt |t ∈ D},
with γt = {γg|t |g∈G}. Here, γg|t is the probability that transition t belongs to group g. Second,
the group transition probabilities φ describe the behavior of each group g ∈ G by specifying
respective transition probabilities between states. Formally, all group transition probabilities
according to a given hypotheses are written as φ = (φ1, ...φo), with φg = (φi, j|g), where
φi, j|g is the probability of observing a transition to state s j given state si within group g. Note
that a homogeneous hypothesis can be regarded as a special case of a heterogeneous one
where all transition are assigned deterministically to one group.

Comparison Given several hypotheses, MixedTrails — just like HypTrails — establishes
a partial order v by employing Bayes factors to compare their relative plausibility with
respect to a dataset D. This is done by converting each hypothesis Hi into Bayesian priors (see
Section 3.3) of the generative model MTMC (see Section 3.2) and calculating the marginal
likelihood (Bayesian evidence).

Example For illustration, consider again the soccer game example from Figure 1. In the
following, we specify two hypotheses for this scenario: a homogeneous one Hhom and a
heterogeneous one Hhet. The homogeneous hypothesis Hhom expresses the belief that the
players just kick around randomly. This can be formalized as a single matrix of transition
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probabilities φuniform as shown in Figure 2(a). Consequently, the corresponding group as-
signment probabilities γone only assign transitions to a single group. As a more fine-granular
hypothesis using a heterogeneous structure, Hhet assumes that the soccer team played by
an offensive strategy in the first half of the game and by a defensive strategy in the second
half. For this, we need two separate transition probability matrices (φoffense and φdefense), one
for each halftime. Then, we assign each transition to the group (halftime) it belongs to via
γhalf. Transitions are assigned to half-times without uncertainty, thus, the probabilities used
are either 0 or 1. The resulting hypothesis is defined as Hhet = (γhalf,(φoffense,φdefense)) as
visualized in Figure 2(b). Now, our approach MixedTrails determines the marginal likelihood
Pr(D|Hhom) and Pr(D|Hhet) as a measure for the plausibility of the data under a hypothesis.
Since Pr(D|Hhet)> Pr(D|Hhom) (as demonstrated later, Section 3.5), we assert that explaining
the data as a result of an offensive strategy in the first half of the game and a defensive strategy
in the second half (Hhet) is a more plausible hypothesis given the observed data.

Flexibility The soccer example from above features an important special case of our approach,
i.e., for the heterogeneous hypothesis, the assignment of transitions to groups is deterministic
γg|t ∈ {0,1}. However, our method also supports arbitrary group assignment probabilities.
This is can be useful when hypotheses assume gradual change between generating processes
(e.g., the team continuously switches from offense to defense during a game), when they
suggest that the generating entity switches between different processes (e.g., when the team
unpredictably switches between offensive and defensive play), or if there is uncertain or
insufficient information available (e.g., the time of some passes was not accurately recorded).

Overall, the ability to specify group assignment probabilities allows to formulate very
intricate dependency structures and may serve as an interface to more complex, possibly
latent processes. In particular, group assignment probabilities and consequently the transition
probabilities associated with each transition can depend on any information associated with
a transition, specifically including background information (e.g., user properties, length
and duration of the sequence, state properties, time of the day), information derived from
previously as well as subsequently visited states, or even information about other traces. For
instance, this allows for hypotheses modelling higher order Markovian processes, i.e., by
defining nx groups (where n is the number of states and x is the order of the model) and
setting the group assignment probabilities depending on the state history of each transition.
Some concrete examples on defining hypotheses that take into account the overall sequence
are featured in the experimental evaluation in Section 4.Thus, even though there are some
limitations and possible extensions (cf. Section 5), all in all, MixedTrails provides a very
flexible and easy to use framework to model a very large and possibly complex set of
hypotheses.

3.2 The Mixed Transition Markov Chain (MTMC) Model

A standard Markov chain model is unable to capture heterogeneity in sequential data. There-
fore, we propose the Mixed Transitions Markov Chain (MTMC) model as an extension for
which we can formulate heterogeneous hypotheses as beliefs over its parameters.

MTMC assigns each transition t ∈D in the dataset to a group g ∈G = {g1, ...,go}, which
is drawn from an individual categorical distribution with parameters γt = (γg1|t , . . . ,γgo|t),
where γg|t denotes the probability of transition t belonging to group g. Then, given a common
state space, each group g ∈ G is associated with its own first-order Markov chain. Thus,
for each source state si, there is a categorical distribution θsi|g = (θi,1|g, . . . ,θi,n|g) over all
potential target states. The parameters θi, j|g are distributed according to a (prior) Dirichlet
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distribution Dir(αsi|g) with hyperparameters αsi|g = (αi,1|g, . . . ,αi,n|g). For shorter notation,
we write the set of transition probabilities over all groups as θ = (θ1, . . . ,θo) and the set of
transition probabilities over all states in a group as θg = (θs1|g, . . . ,θsn|g). Similarly, we denote
the set of all hyperparameters for all Markov models, i.e., all Dirichlet parameters, as α=
(α1, . . . ,αo), and the set of all hyperparameters for a single group as αg = (αs1|g, . . . ,αsn|g).
Finally, we write the set of all group assignment probabilities for all transitions in the dataset
as γ = (γt) with t ∈ D. Given these definitions, considering only a single group (|G|= 1),
MTMC is a direct generalization of the a first-order Markov chain model.

Overall, the MTMC model is described by the following generative process that, given
a set of transitions D = {t1, . . . , tm}, generates for each transition tk ∈ D, a destination state
dstk for a known source state srck and known group assignment probabilities γtk :

1. For each group g ∈ G and each state si ∈ S,
choose transition probabilities θsi|g ∼ Dir(αsi|g).

2. For each transition tk:
(a) Choose the group assignment zk ∼Cat(γtk).
(b) Choose the destination state dstk ∼Cat(θsrck |zk

).

3.3 Eliciting priors from hypotheses

As mentioned in Section 3.1, MixedTrails elicits hypotheses as Bayesian priors for the
MTMC model (see Section 3.2), which takes two independent sets of parameters: the group
assignment probabilities γ and the prior parameters α. While the group assignment proba-
bilities are directly specified by a hypotheses H = (γ,φ), see Section 3.1, the parameters α
of the Dirichlet prior need to be elicited from the transition probabilities φ defined by the
hypothesis.
Deterministic Assignments. For deterministic group assignments, i.e., γg|t ∈ {0,1}, we
determine the parameters αg of the Dirichlet distributions for each group g ∈ G separately,
using the notion of pseudo-observations, cf. [52]. That is, for each group g ∈ G and each
state si, we set the Dirichlet parameters starting from an uninformed proto-prior and add κ

transitions distributed as the hypothesis suggests for this group via φg. Formally, this is:

αi, j|g = κ ·φi, j|g +1. (2)

Here, the number of pseudo-observations κ (also called concentration factor) reflects the
strength of belief in the respective hypothesis. Different settings for the concentration pa-
rameter lead to different priors. In our approach, we compare hypotheses along a range of
different concentration factors, i.e., strengths of belief in the respective hypothesis.

For example, consider the heterogeneous hypothesis Hhet = (γhalf,(φoffense,φdefense))
from Figure 2(b). It features two groups (the first and second half of a soccer game), and for
each group g∈ {1st half,2nd half} it defines specific beliefs in certain transition probabilities,
via the matrix entries φi, j|g. For each group, a matrix of prior parameters αg is determined
according to Equation (2). The offense hypothesis for the first half suggests transition
probabilities φs1|1st half= (0,0,3/4,1/4,0) for the first row of the transition probability matrix.
Choosing an arbitrary concentration factor of κ = 10, we therefore obtain a Dirichlet prior
with parameters αs1|1st half= (1,1,8.5,3.5,1).
Probabilistic Assignments. For probabilistic group assignments, i.e., 0 < γg|t < 1, we
need to adapt these basic priors to account for misassignments of groups. For example,
consider a scenario in which the dataset is divided into two groups that behave completely
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different. Then, if some transitions cannot be assigned to groups with certainty, the model will
randomly associate some transitions which behave like the first group with the second group,
and vice versa. Thus, given uncertain group assignments, the behavior expected from a set
of transitions assigned to one group is actually a mixture of behavioral traits of both groups.
Consequently, we compute the number of pseudo-observations of the Dirichlet priors for a
group g as a mixture of hypotheses that is determined by the group assignment probabilities
of all transitions. For that purpose, for each transition tk, we compute the probability that
the model assigns tk to group g although it actually belongs to group g′ (γg|tk · γg′|tk ). This
probability is then used as a weight for the respective belief matrix φg′ . Formally:

αi, j|g = κ ·

(
1
Zi
· ∑

tk∈D

(
∑

g′∈G
γg|tk · γg′|tk ·φi, j|g′

))
+1, (3)

where 1/Zi represents a normalization factor to ensure that the transition probabilities from
each state to the other states in the mixture sum up to 1. Note that for deterministic group
assignments, the formula simplifies to Equation (2).

3.4 Model Inference

For comparing the plausibility of heterogeneous hypotheses, in MixedTrails, we determine
the evidence (marginal likelihood) of the data under a hypothesis (cf. Section 3.1) based on
the MTMC model as introduced in Section 3.2. The marginal likelihood can be understood
as an average over the likelihood of all parameter settings weighted by their prior probability
(given by the hypothesis). This can be written as an integral over all parameter settings θ:

Pr(D|H) =
∫

Pr(D|θ,γ)︸ ︷︷ ︸
likelihood

Pr(θ|α)︸ ︷︷ ︸
prior

dθ (4)

In the remainder of this section, we elaborate on how to compute the marginal likelihood
for our MTMC model given some observed data and any hypothesis. We start by deriving
an analytical solution. However, the resulting formula is computationally intractable for
non-trivial datasets. Thus, we show that for the special case of hypotheses with deterministic
group assignments, the calculation can be substantially simplified. Additionally, for the
general case, we explain how it can be efficiently approximated by sampling.

Analytical solution. When ignoring the group assignment probabilities γ in Equation (4),
the marginal likelihood of the MTMC model is equivalent to the homogeneous Markov
chain model for which an analytical solution exists [53]. However, in our setting, we need to
aggregate over all possible instantiations ω ∈ Ω of group assignments. Each instantiation
ω maps each transition t to a group ω(t). The probability pω of an instantiation ω is
determined by the group assignment probabilities specified in the hypothesis, i.e., pω =

∏t∈D γω(t)|t . For a fixed assignment to groups, we can then determine the overall marginal
likelihood as the product of marginal likelihoods of the individual groups. For each group,
the marginal likelihood can be calculated analytically as a combination of beta functions over
the hyperparameters for that group, and over the observed counts in the data according to the
fixed group assignment (see [53] for details). Overall, we obtain the following formula (for
an in-depth derivation see Appendix A):
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Pr(D|H) = ∑
ω∈Ω

pω ∏
g∈G

∏
si∈S

B(nsi|g,ω +αsi|g)

B(αsi|g)
, (5)

Thus, the marginal likelihood of MTMC can be seen as a weighted average over the
marginal likelihood of all possible group assignments ω . Unfortunately, this solution is
computationally intractable for real world datasets because the number of different group
assignments |Ω | grows exponentially with each additional transition t ∈ D.

However, we can substantially decrease the computational costs for the important special
case of deterministic group assignments, i.e., where the group assignment probabilities are
either zero or one. Then, there is only one valid instantiation of the group assignments, i.e.,
all but one weight pω are zero, and the formula from Equation (5) simplifies to:

Pr(D|H) = ∏
g∈G

∏
si∈S

B(nsi|g +αsi|g)

B(αsi|g)

Thus, in this case, the marginal likelihood is equivalent to the product over the marginal
likelihoods across all groups. This can be calculated much more efficiently as the computa-
tional complexity only linearly depends on the number of states and groups. The formula
also allows for leveraging existing parallelized approaches like SparkTrails [4].

Approximation. For the general, probabilistic case, calculating the marginal likelihood of an
MTMC model analytically with Equation (5) is computationally intractable. Therefore, we
show how we can efficiently approximate it by direct sampling. According to the formula, the
overall marginal likelihood is a weighted average over the marginal likelihoods of all group
assignments Ω . To approximate this, we sample from the space of all group assignments Ω

according to their respective probability pω and calculate the average marginal likelihood
given these sampled group assignments Pr(D|α,ω). Since for individual transitions the
process of choosing groups is independent from each other, a single group assignment can be
sampled by drawing the group zk for each transition tk ∈ D according to its group assignment
distribution zk ∼Cat(γtk) (also see the generative process in Section 3.2). The sampling pro-
cedure follows the intuition that factors with small group assignment probabilities contribute
less to the overall marginal likelihood. Formally, we can compute the approximated marginal
likelihood from a list of sampled group assignments Ω ′ as:

Pr(D|H)≈ 1
|Ω ′| ∑

ω∈Ω ′
∏
g∈G

∏
si∈S

B(nsi|g,ω +αsi|g)

B(αsi|g)︸ ︷︷ ︸
Pr(D|α,ω)

In our experiments, we found that the results are stable for very small numbers of
iterations (less than 50) if the number of transitions is sufficiently high. This allows to run
our experiments in Section 4 in only a few hours on a regular desktop machine.

3.5 Visualizing and interpreting results

In this section, we describe our recommended way of performing experiments, visualizing
results, and interpreting them. To this end we use the soccer example from Figure 1 and
investigate which strategies the soccer team has used. For instance, they may have passed
the ball randomly, or they may have played by a more intricate strategy. More specifically,
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Fig. 3 Results for the illustrating example. This plot shows the MixedTrails results for the illustrating
soccer example, i.e., marginal likelihood values of different hypotheses for increasing strengths of belief κ .
We observe that among the hypotheses without grouping, the uniform hypothesis performs best (a). However,
far more plausible explanations can be obtained by heterogeneous hypotheses that assume different behavior
in both halftimes (b). Finally, randomly splitting the data into groups leads to less plausible explanations (c).

given the observed transitions from Figure 1(a-c), we aim to compare the plausibility of the
different beliefs in transition probabilities from Figure 1(d-g) utilizing the marginal likelihood
as elaborated in Section 3.4. In particular, we study the four hypotheses uniform, offense,
left-flank, and defense, as well as a data hypothesis. The latter uses the actual observed
transition probabilities as belief; thus it is only used for comparison. We consider these
beliefs for three group assignments: (a) a homogeneous one (all transitions are in one group),
(b) a group assignment defined by the half-time of the passes/shots, and (c) a completely
random group assignment. The hypotheses are formulated analogously to the examples
covered in Section 3.3. The results are shown in Figure 3(a-c). In each plot, the x-axis denotes
increasing values of the concentration factor κ , which expresses an increasingly strong belief
in the hypotheses. The y-axis shows the marginal likelihood; each line represents one given
hypothesis; solid lines refer to heterogeneous hypotheses and dashed lines to homogeneous
hypotheses. In general, higher values of the marginal likelihood indicate more plausible
hypotheses.

Relativity. An essential issue for interpreting the results from MixedTrails (or any method
using Bayes factors) is that results are relative. This means that even if one hypothesis
outperforms all other hypotheses under consideration, this does not necessarily mean that
it models the data well. However, the goal of this paper is to compare existing hypotheses
from literature, domain experts, ideas, or intuition. The goal is not to find models which
perform well for prediction or similar tasks. Nevertheless it may be desirable to validate
the hypotheses with regard to their generative quality. For this, we suggest the comparison
with the uniform hypothesis (as we do in this example) or a with a hypothesis with a flat
(uninformed) prior (κ = 0). The former assumes all transitions to be equally likely, while the
latter is equivalent to assuming that all transition probability distributions are equally likely.
Also, additional baselines can arise naturally in specific application domains. For example, if
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analyzing navigation behavior between web pages, a baseline could be that only transitions to
linked pages are equally likely, and not to all web pages in the dataset (cf. [16]). We consider
the relative order of hypotheses as still viable and interesting if the hypotheses are better
than such a baseline hypothesis because they cover at least some aspects of the transition
processes. At the same time, if all hypotheses perform worse than the flat prior (κ = 0), then
the data may be too complex for the chosen hypotheses, or the facilitated background data is
not sufficient to explain the underlying processes.

Significance. With regard to the significance of differences, we refer to Kass and Raftery’s
established interpretation table [33]. This means that conclusions should only be drawn for
sections of the marginal likelihood plots where the values are farther apart than 10. In these
cases, the change of the posterior is to be interpreted as “decisive”. Consequently, we only
draw conclusions from such decisive results in this manuscript.

General properties of curves. Different values along the x-axis enable interpretation beyond
providing a relative order of hypotheses: For the left-hand side of the plots (values of κ

close to zero) the influence of the transition probabilities of a hypothesis is very weak and
the marginal likelihood depends mostly on the group assignment. Thus, the higher the
marginal likelihood for κ = 0, the more a heterogeneous hypothesis can benefit if it models
the transition probabilities in each group correctly.

For growing values of κ , the Bayesian framework increasingly takes into account the
quality of the chosen transition probabilities for the corresponding group assignments. At
first it allows for a large tolerance, i.e., it integrates over variations of the specified transition
probabilities. Then, it consecutively decreases this tolerance, requiring that the transition
probabilities are very precise. For very high values of κ , the marginal likelihood converges
towards the likelihood of the hypothesis. Consequently, the marginal likelihood of heteroge-
neous hypotheses that assume identical transition behavior in all groups converges towards
their homogeneous counterparts (cf. uniform and 1st/2nd: uniform in Figure 3(b)). This is
because there is no difference between a homogeneous and a heterogeneous hypothesis if the
transition probabilities in each group describe the same generative process.

Overall, the relation of hypotheses along increasing concentration factors gives intricate
information about the influence of the different components of the hypotheses.

Results on homogeneous hypotheses. Figure 3(a) shows results for the homogeneous
hypotheses. As expected, the data “hypothesis”, which uses the actual observed transitions,
achieves the highest marginal likelihood values for all κ . Apart from that, the uniform
hypothesis explains the observed transitions best. The left-flank, the offense, and the defense
hypothesis exhibit strongly decreasing marginal likelihoods for an increasing concentration
factor, which indicates that these hypotheses are not supported by the observed data. These
results can analogously be obtained by the HypTrails approach [52].

Results on heterogeneous hypotheses: the split. However, our approach MixedTrails
enables us to also compare more fine-grained, heterogeneous hypotheses. Figure 3(b) features
four heterogeneous hypotheses (solid lines) that assign the data deterministically into two
groups, i.e., the first and the second half-time. Additionally, it shows the homogeneous data
hypothesis and the uniform hypothesis for comparison (dashed lines). For a concentration
factor κ = 0 the marginal likelihood depends only on the group assignment. Therefore
hypotheses with the same group assignment probabilities start at the same marginal likelihood
level. Now, since our dataset indeed features different behavior in both halftimes as the group
assignment of our heterogeneous hypotheses suggests, their marginal likelihood is higher
compared to the homogeneous hypotheses at κ = 0. This indicates how strongly the split
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divides transitions into differing processes, before delving deeper into the plausibility of the
expressed hypotheses with an increasing concentration factor κ .

Results on heterogeneous hypotheses: the curve. For higher values of κ , the marginal
likelihoods diverge: The offense/defense hypothesis, i.e., in the first half-time players behave
as the offense belief suggests, and in the second halftime as the defense belief suggests
(see Figure 2), is fully supported by the observed data and thus yields the highest values
for all κ . In comparison to the homogeneous hypotheses, this curve can be interpreted
as: “This hypothesis features a good group assignment and the transition beliefs reflect the
behavior in the observed data better.” If we assign the same belief in transition probabilities
to both halftimes, e.g., uniform probabilities, or the globally observed transition probabilities
(data), then smaller values are obtained, indicating that these transition beliefs differ from the
observed data. Additionally, for very large values of κ , the scores converge with the ones from
the respective homogeneous hypothesis because the corresponding heterogeneous hypothesis
does not define different transition probabilities for each group, which eventually nullifies the
effect of the split. Finally, if we use transition beliefs that are not actually supported by the
data for both groups, e.g., a left-flank and right-flank preference in the two halftimes, then
the marginal likelihood curve rapidly declines. The respective curve can — in comparison to
the other curves — be interpreted as: “The hypothesis uses a good group assignment, but the
transition beliefs are not reflected in observed data.”

Results for a random split and summary. Figure 3(c) shows the same four hypotheses,
but assigns transition to two groups randomly (rand). Since a random group assignment
increases the model complexity, but does not allow for a better model of transition behavior,
all hypotheses start with a lower value than the homogeneous hypotheses on the left hand
side of the plot. For larger values of κ , we can see the same convergence behavior as before,
but, overall, the marginal likelihoods of the heterogeneous hypotheses are substantially lower
and also rank lower than their homogeneous counterparts. Overall, these examples give a
broad overview of possible MixedTrails results. More examples are covered in Section 4.

4 Experiments

In this section, we demonstrate the applicability and benefits of our approach with experiments
on synthetic and real-world datasets. An open source Python implementation2 as well as the
datasets are freely available3. Conclusions from the experimental results drawn in the text
rely on results that are “decisive” with respect to the established interpretation table given in
[33], cf. Section 3.5.

4.1 Synthetic Datasets: Deterministic Group Assignments

First, we consider three synthetic examples in order to showcase the properties of MixedTrails
in a controlled setting. For each example, we generate a transition dataset according to a
predefined mechanism and compare the plausibility of several homogeneous and heteroge-
neous hypotheses. We show that those hypotheses that best capture the known mechanism
generating the synthetic data are indeed reported as the most plausible ones.

Datasets. The synthetic transition datasets are based on a random Barabási-Albert preferen-
tial attachment graph [3] with 100 nodes and 10 edges for each new node. Each node has a

2 http://dmir.org/mixedtrails
3 The scripts for generating the synthetic data are included in the code, the Wikispeedia data set (cf.

Section 4.3) is accessible online and the Flickr data (cf. Section 4.4) is available via e-mail to Martin Becker.

http://dmir.org/mixedtrails
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(a) Link dataset
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(b) Homophily dataset
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(c) Memory dataset

Fig. 4 Synthetic data results. We compare homogeneous (Hlink) and heterogeneous hypotheses (Hlink-colored,
Hcolor and Hmem) on three synthetic datasets (Dlink, Dcolor and Dmem). We observe that the hypotheses that are
fitting the respective datasets work best, illustrating that the MixedTrails approach can identify the correct
ordering of the defined hypotheses. For details on interpreting the plots, see Section 4.1.

random color c ∈ {red,blue} assigned with a probability of pc = 0.5. From this graph, we
derive three different transition datasets generated by 10,000 random walkers with different
characteristics. Just like each state, each walker also has a color c ∈ {red,blue} assigned
randomly with pc = 0.5. Each walker chooses her first node randomly and navigates through
the network generating transitions depending on the mechanism for the respective dataset. She
stops after ten steps. For the first dataset Dlink, we consider link walkers that choose the next
node uniformly from all adjacent nodes, independent of the walker color. This corresponds to
a transition probability matrix θlink equal to the (row-wise) normalized adjacency matrix of
the underlying graph. For the second dataset Dcolor, walkers of the “red” (“blue”, respectively)
group exclusively transition according to a probability matrix θred (θblue) which adapts θlink
such that transitions to red (blue) nodes are ten times more likely. The third dataset Dmem
is generated by “memory walkers” that dynamically choose their next state based on their
history, i.e., they use a different transition matrix dependent on the colors of the states they
have already visited (including the current state). In particular, if they have visited more red
than blue nodes, they use the matrix θred, and if they have visited more blue than red nodes,
they use the matrix θblue. In case of a draw, they use the random transition matrix θlink.

Hypotheses. For the three datasets we construct corresponding hypotheses: first, the homo-
geneous hypothesis Hlink = (γlink,φlink), which expresses the belief that all transition are
randomly chosen from the link network, thus φlink = (θlink); secondly, the color-preference
hypothesis Hcolor = (γcolor,φcolor) maps each transition to a group based on the color assigned
to its walker and uses the actual probability matrices for the transitions in the groups as belief
matrices: φcolor = (θred,θblue); and thirdly, the memory hypothesis Hmem = (γmem,φmem)
reflects the generating mechanism in the third dataset: The transitions are assigned to groups
according to the majority of node colors already visited, and the transition belief matrix is
constructed as described in the generation of the third dataset: φmem = (θred,θblue,θlink). To
illustrate how our approach copes with groups that introduce unnecessary complexity, we
add a fourth hypothesis Hlink-color = (γcolor,(θlink,θlink)) that uses the grouping into “red”
and “blue” walkers, but assumes the same movement behavior for both groups, i.e., equal
transition likelihood for all links.

Results. Using MixedTrails, we compare these four hypotheses on all three datasets. The
results are visualized in Figure 4. For the link dataset Dlink, see Figure 4(a), we find that the
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homogeneous hypothesis reflects the data very well and thus achieves the highest marginal
likelihood (ML) values for all concentration factors. The differences for small concentration
factors κ (left-hand side of the plot) indicate that the other group assignment probabilities used
by the heterogeneous hypotheses do not introduce valuable information. Both heterogeneous
hypotheses show increasing ML for increasing κ at first since the hypotheses carry some
information, i.e., which network links are contained in the data. With increasing concentration,
however, the emphasis on some specific links (i.e., to red or to blue nodes), which is not
reflected in the data, leads to a drop of the ML. Furthermore, the memory hypothesis is closer
to the data than the color hypothesis as it includes transitions to red and blue nodes in more
equal proportions for each source state.

Next, we consider the color dataset Dcolor, see Figure 4(b). The ordering of the hypotheses
on the left hand side of the plot indicates that the assignment of transition into groups (by
walker color) adds valid information to the corresponding hypotheses. However, while the
color preference hypothesis Hcolor models the transition behavior within the groups very well,
the grouped link hypothesis Hlink-colored does not. This explains the diverging ML values for
an increasing concentration factor. When comparing the simple link hypothesis Hlink and the
memory hypothesis Hmem, we observe that by introducing an incorrect grouping, the memory
hypothesis starts at a lower ML than the link hypothesis which does not introduce any groups.
However, with increasing concentration factors, the memory hypothesis starts to perform
better, since, in contrast to the link hypothesis, it does incorporate the red and blue transition
behavior even if on differing (but somewhat color-consistent) transition groupings. Thus,
overall, our model allows to establish a correct ordering on the given hypotheses based on
the processes used to generate the data.

Finally, we consider the memory dataset Dmem. Here we can observe that — as expected
— the memory hypothesis Hmem performs best for all values of κ . The group assignment
according to walker colors does not correlate with the actual groups in the data and thus leads
to lower ML value for low values of κ compared to a homogeneous hypothesis. For high
values of κ , we see that the color hypothesis Hcolor does not model the groups well compared
to the hypotheses Hlink and Hlink-colord that assume equal likelihood of all links.

Overall, MixedTrails yields results that are in line with the actual generation process of
the datasets. Our approach thus allows to derive information about the quality of the group
assignments as well as the transition behavior within the groups. The strongly diverging
characteristics of the different hypotheses illustrates the flexibility of MixedTrails.

4.2 Synthetic Datasets: Probabilistic Group Assignments

So far, we have only considered deterministic group assignment probabilities in the ex-
periments, i.e., assigning transitions to a single group by only using binary probabilities:
γg|t ∈ {0,1}. However, there is a wide variety of situations where it is useful to consider
probabilistic group assignments or fuzzy walkers, e.g., when considering smooth behavior
transitions between different times of a day, when transitions are assigned to groups by an
uncertain classifier, or when walkers randomly choose between different movement patterns.
Here, we explore probabilistic group assignments in a synthetic dataset. For a real world
example of an uncertain classifier, see Section 4.4.
Dataset. We use the same underlying network as in the previous example to construct a
dataset. However, instead of “red” and “blue” walkers, the sequences are now generated by
walkers with “mixed colors”, called violet walkers, i.e., the walkers randomly choose to walk
according to the red θred or to the blue θblue transition probability matrix at each step. For
example, a violet walker w associated with a shade of violet sw = 0.3 will choose to be a
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Fig. 5 Probabilistic group assignments on synthetic data. The violet, mixed hypothesis, using probabilistic
group assignment probabilities, is the most plausible one for increasing concentration factors as it directly
models the processes underlying the data. The violet, naive hypothesis illustrates the integral role of the mixing
step, as skipping it significantly reduces the performance of a hypothesis even though the underlying processes
were correctly understood. Further details are discussed in Section 4.2.

red walker for 30%, and a blue walker for 70% of her transitions. We create a dataset Dviolet
of 10,000 walkers that each perform 10 transitions. We assign a shade of violet sw to each
walker w, which we draw from a Beta distribution sw ∼ Beta(1,1). Before each transition
of a walker, she randomly draws a color c ∈ {red,blue} according to her shade of violet sw
using a Bernoulli distribution c ∼ Bernoulli(sw). Then, she uses the respective transition
matrix θred or θblue dependent on the chosen color c to determine her next destination.

Hypotheses. As hypotheses, we define Hlink, Hlink-colored and Hmemory analogously to Sec-
tion 4.1. In addition, we introduce a hypothesis Hviolet = (γviolet,φviolet) specifically tai-
lored to violet walkers. Thus, we define the group dependent transition probabilities as
φviolet = (θred,θblue). Now, violet walkers choose transition probability matrices probabilisti-
cally dependent on their shade of violet. Using our MTMC scheme, this can be modeled by
setting the corresponding group assignment probabilities according to a walker’s shade of
violet sw: γg|tw = (sw,1− sw), where tw represents a transition from a specific walker w.

Results. The results are shown in Figure 5. The first observation is that the violet hypothesis
Hviolet (mixed) works best for increasing concentration factors. Note that we consider two
variants of the violet hypothesis, one (violet, mixed) elicited using the mixing method
proposed in Section 3.3 and one (violet, naive) elicited as if it was a deterministic hypothesis.
The results show that the mixing step is an integral part of MixedTrails, as skipping it
significantly reduces the performance of the heterogeneous hypothesis even though the
underlying processes were correctly understood.

As for the other hypotheses from Figure 5, the link hypothesis works best. This is because,
generally, a perfectly violet walker (sw = 0.5) behaves exactly like a link walker. This also
explains the differing results for lower concentration factors: The grouping introduced by the
violet hypothesis injects complexity which is not splitting transitions in a manner that can
easily be explained. Thus, for low concentration factors, which imply a large uncertainty in
the hypothesis, this reduces the plausibility of the more complex hypothesis. However, with
growing concentration factors the better modeling of the transition probabilities justifies the
added complexity making the violet (mixed) hypothesis the most plausible one.

With regard to the increased complexity, the colored (heterogeneous) link hypothesis
(link-colored) has the same disadvantage as the violet hypothesis; consequently, it is inferior
to the homogeneous link hypothesis. The memory hypothesis has the lowest plausibility as it
does not reflect the generative process of the dataset and introduces three groups instead of
just two.
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Overall this example shows that, by using MixedTrails, heterogeneous data can be
modeled accurately and that the mixing procedure for eliciting probabilistic hypotheses as
introduced in Section 3.3 is an integral part of the approach.

4.3 The Wikispeedia dataset

Wikispeedia [63] is a game in which players aim to find a short path from a randomly
given start article to a randomly given target article within Wikipedia by only navigating the
available hyperlinks. In the context of this game, the authors have hypothesized that “humans
navigate more strongly according to degree in the early game phase, when finding a good
hub is important [in order to be able to increase the amount of reachable concepts], and more
strongly according to textual similarity later on, in the homing-in phase [when trying to find
the actual target concept]”. Here, we confirm this hypothesis using MixedTrails.
Data. Wikispeedia is based on a subset of 4,600 Wikipedia articles (from the 4,600-article
CD version of “Wikipedia for Schools”4). A corresponding dataset [64] is freely available5.
It consists of the plain text of each article, the link network, and a set of click sequences
(including back clicks) created by humans playing the game. Like West et al. [63], we remove
back clicks (but keep the corresponding forward clicks which are undone by these back
clicks) and then only keep click sequences of length 3 to 8 (number of clicks). The resulting
dataset consists of over 25,000 click sequences with a mean length of 5.6.
Hypotheses. To investigate the hypothesis from [63], we consider two transition probability
matrices: φdeg represents the hypothesis that people are trying to get to hubs in order to
increase the number of concepts they can reach. Thus, if a link between a source article to
a destination article exists, we set the belief in the corresponding transition proportional to
the degree of the destination state (calculated as the sum of its in- and out-going links); and
zero otherwise. Second, the transition probability matrix φsim assumes a higher transition
probability if there is a strong textual similarity between two articles. Again, we set the
transition probability to 0 if there is no link between two articles. Otherwise, we set the belief
in a transition proportional to the cosine similarity cos(i, j) with respect to the corresponding
tf-idf vectors. For that, we removed words with a document frequency of over 80% and
applied sublinear scaling to the tf values. 6 For comparison, we additionally consider the link
matrix φlink that expresses equal belief in all transitions for which a link exists.

Now, the first three hypotheses are homogeneous hypotheses assigning transitions to a
single group similar to Figure 2: Hlink =(γone,φlink), Hdeg =(γone,φdeg), Hsim =(γone,φsim).
Furthermore, Hdeg,sim and Hsim,deg are heterogeneous hypotheses that group transitions based
on their position on the trail of articles left by users playing the game. In particular, the first
two transitions are assigned to the “initial phase”, and the rest of the transitions are assigned
to the “homing-in phase”. We name the corresponding group assignment probabilities γphases.
The heterogeneous hypotheses are then defined as: Hdeg,sim = (γphases,(φdeg,φsim)) and
Hdeg,sim = (γphases,(φsim,φdeg)) assuming the degree and the similarity transition probability
matrices to explain the “initial phase”, respectively.
Results. Figure 6 shows that, as literature hypothesized, the heterogeneous hypothesis

4 available at schools-wikipedia.org (version of 2007)
5 https://snap.stanford.edu/data/wikispeedia.html
6 Differing from our approach, West et al. [64] use the similarity between the clicked article and the target

concept cos(i, t), but report that along the game progress, the similarity of the current and the clicked/next
article is qualitatively similar. Thus, we use the latter approach since we can only use information from already
visited states, not future states.

schools-wikipedia.org
https://snap.stanford.edu/data/wikispeedia.html
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Fig. 6 Wikispeedia results. For the game Wikispeedia, players try to quickly navigate from one article to
another using the underlying link structure of Wikipedia. One hypothesis (deg,sim) is that players will first
navigate to articles with a large degree, and then “home-in” on their target using similarity based navigation.
The graph shows the results of modeling this heterogeneous hypothesis using the MTMC model by splitting
each click sequence after their second click. We also compare against several other homogeneous as well as
heterogeneous hypotheses. Overall, of all the considered hypotheses, the heterogeneous deg,sim-hypothesis
works best (for growing concentration factors), even though the initial split (at concentration factor κ = 0) is
not inherently advantageous. For details, see Section 4.3. Note that, while the differences visually appear to be
marginal in the plot, they are decisive (cf. Section 3.5).

Hdeg,sim explains the navigational behavior of players better than all other considered hypothe-
ses. While the additional variables introduced by the split (by means of Occam’s Razor) result
in lower marginal likelihoods compared to the homogeneous hypotheses for weak believes
(low values of the parameter κ), it becomes apparent that the transition probability matrices
of Hdeg,sim are modeling the corresponding movement behavior in each group better than the
single transition probability matrix of the homogeneous hypotheses. At the same time, the
“opposite” hypothesis Hsim,deg results in the lowest ML values, even though it uses the same
split as Hdeg,sim. Among the homogeneous hypotheses, the similarity based hypothesis is the
most plausible. By contrast, as it yields rather low ML values, the degree hypothesis Hdeg
seems to be a very specialized hypothesis, which is applicable only for a specific subset of
transitions; such as the first transitions in each sequence.

Overall, this example demonstrates the applicability of MixedTrails to a real world
scenario. We also see that a more fine-grained hypothesis may explain observed sequential
data better than using a single, overly general hypothesis.

4.4 The Flickr dataset

Finally, we investigate geo-spatial trails obtained from the photo-sharing platform Flickr7.

Dataset. As data in this setting we employ a dataset from previous work [38]. It contains
all Flickr photos from the years 2010 to 2014 with geo-spatial information (i.e., latitude and
longitude) at street-level accuracy in Manhattan. We mapped each photo according to its
geo-location to one of the 288 census tracts (administrative units) that we use as state space
in our model (see also [22]). Then, for each user, we built a sequence of different tracts she
has taken photos at (excluding self-transitions). Thus, we know the start and end date for
each user sequence. The final dataset contains 386,981 transitions overall.

Hypotheses. In previous research [5], we found that a combination of spatial proximity to
the current state and to points of interest (PoIs) is the best explanation for the transitions

7 https://www.flickr.com/

https://www.flickr.com/
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Fig. 7 Flickr results. We model the navigation behavior between tracts in Manhattan based on photo trails on
the social photo-sharing platform Flickr. Overall, we have not found hypotheses explaining the data well as
indicated by the strongly decreasing marginal likelihoods. However, those we evaluated are better than the
baseline, i.e., the uniform hypothesis. The best one (prob: tourists=near) assumes that tourists are more prone
to move to close by tracts than locals. Here, MTMC allows for modelling uncertain classification of tourists
which covers the underlying processes better than a deterministic group assignment (det: tourists=near).

of Flickr users. However, in some settings, proximity to the current state is more relevant,
while in others, larger, spatial variances lead to better results. Accordingly, we built two
different transition probability matrices that we call φnear and φfar, which feature different
parametrizations of the proximity/POI hypothesis. In particular, we set the influence radius of
PoIs to 400m and the standard deviation of the proximity factor to 2.5km (φnear) and 5.0km
(φfar). For details, we refer to [5].

In this paper, we aim to extend the previous study by taking into account whether a user is
a tourist or a local. To classify users as tourists or locals, we use the time difference between
their first and their last photo in the data, cf. [15]. In that regard, we consider different
group assignments: a) a baseline γone that puts all transitions into one group, b) deterministic
grouping γdet by defining tourists as users with a trail duration of 21 or less days, and c) a
smooth distinction between tourists and locals around 21 days by using a sigmoid function
sig(t) = 1/1+e−t resulting in probabilistic group assignments γprob.

We combine these three group assignments and transition probability matrices to form five
hypotheses: (i) Hnear =(γone,φnear), (ii) Hfar =(γone,φfar), (iii) Hdet: tourist=near =(γdet,(φnear,φfar)),
(iv) Hprob: tourist=near = (γprob,(φnear,φfar)), and (v) Hprob: tourist=far = (γprob,(φfar,φnear)). For
example, the last hypothesis Hprob: tourist=far expresses a belief that there are two groups —
locals and tourists — in the data, and the longer the sequence of a user is (in days), the more
likely she is to be a local. Furthermore, this hypothesis assumes that tourist are more likely
to have a longer distance to the next photo location than locals. We additionally added a
homogeneous uniform hypothesis as a baseline that assumes that all transitions are equally
likely and that no groups exist.

Results. Figure 7 shows the results. Obviously, the uniform hypothesis is substantially less
plausible than all proximity/PoI-based hypotheses. Among the latter, we see that for smaller
concentration factors homogeneous groupings perform better, which indicates that in general
the split into tourists and locals by itself does not produce particularly distinct movement
behavior. However, for increasing concentration factors κ , it turns out that the hypothesis
Hprob: tourist=near works best, i.e., by using probabilistic group assignments and expressesing
the belief that tourists take their next photo at a more near-by location with a close PoI while
locals choose locations with higher distance more often. By contrast, a deterministic split
γdet does not cover the uncertainty of classifying tourists and locals.
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Overall, this example illustrates how MixedTrails with probabilistic group assignments
enables more fine-grained analyses of sequential data.

5 Discussion
With MixedTrails, we have proposed a powerful approach to formulate and compare hypothe-
ses about heterogeneous sequence data. In this section, we discuss some alternative choices
as well as possible misunderstandings and shortcomings of our method.

Top-down vs. bottom-up. MixedTrails is a top-down approach — also called a deductive
approach in certain contexts [58,31,8] — meaning that it takes a set of hypotheses based
on ideas and theories from the application domain as input and compares them using some
observed data. While the corresponding results also give an indication of the predictive
potential of hypotheses, we do not fit them to the data. For utilizing the data to learn models
that excel at prediction, a multitude of other, more specialized methods are available, e.g.,
[67,17,37]. Note, that these methods usually do not yield directly interpretable results. If they
do (e.g., [17]), they can be used in a bottom-up setting — sometimes also called an inductive
[58,8] setting —, which takes the opposite approach than MixedTrails: bottom-up methods
use observations to extract patterns or regularities from which new hypotheses or theories
can be derived. The same is true for other specialized approaches, e.g., for segmentation,
labeling, or clustering [46,9,62,59,19]: while they can be facilitated or extended to uncover
new interesting heterogeneous patterns by examining their latent structures, applying them
results in a bottom-up approach which yields new hypotheses instead of comparing existing
ones.

Extensions and alternative approaches. While MixedTrails provides a very flexible and
easy to understand framework for specifying and comparing hypotheses, there is a variety
of possible extensions and alternative approaches. For example, in this work, we employ
priors for transition probabilities, but specify group assignment probabilities directly and
fixed, which somewhat forces the user to be very specific with regard to group assignments.
In contrast, using a flat prior over group assignments, the user could compare hypotheses that
introduce groups of transition probabilities without having to specify which transition belongs
to which process. Also, MixedTrails can not directly express dependencies between the
groups of the transitions within a sequence (e.g., stickiness [19,65]), as for example possible
in Markov switching processes such as the Hidden Markov model. That is, while we can
construct hypotheses in a way such that group assignment probabilities are derived by Hidden
Markov structures, hidden state dependencies can not be explicitly modelled. We could
resolve this by using more complex models for sequential data. This, however, would come at
the cost of substantially increased efforts for specifying model parameters in the hypotheses,
especially considering the wide range of incorporated background knowledge. Overall,
MixedTrails tries to balance the amount of parameters required to formulate a hypothesis
against expressiveness. Nevertheless, we acknowledge the potential of formulating more
complex dependencies with the help of more complex models, especially when considering
the possibility of flat/uninformed priors over certain parameter groups, but leave further
studies to future work.

MixedTrails vs. separate HypTrails comparisons. A simplistic alternative to our approach
could be to apply the original HypTrails method for homogeneous data separately to the
groups of a hypothesis. This, however, is limited to deterministic group assignments and does
not allow to compare hypotheses with different group assignments (or no group assignments
at all). In addition, MixedTrails provides a theoretical background on how to aggregate results
for the individual groups, i.e., by multiplying their marginal likelihood.
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Using different strengths of belief. We are using different strengths of belief (i.e., concen-
tration factors κ) in order to study different properties of our hypotheses. Calculating the
marginal likelihood for very large concentration factors κ approximates the likelihood of
the model for fixed parameters, which is commonly used to compare parameter settings in
frequentist statistics (e.g., via likelihood ratio test). However, by also investigating lower con-
centration factors, we obtain additional information on the quality of the group assignments
(cf. Section 3.5). Furthermore, our approach enables the observation of the dynamics for
growing concentration factors, which allows us to judge whether a hypothesis covers predom-
inant factors of the underlying processes generating the sequential data. Thus, we believe that
the analysis based on different concentration factors can yield a more detailed comparison
of hypotheses than other, one dimensional measures, such as the model likelihood, which
is included in our approach as a special case and shown on the right-hand side of our result
plots.

Nevertheless, we acknowledge that it may be useful to derive a single number by which
hypotheses can be compared. To achieve this we could either set a fixed κ according to
some background information or, in a more Bayesian way, we could treat the concentration
parameter κ as a free parameter and marginalize over it. This, however, would require
specifying a prior over this free parameter, which is inherently a difficult choice. As a simple
solution, we propose to compute the average marginal likelihood over a set of κ values. This
is equivalent to a prior that regards these values as equally likely. Overall, summarizing
result curves into a single value in this way requires additional task-dependent choices and
comes with a loss of information in the result on the one hand, but allows for a more compact
representation of results on the other hand. Developing guidelines for choosing appropriate
priors over κ remains an open issue for future work.

Efficiency and convergence. In the general case, the marginal likelihood of the MTMC
model has to be approximated. While the method from Section 3.4 has converged quickly
(� 50 iterations) so that we were able to calculate our results on regular consumer hardware
in a few hours, parallelizations along the lines of [4] may be useful for larger datasets. We
have also experimented with other methods for approximating the marginal likelihood such as
[14], but have found irregularities in the convergence behavior. Further studies may address
both, the parallelization of our method and exploring other approximation schemes.

Multiple comparisons. Our approach enables the comparison of multiple hypotheses against
each other. In that direction, it can also be checked whether one of the hypotheses performs
better than a simple baseline hypothesis such as the uniform hypothesis. If many hypotheses
are tested in this way, then the multiple comparison problem should be taken into account.
That is, even if hypotheses are generated purely random, some of them would appear to
be statistically significantly better than the baseline, cf. [7]. Although our approach is in
principle affected by this problem, we see this issue as non-crucial in our setting as (i) the
main goal of our approach is not to show whether one of our hypotheses can beat a baseline,
but to compare hypotheses against each other (pairwise) and (ii) we use only a comparatively
small set of hand-elicited hypotheses in our comparisons. Apart from that, there is intense
discussion how multiple comparisons are to be viewed from a Bayesian perspective, see for
example [27,23]. Nonetheless, exploring the challenges of multiple comparisons will be an
issue that we will study more in-depth in future work.
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6 Related work

In this section, we provide an overview of related work on Markov chain models, their
applications (focusing on the Web context), and respective extensions. Further discussions
and elaborations of related work have been captured throughout the course of this work.

(First-order) Markov chain models have been first introduced by A. A. Markov in 1913
[39]. Several adaptations of the Markov chain model have been proposed, such as the so-
called higher-order Markov chain models [53], Hidden Markov models [48], or mixtures
of Markov models [47,55]. Historically, Markov chain models have been applied in many
diverse settings due to their simplicity and generality. Examples include textual data modeling
[39], weather data modeling [21], C.E. Shannon’s take on information theory [51], or the
application of modeling Web navigation leading to the PageRank algorithm [44]. A historical
summary of Markov chain models and their applications can be found in [30].

In this work, we have focused on applications in the Web context.8 This line of research
has been tackled in a multitude of studies. For example, early work by Catledge and Pitkow
[11] investigated human navigation on WWW pages. Subsequent studies have further demon-
strated that Web navigation is guided by certain regularities [32,45,13,63,61]. Prominent
theories are, for example, that humans prefer to transition between semantically similar
concepts [12,10,63], or the so-called information foraging theory [45,13] postulating that
human behavior in an information environment on the Web is guided by information scent.
Among many others, further studies have focused on sequence prediction [37,1,43,18], the
recommendation of travel routes [15], search trails [66], or the study of music sequences [2,
17].

Motivated by this large array of hypotheses about sequential behavior, HypTrails [52]
was proposed for comparing the plausibility of hypotheses on sequential data. MixedTrails,
as introduced in this paper, builds on HypTrails and addresses one of its main issues, namely
allowing to model and compare hypotheses about heterogeneous sequence data.

The model we employ in this paper is related to previously proposed extensions of
Markov chains. One prominent example are mixture models [55]. In that direction, the
Mixed Markov chain model has been studied by Poulsen [47] in the context of customer
behavior segmentation. Poulsen, however, defines group memberships on a sequence level,
not on a transition level sacrificing some of the expressiveness incorporated into MixedTrails.
Similar group memberships are used by Rendle et al. who factorize Markov chains [49] and
by Gupta et al. who reconstruct mixtures of Markov chains [28]. To our knowledge, these
models have not been employed for the comparison of hypotheses so far. Additionally, the
expressiveness of these models is limited, i.e., not all group assignments of the hypotheses
featured in this paper could be expressed with these models. Another set of Markov chain
extensions related to our approach is the class of Markov switching processes [48,19] which
model observations dependent on hidden Markovian dependency structures. Some classic
instances in this class are the Hidden Markov Model (HMM) [48], the Factorial HMM [24]
or the the Auto-Regressive HMM [29] (also see [41] for further extensions). There are also
methods based on, or related to, these methods which are used for prediction, clustering
or segmentation [18,20,40,25], including, e.g., Bayesian nonparametric methods [57,19]
which adjust their complexity based on the data. However, such methods fit models to the
data, i.e., they learn model parameters. Sometimes these model parameters can be used to
find new hypotheses (as opposed to comparing existing ones). While, e.g, Hidden Markov
models have been applied to compare streaky behavior with a baseline model [65], to best of

8 Note that our approach can also be applied to very different settings in a straight-forward manner.
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the authors knowledge, there are no general approaches to apply Markov switching processes
in a top-down manner in the context of background data. For a more detailed discussion on
the difference between top-down and bottom-up approaches please see Section 5.

Statistical methods for comparing the fits of different Markov chain models have been
summarized in [53] and include likelihood ratio tests, information-theoretic AIC, BIC or DIC
approaches, or the Bayes factor. These methods have been utilized, e.g., for comparing the fit
of nested, higher-order Markov chain models that relax the basic assumption of the Markovian
property and allow for longer memory fits. In this work, we focus on comparing fits by using
marginal likelihoods and Bayes factors [56]; these have the advantage of an automatic built-in
Occam’s razor balancing the goodness of fit with complexity [33]. Additionally, instead of
only using a flat Dirichlet prior, we also utilize the sensitivity of the marginal likelihood
on the prior for comparing theory-induced hypotheses within the Bayesian framework—as
advocated, e.g., in [50,60,35]—following the HypTrails approach elaborated in [52]. To the
authors’ knowledge, there exist no previous approaches for the comparison of hypotheses
about transition behavior that differentiate between several groups contained in the data. This
is in line with a general trend towards Bayesian methods for data analysis [36,6].

7 Conclusions

In this paper, we have introduced MixedTrails, a Bayesian method for comparing hypotheses
about the underlying processes of heterogeneous sequence data. MixedTrails incorporates (i)
a method for formulating heterogeneous hypotheses using (ii) the Mixed Transition Markov
Chain (MTMC) model, which enables specifying individual hypotheses for very flexible
subsets of transitions, i.e., with regard to certain user groups, state properties, or the set of
antecedent transitions. Furthermore, (iii) we introduced methods for eliciting hypotheses
as parameters for this model, (iv) showed how to calculate the marginal likelihood, and (v)
provided some guidance on how result plots can be interpreted to compare the corresponding
hypotheses. The benefits of our approach were demonstrated on synthetic datasets, and we
gave application examples with real-world data. Overall, this work enables a novel kind of
analysis for studying sequence data in many application areas.

In the future, we may explore our method in additional real-world applications, such as
investigating the movement of (groups of) Flickr users, cf. [5], or studying groups of editors
in Wikipedia. Furthermore, more complex priors or hierarchical models may allow for more
powerful ways of expressing hypotheses.
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A Derivation of the marginal likelihood of MTMC

Given the generative process from Section 3.2 and by exploiting the fact that the transition probabilities θg for
each group g as well as the group assignment probabilities γg|tk for each transition tk are independent, we can
write the marginal likelihood of MTMC as follows:

Pr(D|H) =
∫

Pr(D|θ,γ)︸ ︷︷ ︸
likelihood

Pr(θ|α)︸ ︷︷ ︸
prior

dθ

=
∫

∏
tk∈D

∑
g∈G

γg|tk θik , jk |g︸ ︷︷ ︸
Pr(D|θ,γ)

∏
g∈G

Pr(θg|αg)︸ ︷︷ ︸
Pr(θ|α)

∏
g∈G

dθg (6)

To solve this integral we take a similar path as in the homogeneous case (cf. [52]). Thus, we need to get the
grouping out of the integral. First, we focus on the likelihood Pr(D|θ,γ) where we extend the multiplication
over all transitions resulting in an outer sum over all possible group assignments:

Pr(D|θ,γ) = ∏
tk∈D

∑
g∈G

γg|t θik , jk |g

= ∑
ω∈Ω

Ω={{(t1 ,g1),...,(tm,gm)}|(g1 ,...,gm)∈G|D|}

∏
(tk ,gk)∈ω

γgk |tk θik , jk |gk

= ∑
ω∈Ω

∏
(tk ,gk)∈ω

γgk |tk︸ ︷︷ ︸
pω

∏
(tk ,gk)∈ω

θik , jk |gk

= ∑
ω∈Ω

pω ∏
g∈G

∏
si ,s j∈S

θ
ni, j|g,ω
i, j|g (7)

Here, each ω represents a single, fixed group assignment of the set of transitions in D where the set of all
possible group assignments ω is defined as Ω = {{(t1,g1), ...,(tm,gm)}|(g1, ...,gm) ∈G|D|}. Furthermore, pω

represents the probability of the respective group assignment ω ∈Ω . Finally, ni, j|g,ω denotes the number of
transitions from state si to state s j given the group g and the group assignment ω . What we observe is that,
given a specific group assignment ω , the likelihood is the same as the likelihood in [52].

We now substitute the likelihood Pr(D|θ,γ) in Equation (6) with this reformulated likelihood (Equa-
tion (7)) and write the priors for the group dependent transition probabilities Pr(θg|αg) based on the mul-
tivariate beta function. Then, we can calculate the marginal likelihood Pr(D|H) by taking advantage of the
independence of the transition probabilities θg between groups g ∈ G and source states s ∈ S as well as the
independence of group assignment probabilities γgk |tk between transitions tk ∈ D:

Pr(D|H) =
∫

∑
ω∈Ω

pω ∏
g∈G

∏
si ,s j∈S

θ
ni, j|g,ω
i, j|g︸ ︷︷ ︸

Pr(D|θ,γ)

∏
g∈G

∏
si∈S

1
B(αsi |g)

∏
s j∈S

θ
αi, j|g−1
i, j|g︸ ︷︷ ︸

Pr(θg |αg)

∏
g∈G

dθg

= ∑
ω∈Ω

pω ∏
g∈G

∏
si∈S

1
B(αsi |g)

∫
∏
s j∈S

θ
ni, j|g,ω+αi, j|g−1
i, j|g dθg

= ∑
ω∈Ω

θω ∏
g∈G

∏
si∈S

B(nsi |g,ω +αsi|g)

B(αsi |g)︸ ︷︷ ︸
Pr(Dg|ω |αg)

This concludes the derivation of the marginal likelihood formula in Equation (5).
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B Notation overview

The following table provides an overview of all important notations used throughout the article.

S set of all states S = {s1, . . . ,sn}
D set of observed transitions D = {t1, ..., tm}
G set of all groups G = {g1, . . . ,go}
srck,dstk the source state srck and the destination state dstk of transtion tk
ik, jk the index of the source state ik and the destination state jk of transtion tk
γg|t probability for transition t to belong to group g
γt group assignment probabilities for a single transitions γt = {γg|t |g ∈ G}
γ group assignment probabilities for all transitions γ = {γt |t ∈ D}
θi, j|g probability of a transition from state si to state s j for group g
θsi |g transition probabilities from state si to all other states in group g,

i.e., θsi|g = (θi,1|g, . . . ,θi,n|g)
θg transition probabilities between states for group g, i.e., θg = {θsi |g | si ∈ S}
θ transition probabilities for all groups θ = {θg|g ∈ G}
φ belief in transition probabilities (from a hypothesis)
φi, j|g belief (from a hypothesis) in the probability of a transition from state si to state s j for

group g
αi, j|g Dirichlet parameter (∈ N) for the transition from state si to state s j in group g
αsi|g Dirichlet parameters for state si in group g, i.e., αsi |g = (αi,1|g, . . . ,αi,n|g)
αg Dirichlet parameters for the transitions in group g, i.e., αg = {αsi |g | si ∈ S}
α Dirichlet parameters for all groups α= {αg|g ∈ G}
Ω the set of all group assignments Ω = {{(t1,g1), ...,(tm,gm)}|(g1, ...,gm) ∈ G|D|}
ω a fixed group assignment ω ∈Ω for each transition in transition dataset D
pω the probability for group assignment ω ∈Ω

ni, j|g,ω the number of transitions in dataset D from state si to state s j given group g ∈G and group
assignment ω ∈Ω

ng,ω the matrix ng,ω = (ni, j|g,ω ) holds the number of transitions in dataset D between all states
given group g ∈ G and group assignment ω ∈Ω
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