
The VLDB Journal manuscript No.
(will be inserted by the editor)

The Social Bookmark and Publication Management System BibSonomy
A Platform for Evaluating and Demonstrating Web 2.0 Research

Dominik Benz1 · Andreas Hotho2 · Robert Jäschke1,3 · Beate Krause1,2 · Folke
Mitzlaff1 · Christoph Schmitz1,3 · Gerd Stumme1,3

Received: date / Accepted: date

Abstract Social resource sharing systems are central elements
of the Web 2.0 and use the same kind of lightweight knowledge
representation, called folksonomy. Their large user communi-
ties and ever-growing networks of user-generated content have
made them an attractive object of investigation for researchers
from different disciplines like Social Network Analysis, Data
Mining, Information Retrieval or Knowledge Discovery. In this
paper, we summarize and extend our work on different aspects
of this branch of Web 2.0 research, demonstrated and evaluated
within our own social bookmark and publication sharing sys-
tem BibSonomy, which is currently among the three most pop-
ular systems of its kind. We structure this presentation along
the different interaction phases of a user with our system, cou-
pling the relevant research questions of each phase with the
corresponding implementation issues. This approach reveals in
a systematic fashion important aspects and results of the broad
bandwidth of folksonomy research like capturing of emergent
semantics, spam detection, ranking algorithms, analogies to
search engine log data, personalized tag recommendations and
information extraction techniques. We conclude that when in-
tegrating a real-life application like BibSonomy into research,
certain constraints have to be considered; but in general, the
tight interplay between our scientific work and the running sys-
tem has made BibSonomy a valuable platform for demonstrat-
ing and evaluating Web 2.0 research.

1 Knowledge & Data Engineering Group
Interdisciplinary Research Center for Information Systems Design
University of Kassel
Wilhelmshöher Allee 73, 34121 Kassel, Germany
E-mail: {lastname}@cs.uni-kassel.de
2 Data Mining and Information Retrieval Group
University of Würzburg
Am Hubland, 97074 Würzburg, Germany
E-mail: {lastname}@informatik.uni-wuerzburg.de
3 L3S Research Center
Appelstr. 9a, 30167 Hannover, Germany
E-mail: {lastname}@l3s.de

Keywords BibSonomy · Collaborative Tagging · Web 2.0 ·
Folksonomy · Data Mining

1 Introduction

Complementing the Semantic Web effort, a new breed of so-
called ‘Web 2.0’ applications has become an integral part of
the Web’s landscape during the last years. These include user-
centric publishing and knowledge management platforms like
wikis, blogs, and social resource sharing tools. The enormous
popularity of these systems, including their large user com-
munities and ever-growing networks of user-generated content
have made them an attractive object of investigation for re-
searchers from different disciplines like social network analy-
sis, data mining, information retrieval or knowledge discovery.
In order to cover an important part within the broad bandwidth
of ‘Web 2.0 research’, we focus here on social resource sharing
systems, which all use the same kind of lightweight knowledge
representation, called folksonomy [50].

Social resource sharing systems are web-based systems that
allow users to upload all kinds of resources, and to label them
with arbitrary words, so-called tags. The systems can be dis-
tinguished according to what kind of resources are supported.
Flickr,1 for instance, allows the sharing of photos while Deli-
cious2 allows sharing of bookmarks, just to mention a few. One
reason for their immediate success is the fact that no specific
skills are needed for participating, and that these tools yield
immediate benefit for the individual user (e. g., organizing ones
bookmarks in a browser-independent, persistent fashion) with-
out too much overhead.

These systems, along with their underlying network of users,
tags and resources have been in the center of the research ac-
tivities at our group during roughly the last four years. Crucial
questions for each researcher interested in this topic are (i) how

1 http://www.flickr.com/
2 http://www.delicious.com/

and where to get large real-world datasets and (ii) how to eval-
uate research results in a realistic setting. For both reasons, we
started to build our own resource sharing system, called Bib-
Sonomy, which allows sharing bookmarks and bibliographic
references simultaneously. Started as a student project at our
group in spring 2005, it quickly grew out of the prototype sta-
tus and attracted until today roughly 5,000 users, putting it –
to the best of our knowledge – among the three most popular
social publication sharing systems at present.3

In this paper, we summarize our work on different aspects
of Web 2.0 research, demonstrated and evaluated within Bib-
Sonomy. As many research questions are geared towards im-
proving the user’s experience with the system, we will struc-
ture our summary along the different interaction phases of a
user with BibSonomy. Section 2 starts with giving an overview
of a typical use case. After laying the groundwork with an ex-
planation of the system’s architecture in Section 3, we will de-
tail on each interaction phase and identify the corresponding
research questions:

– In order to support the user while browsing and search-
ing in the system (Section 4), we have done an analysis
of semantic similarity measures [10] among tags in order
to enable a ‘semantic’ direction of browsing. Furthermore,
we investigated automatic spam detection methods [33] to
prevent our users from wading through inappropriate con-
tent. A core question when searching for specific content is
how to rank the resources by relevance. To this end we have
developed FolkRank [23], an adaptation of the well-known
PageRank algorithm [6] to folksonomies.

– The process of entering new content (Section 5) can be
supported in various ways. The description of our work
on assisting the user during the annotation process by tag
recommendations [29] is complemented by presenting a
framework for online evaluation of different recommenda-
tion algorithms [30]. In addition, we provide a first analyis
of the ‘copy network’ of BibSonomy, which emerges when
users copy entries from other users.

Section 6 then shifts perspective to the content itself, how
it is represented internally and how it can be accessed in var-
ious ways, e. g., via the web interface or a REST-based API.
In order to show the tight interplay between our research and
the running system, we splitted each section – when possible
– by first detailing on research questions and how we tackled
them, and then on implementation issues and how our results
have been reflected in BibSonomy. Throughout the paper, we
adhere to a formal model of a folksonomy [23] defined as fol-
lows:

A folksonomy is a tuple F := (U,T,R,Y,≺) where

– U , T , and R are finite sets, whose elements are called users,
tags and resources, resp.,

3 Together with http://www.citeulike.org/ and http://www.connotea.
org/.

Figure 1 Categorizing a bookmark in BibSonomy by assigning the tags
‘stanford’, ‘2009’ and ‘workshop’.

– Y is a ternary relation between them, i. e., Y ⊆U ×T ×R,
whose elements are called tag assignments (tas for short),
and

– ≺ is a user-specific subtag/supertag-relation, i. e.,≺⊆U×
T ×T , called is-a relation.

Users are typically described by their user ID, and tags may be
arbitrary strings. What is considered as a resource depends on
the type of system, e. g., in BibSonomy they are either URLs
or publication entries.

For convenience we also define the set P of all posts as
P := {(u,S,r) | u ∈U,r ∈ R,S = T (u,r),S 6= /0} where, for all
u ∈U and r ∈ R, T (u,r) := {t ∈ T | (u, t,r) ∈ Y} denotes all
tags the user u assigned to the resource r.

If we disregard the is-a relation, we can simply note a folk-
sonomy as a quadruple F :=(U,T,R,Y). This structure is known
in Formal Concept Analysis [51] as a triadic context [34, 49].
An equivalent view on this structure is that of a tripartite (undi-
rected) hypergraph G = (V,E), where V = U∪̇T ∪̇R is the set
of nodes, and E = {{u, t,r} | (u, t,r) ∈ Y} is the set of hyper-
edges.

2 Usage of the System

A good portion of a researcher’s day-to-day business consists
of doing literature research. Especially when a new project is
launched, a lot of literature must be categorized for further ref-
erence. Literature research nowadays typically starts by query-
ing a major web search engine, resulting in a set of (potentially)
relevant resources. BibSonomy allows the researcher to cate-
gorize and archive both bookmarks and literature references
while reviewing a resource of interest in his web browser.

For storing a reference to a resource in BibSonomy, the
user has to provide corresponding meta information (such as
the title) as well as a non-empty set of arbitrarily chosen key-
words (so-called tags), describing the resource, the user’s opin-
ion about the resource, the project for which the resource is rel-
evant for and so on. Figure 1 shows BibSonomy’s input form
for categorizing a bookmark. Of course, when scientific arti-
cles are to be categorized, more meta information (like the au-
thor, journal, publisher, . . .) must be provided to allow unam-
biguous references. To relieve the user from this tedious work,

2

Figure 2 Searching for posts related to the tag ‘sql’.

BibSonomy incorporates so-called scraping techniques for au-
tomatically extracting this information from the web page the
user is visiting (as described in Section 5.2.2). To further ease
the process of tag assignment, BibSonomy presents recom-
mended tags from which the user might choose a subset, e. g.,
the tags ‘2009’, ‘conference’, ‘persdb09’, ‘stanford’ and ‘work-
shop’ in Figure 1. Our work on evaluating methods for tag rec-
ommendations is described in Section 5.2.1.

With each annotated resource, the user contributes to Bib-
Sonomy’s collaborative database, making his posts available
to others. Thus, BibSonomy offers a way for searching and
browsing resources, taking other users’ annotations into ac-
count. Currently, more than 350,000 bookmarks and 650,000
publication references are stored in BibSonomy. Nevertheless,
allowing freely typed tags leads to problems which all collab-
orative tagging systems have to face. Golder et al. [14] iden-
tified three major problems as polysemy, synonymy, and level
variation. Polysemy refers to tags which have several mean-
ings (e. g., turkey), synonymy to situations, where several tags
share a common meaning (above all morphological variations
as ‘web20’, ‘web2.0’, . . .) and level variation to situations where
different people are using tags from different levels of abstrac-
tion (e. g., ‘database’ vs. ‘mysql’).

To deal with these problems, BibSonomy assists the user
while searching and browsing in several ways. By applying
the FolkRank algorithm to BibSonomy’s underlying data struc-
ture, resources may be ranked by relevance to a given tag. Note
that this ranking also considers resources whose annotations do
not contain the given tag (see Section 4.2.3). Figure 2 shows
BibSonomy’s interface while searching for the tag ‘sql’, with

results ordered by relevance. This is only one possible ordering
of a result set – others are presented in Section 4.1.3.

Additionally, as shown in Figure 2, a list of similar and re-
lated tags is presented to the user, providing access to resources
which are (by trend) annotated with synonyms or tags from dif-
ferent levels of abstraction, respectively (see Sections 4.1.1 and
4.2.1). The user does not see the huge part of more or less du-
bious posts, placed by spammers who are abusing social book-
marking services. Without any protection, reasonable content
would to be lost amidst these. Therefore, users of BibSonomy
are semi-automatically classified into normal and spam users,
enabling separation of spam posts (see Sections 4.1.2 and 4.2.2).

Finally, when a project is finished and the corresponding
report has to be written, all relevant publications have to be
referenced. For that, BibSonomy offers export facilities in a
variety of formats like BIBTEX or RIS, suitable for integration
into different text processing systems for automatic generation
of bibliographies (see Section 6.2.2).

In summary, BibSonomy integrates seamlessly into the dif-
ferent phases of doing research work, aiming to support the
researcher at each stage with suitable techniques.

3 The BibSonomy Architecture

In order to lay the groundwork for an understanding of the Bib-
Sonomy system in the following sections, we now detail the
technical and conceptual aspects of its architecture which has
first been described in [21, 25] and since then quite evolved.
BibSonomy is a web application written in Java, which is based

3

Figure 3 A simplified UML class diagram of BibSonomy’s data model.

on Java Server Pages4 and Java Servlet5 technology. To sep-
arate the logical handling of data from its presentation, Bib-
Sonomy follows the Model View Controller (MVC) program-
ming paradigm [42] implemented by Spring’s Web MVC frame-
work.6 A relational database is used as back-end (see Sec-
tion 6.1 for details). The system itself has a modular structure,
in which several components encapsulate the different func-
tionalities like, e. g., database access or scraping facilities. The
modularisation has been performed by a reimplementation of
large parts of BibSonomy, after having gained three years of
experience with the first version of the system. The modulari-
sation turned out to be necessary since maintenance and paral-
lel code development became more and more difficult.

After giving some details on the underlying data model, the
components of the reimplemented version of BibSonomy are
described briefly in order to clarify the building blocks of the
system. We close this section by exemplifying how the compo-
nents work together in a typical control flow when answering
a request.

3.1 Data Model

BibSonomy’s data model (see Figure 3) is centered around the
core classes Tag, User and Resource, implementing the formal
model of a folksonomy as described in Section 1. For tech-
nical reasons, each supported resource type is modelled by a
separate sub class of the Resource class (Bookmark and Pub-
lication for now). Tag assignments which belong together are
bundled in the Post class. Finally, BibSonomy allows users to
form groups (e. g., to jointly collect posts) which are modeled
by the Group class.

4 http://java.sun.com/products/jsp
5 http://java.sun.com/products/servlets
6 http://www.springsource.org/

Figure 4 The UML component diagram of BibSonomy’s components.
All components build upon the Model which contains the classes that rep-
resent BibSonomy’s data model. The ScrapingService, WebApplication,
and RESTServer are the connection to the web.

Figure 5 Diagrammatic presentation of the control flow in BibSonomy.
Exemplary diagrammatic presentation of the control flow in BibSonomy.

3.2 Components

BibSonomy is built up from several components which en-
capsulate the different functionalities of the system. We here
briefly describe the main components of the system which are
depicted in Figure 4. The source code of components marked
with an asterisk (*) in the following list is available under an
(L)GPL license at http://dev.bibsonomy.org/.

BibTeXParser* Parses BIBTEX strings and files into Java ob-
jects and is thus involved in every incoming publication
post request.

Common* Most general-purpose classes, exceptions, and util-
ity functions used by several other modules are contained
in this component. Among others, it contains methods to
handle sending of e-mails, parsing of XML, hashing, vali-
dation, and web crawling.

DatabaseLogic Handles all database access in BibSonomy by
implementing the LogicInterface which describes the meth-
ods that operate on the objects of the model, e. g., storePost,
updateUser, getGroup, It uses a relational database as
back-end (cf. Section 6.1).

4

Layout* Implementing the LayoutInterface, this component
provides rendering of publication posts using JabRef7 ex-
port filters. For details see Section 6.2.2.

LuceneLogic Complementing the DatabaseLogic, this com-
ponent provides full-text search over posts (e. g., title, tags,
authors, etc.) using Apache Lucene8.

Model* This component defines the underlying data model of
BibSonomy as described in Section 3.1. In particular, all
objects used for interacting with the LogicInterface are de-
fined here. An important part of the model is the definition
of the XML Schema of BibSonomy’s REST API (see Sec-
tion 6.2.3).

RESTClient* The REST client API, as counterpart of the REST-
Server, acts as a library for Java programmers to connect
their programs to the REST API of BibSonomy without
caring about the underlying XML/HTTP-based interaction.
Put simply, it provides remote access to the database by im-
plementing (parts of) the LogicInterface.

RESTCommon* Common things needed by both the REST
server and the REST client, in particular enumeration types,
exceptions, and the XML renderer.

RESTServer* The REST server of BibSonomy offers REST-
based access to the LogicInterface using XML over HTTP.

Recommender The tag recommendations shown during post-
ing a bookmark or publication are generated by this com-
ponent which implements the RecommenderInterface. For
a detailed description of BibSonomy’s tag recommenda-
tion framework see Section 5.2.1.

Scraper* More than 60 screen scrapers which extract publica-
tion metadata from various digital libraries (see Section 5.2.2).
They are assembled into a chain of responsibility which
also implements the ScraperInterface.

ScrapingService* A standalone web application representing
a lightweight web service which allows to access the scrap-
ing facilities of the Scraper component.

WebApplication The web pages which can be accessed at http:
//www.bibsonomy.org/ are served by this central compo-
nent. Intensively using the Spring framework, there are con-
trollers for each of the different pages of the web appli-
cation which are coupled to views by Spring. The URL
scheme of the web application is further described in Sec-
tion 6.2.1.

3.3 Control Flow

In order to demonstrate the interaction between some of the
above-mentioned components, Figure 5 exemplarily shows how
the request ‘http://www.bibsonomy.org/user/nepomuk/fca’ is pro-
cessed and how the flow of control is managed within the sys-
tem. BibSonomy itself is running in an Apache Tomcat9 servlet

7 http://jabref.sourceforge.net/
8 http://lucene.apache.org/
9 http://tomcat.apache.org/

container. Before getting there, the incoming request is (1) pro-
cessed by an Apache web server,10 running in a demilitarized
zone (DMZ) and acting as a proxy and load balancer for sev-
eral Tomcat instances (2). This setup contributes to fulfil our
high availability requirements. Each instance hosts the Bib-
Sonomy web application where (3) the user request is passed
to the DispatcherServlet of the Spring MVC framework and
(4) delegated to the responsible controller. In this scenario, the
UserPageController is invoked, which (5) retrieves all public
posts of the user ‘nepomuk’ with the tag ‘fca’, sorted by date
in descending order from the database. The compiled model
is (6) passed to Spring’s view resolver, which in this case del-
egates to Spring’s JstlView, rendering an HTML page using
an appropriate JSP-file. This flow of control demonstrates our
modular design, which makes it possible to exchange one com-
ponent (e. g., the database layer or the view component) by a
new implementation.

4 Browsing and Searching the System

In the web pages of social bookmarking systems, the folkson-
omy structure is translated directly to hyperlinks. Each occur-
rence of a resource name, a tag, or a user name is a hyperlink
pointing to the corresponding entity. This richly linked struc-
ture allows for serendipitous browsing. A typical retrieval ses-
sion starts with typing in a tag. Depending on the output, one
may either refine the query (e. g., by choosing an additional
tag from the displayed list of ‘related tags’), continue with the
deeper analysis of a specific resource, or analyse a user who
seems to have bookmarked interesting resources.

There are (at least) three observations/features that facil-
itate serendipitous browsing in social bookmarking systems
and that are inherent to/built-in in BibSonomy: the small world
property of folksonomies, measures that compute semantic close-
ness of tags, and the removal of spam. The latter two aspects
are discussed in the next subsection, while implementation is-
sues are described in Section 4.2.

Serendipitous browsing is facilitated by the fact that the
graph of a folksonomy has the small world property. On the
one hand, this means that related entities are clustered together
in the folksonomy – and thus in the hyperlink graph of the
bookmarking system – and on the other hand that it is possible
to reach most of the other content of the system by very few
clicks. For a detailed discussion we refer the reader to [9].

Many different measures for the semantic closeness of tags
are used in research papers on folksonomies, but their selec-
tion is usually rather ad hoc and does not follow any scientific
principle. In Section 4.1.1 we discuss the properties of differ-
ent measures and derive arguments for the selection of a suit-
able measure. The implementation of some of these measures
in BibSonomy will be discussed in Section 4.2.

A big hinderance for the usage of many internet-based ser-
vices – and in particular for web 2.0 systems – is spam. BibSo-

10 http://httpd.apache.org/

5

nomy, for instance, contains more than 90 % spam. To maintain
the usability, the system administrators have thus to constantly
remove this spam. The implementation of BibSonomy’s spam
management framework is described in Section 4.2.2. It makes
use of machine learning techniques which are discussed in Sec-
tion 4.1.2.

Despite the fact that folksonomies allow for serendipitous
discovery of interesting content, their ever-growing human-
annotated collection of documents is also an attractive resource
for users searching for specific contents. In contrast to a brows-
ing user, a user searching in BibSonomy has a specific infor-
mation need (e. g., finding research papers on a certain topic).
Finding relevant content within a collection of documents has
been investigated in depth in the field of information retrieval;
however, as the underlying structure of a folksonomy differs
fundamentally from the structure of repositories like the World
Wide Web, existing approaches and algorithms need to be adapted.

In Section 4.1.3, we report on our work on the adaption
of the well-known PageRank algorithm [6] to folksonomies
and finally on an approach for topic-specific ranking in folk-
sonomies – the FolkRank algorithm [23]. Its integration into
BibSonomy is described in the implementation Section 4.2.3.

4.1 Research Questions

4.1.1 Similarity Measures

With the tag assignment relation Y as the central connecting
structure, a folksonomy can be browsed along all contained di-
mensions: E.g, given a user u, one can browse through u’s tags
and resources, or given a tag t, one can see resources tagged
with t as well as co-occuring or “related” tags. This allows for
serendipitous discovery of interesting content and is seen as
a major strength of folksonomies [41]. Naturally, this kind of
browsing is limited to explicit edges in the folksonomy graph.
If no direct link exists e.g. between two tags t1 and t2, it will be
quite hard for a user interested in t1 to discover t2, even if both
tags have a very similar semantic meaning.

So an interesting research question is if implicit links be-
tween folksonomy objects can be inferred which facilitate brows-
ing in a ‘semantic direction’ instead of being restricted to ex-
plicit links. Central to this task of harvesting emergent seman-
tics in folksonomies [22] are the concepts of similarity and re-
latedness. Budanitsky and Hirst pointed out that similarity can
be considered as a special case of relatedness [7]. In recent
work [10], we focussed on relatedness of tags, because they
carry the semantic information within a folksonomy, and pro-
vide thus the link to ontologies. Additionally, this focus allows
for an evaluation with well-established measures of similarity
in existing lexical databases. We analyzed the following five
measures of tag relatedness:

Co-Occurrence: Given a folksonomy (U,T,R,Y), we define
the tag-tag co-occurrence graph as a weighted undirected
graph whose set of vertices is the set T of tags. Two tags

t1 and t2 are connected by an edge, iff there is at least one
post (u,Tur,r) with t1, t2 ∈ Tur. The weight of this edge is
given by the number of posts that contain both t1 and t2,
i. e., w(t1, t2) := |{(u,r) ∈U×R | t1, t2 ∈ Tur}|.
Co-occurrence relatedness between tags is given directly
by the edge weights. For a given tag t ∈ T , the tags that are
most related to it are thus all the tags t ′ ∈ T with t ′ 6= t such
that w(t, t ′) is maximal.

Tag Context Similarity: The tag context similarity (TagCont)
is computed in the vector space R|T ∗|, whereby T ∗ is the
set of most popular (i. e., most often used) tags in the folk-
sonomy. We chose the top 10,000 tags here. For a tag t, the
entries of the vector vt ∈R|T ∗| are defined by vtt ′ := w(t, t ′)
for t 6= t ′ ∈ T, t ′ ∈ T ∗, where w is the co-occurrence weight
defined above, and vtt = 0. The reason for giving weight
zero between a node and itself is that we want two tags to
be considered related when they occur in a similar context,
and not when they occur together.

Resource Context Similarity: The resource context similarity
(ResCont) is computed in the vector space R|R|. For a tag
t, the vector vt ∈R|R| is constructed by counting how often
a tag t is used to annotate a certain resource r ∈ R: vtr :=
|{u ∈U | (u, t,r) ∈ Y}|.

User Context Similarity: The user context similarity (UserCont)
is built similarly to ResCont, by swapping the roles of the
sets R and U : For a tag t, the vector vt ∈ R|U | is defined as
vtu := |{r ∈ R | (u, t,r) ∈ Y}|.

FolkRank: We use the FolkRank algorithm described in Sec-
tion 4.1.3 to compute a ranked list of relevant tags for a
given tag by modifying the preference vector.

In all three context representations (i. e., TagCont, ResCont,
UserCont), we measure vector similarity by using the cosine
measure, as is customary in Information Retrieval [44]: If two
tags t1 and t2 are represented by v1,v2 ∈R|X |, their cosine simi-
larity is defined as: cossim(t1, t2) := cos](v1,v2)= v1·v2

||v1||2·||v2||2
.

Dataset and Semantic Grounding Our analysis was based on
a snapshot of BibSonomy from January 2010. Initially, it con-
tained 2.120.322 tag assignments (TAS). From that, we kept
only those TAS which contained one of the 10.000 most pop-
ular tags, leading to a total of 4.990 users, 432.164 resources,
10.000 tags and 1.619.210 tag assignments. To provide a se-
mantic grounding of our folksonomy-based measures, we mapped
the tags of BibSonomy to synsets of WordNet and used the se-
mantic relations of WordNet to infer corresponding semantic
relations in the folksonomy. In WordNet, we measured the sim-
ilarity by using both the taxonomic path length and a similar-
ity measure by Jiang and Conrath [26] that has been validated
through user studies and applications [7].

A first assessment of the measures of relatedness can be
carried out by measuring – in WordNet – the average seman-
tic distance between a tag and the corresponding most closely
related tag according to each one of the relatedness measures
we consider. Figure 6 reports the average semantic distance be-
tween the original tag and the most related one, computed in

6

6 7 8 9 10 11
taxonomic path length

random

UserCont

folkrank

co-occ

TagCont

ResCont

8 9 10 11 12 13 14 15 16 17
Jiang-Conrath distance

random

UserCont

folkrank

co-occ

TagCont

ResCont

Figure 6 Average semantic distance, measured in WordNet, from the
original tag to the most closely related one. The distance is reported for
each of the measures of tag similarity discussed in the main text (labels on
the left). Grey bars (bottom) show the taxonomic path length in WordNet.
Black bars (top) show the Jiang-Conrath measure of semantic distance.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P(n)

n

co-occ

folkrank

TagCont

ResCont

UserCont

Figure 7 Probability distribution for the lengths of the shortest path lead-
ing from the original tag to the most closely related one. Path lengths are
computed using the subsumption hierarchy in WordNet.

WordNet by using both the (edge) shortest-path length and the
Jiang-Conrath distance. The tag and resource context related-
ness (and, regarding Jiang-Conrath distance, also co-occurrence)
point to tags that are semantically closer according to the se-
mantic grounding. Remarkably, the notion of similarity by tag
context (TagCont) has an almost optimal performance. This is
interesting because it is computationally less intensive than the
similarity by resource context, as it involves tag co-occurrence
with a fixed number (10,000) of popular tags, only.

As a next step we focussed on the shortest paths (measured
by the taxonomic pathlength) in WordNet that lead from an ini-
tial tag to its most closely related tag (according to the differ-
ent measures of relatedness). Figure 7 displays the normalized
distribution P(n) of shortest-path lengths n (number of edges)
connecting a tag to its closest related tag in WordNet. The sim-
ilarities by tag context and resource context display a strong
peak at n = 0. Tag context similarity also displays a weaker
peak at n = 2 and a comparatively depleted number of paths
with n = 1. For higher values of n, the histogram for resource
context and tag context has the same shape as the others. While
the peak at n = 0 is due to the detection of actual synonyms

in WordNet, the higher value at n = 2 (paths with two edges
in WordNet) for tag context may be compatible with the sib-
ling relation. This assumption was confirmed by inspecting the
path composition of these two-edge paths: In more than 80%
of the cases, they consisted of a ‘1-up-1-down’ hop for the tag
context relatedness. We omit a more detailed discussion at this
point for space reasons and refer the reader to [10]. In that pa-
per, we have performed the same experiment on a much larger
dataset, a snapshot of the bookmarking system Delicious, with
remarkably similar findings.

Conclusions Strikingly, our analysis shows that the behavior
of the most accurate measure of similarity (in terms of seman-
tic distance of the indicated tags) can be matched by a compu-
tationally lighter measure (tag context similarity) which only
uses co-occurrence with the popular tags of the folksonomy.
The second contribution addresses the question of emergent se-
mantics: Our results indicate clearly that, given an appropriate
measure, globally meaningful tag relations can be harvested
from an aggregated and uncontrolled folksonomy vocabulary.
Specifically, we showed that the measures based on tag and
resource context are capable to discover implicit links in the
folksonomy graph, which facilitate a ‘semantic’ direction of
browsing.

4.1.2 Spam Detection

Web spam detection is a well known challenge for search en-
gines. Spammers add specific information to their web sites
with the purpose to increase the ranking and not the quality
of a page. They thereby boost the traffic to their web sites be
it for commercial or political interests or to disrupt the ser-
vice provided. The rise of social bookmarking systems made
those systems also attractive to web spam: spammers (mis)use
the popularity and high PageRank for their own purposes. Fol-
lowing [19], we consider spam in folksonomies as (1) content
which legitimate users do not wish to share and (2) content
which is tagged in a way to mislead other users (i. e., spammers
add keywords that do not match the content of the bookmarks).
The following summary of our findings from [33] is the basis
of the spam detection framework described in Section 4.2.2.

Since complicating access to the system, e. g., by using
captchas, does not repel the majority of spammers, techniques
need to be developed which prevent spammers from publishing
in these systems or hide their posts from serious users. Spam
detection is a binary classification task. Based on different fea-
tures describing known users a model is built to classify un-
known users either as ‘spammer’ or ‘non-spammer’.11

Dataset We generated a dataset from the BibSonomy database
comprising 20,092 users, 306,993 tags, 920,176 resources and
profile information of all BibSonomy users until the end of
2007. Considering only bookmarks, the system consists of 1,411

11 Another task would be to classify posts.

7

Table 1 Baseline with all tags as features.

setting TP FP FN TN
frequency 466 0 2,324 100
TF/IDF 530 0 2,260 99

legitimate users and 18,681 users who were flagged as spam-
mers by the system administrators. The posts of flagged users
are no longer visible for other users. The evaluators did not
follow official guidelines, but acted upon a common sense of
what distinguishes users from spammers. Normally, character-
istics of a user’s profile (e. g., name, e-mail address), the com-
position of posts (e. g., the semantics of tags, the number of
tags) and the content of the bookmarked web sites served as
the basis for the administrator’s decision.

Evaluation Setting As the experiments aim at reliably clas-
sifying new users, we split the instances chronologically: the
training set (17,202 users, 282,473 tags, 774,678 resources,
7,904,735 TAS) comprehends all instances until 11/30/2007,
the test set (2,890 users, 49,644 tags, 153,512 resources, 804,682
TAS) all instances of December 2007.

The results of the classification are presented in terms of
true/false positives/negatives with TP being the number of spam
instances that were correctly classified, FP the number of non-
spam instances that were incorrectly classified as spam, FN
the number of instances that were incorrectly classified as non-
spam, and TN the number of instances that were correctly clas-
sified as non-spam. For our evaluation, we consider the F1-
measure (F1M) which is the harmonic mean of precision and
recall F1M = 2PR

P+R and the area under a ROC curve (AUC)
which assesses the portion of the area of the unit square un-
der the receiver operating characteristics (ROC) curve. These
curves show the relative tradeoffs between benefits (true posi-
tives rates) and costs (false positives rates). The curves are plot-
ted according to a pre-determined order of the test instances –
for instance, the Naive Bayes classifier provides an instance
probability which can be used for such a ranking.

Baseline As baseline we consider the tags used to describe a
resource as features and use a classifier that has been shown to
deliver good results for text classification such as Naive Bayes.
Each user u can then be represented as a vector u where each
dimension corresponds to a unique tag t. We consider two dif-
ferent settings: (a) the weight corresponds to the absolute fre-
quency the tag t occurs with the user u, (b) each tag’s weight
is normalized using TF/IDF. Table 1 shows the TP, FP, FN,
TN values for both approaches. The TF/IDF weighted baseline
slightly identifies more spammers. The AUC for the frequency
baseline is 0.801, the F1-measure 0.286. The AUC for the tfidf
baseline is 0.794, the F1-measure 0.319.

Features Overall, we considered 25 features in four different
groups (cf. Table 2). Each user is represented as a vector with
an entry for each feature. All values are normalized over the
set of users.

Table 2 The features of the different feature groups.

feature description
profile

namedigit name contains digits
namelen length of name
maildigit email address contains digits
maillen length of mail address
realnamelen length of realname
realnamedigit realname contains digits
realname2 two realnames
realname3 three realnames

location based
domaincount number of users in the same domain
tldcount number of users in the same top level domain
spamip number of spam user with this IP

activity based
datediff difference between registration and first post
tasperpost number of tags per post
tascount number of total tags added to all posts of this ac-

count
semantic

co(no)spamr user co-occurrences (related to resources) with
(non) spammers

co(no)spamt user co-occurrences (related to tags) with (non)
spammers

co(no)spamtr user co-occurrences (related to tag-resources pairs)
with (non) spammers

spamratio(r/t/rt) ratios of spam/non spam co-occurrences
grouptag number of times the tag ‘$group=public’ was used

(entries with this tag have most likely been auto-
matically generated by a specific software)

spamtag ratio of spam tags to all tags of a user

The profile features are extracted from a user’s registration
data. For example, spammers often select names or e-mail ad-
dresses with many numbers. Location based features represent
a user’s location and domain. Often, the same spammer pub-
lishes the same content using several accounts with the same IP
address. Thus, if one user with a specific IP (domain) is already
marked as a spammer, the probability that other users with the
same IP are also spammers is higher. Activity properties con-
sider different kinds of user interactions with the system. For
instance, while normal users tend to post their first bookmark
soon after their registration, spam users often wait a certain
time. Semantic features relate to the usage and content of the
tags which serve as an annotation for a bookmark. For exam-
ple, if users often select tags which are listed on a blacklist
(created by the administrators), those users are likely to post
spam. Further, co-occurrence features describe the usage of a
similar vocabulary and resource usage.

Experiments We selected four different classification methods:
Naive Bayes, C4.5 Decision Tree (using the J48 implementa-
tion), Logistic Regression, and Support Vector Machines (SVM).
For the first three algorithms, we used the Weka implementa-
tion [52], for the SVM we used the LIBSVM package [11].

Table 3 shows the AUC, F1-measure, and the absolute FP
and FN values for all algorithms, based on all features. Figure 8
depicts the ROC curves.12 The best classifier with an AUC of

12 We only included one baseline (tfidf) to reduce the number of curves.

8

Table 3 Evaluation values all features

Classifier AUC F1M (spammer) FP FN
Naive Bayes 0.906 0.876 14 603
SVM 0.936 0.986 53 23
Logistic Regression 0.918 0.968 30 144
J48 0.692 0.749 11 1112

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

 R
at

e

FP Rate

Naive Bayes
J48

SVM
Logistic Regression

Baseline

Figure 8 ROC curves of classifiers considering all features. The steepest
progression shows the SVM classifier.

Table 4 Evaluation values of feature groups

features AUC F1M spammer F1M nonspammer
profile 0.753 0.982 0
location 0.729 0.626 0.096
activity 0.752 0.982 0
spamtag/grouptag 0.770 0.982 0
prof+loc+act+sem 0.891 0.932 0.314
co-occurrences 0.927 0.985 0.497

Table 5 Evaluation with a cost sensitive classifier

classifier AUC F1M spammer F1M nonspammer
SVM 0.936 0.924 0.299
J48 0.835 0.794 0.157
Logistic Regression 0.932 0.927 0.317
Naive Bayes 0.905 0.855 0.200

0.936 is the SVM, followed by Logistic Regression. Though
the progression of the SVM’s ROC shows that the false posi-
tive instances are the ones with less probability, 53 out of 100
non-spammers are ranked as spammers. The AUC’s of the two
baselines (0.801 and 0.794) yield lower results.

In order to find out about the contribution of the different
features, we analyzed each feature group separately (cf. Ta-
ble 4). We used logistic regression as this method resulted in
the best AUC values for the group features. The semantic fea-
tures were split in two subgroups – cooccurrence features (and
the ratios) and the spamtag/grouptag.

Overall, none of the feature groups reaches the classifica-
tion performance obtained when combining the features. This
shows that a variation of different kinds of information is help-
ful. The co-occurrence features, as a subset of the semantic
features, are most promising.

In order to penalize the wrong classification of non-spammers,
we introduced cost sensitive learning [52]. We experimented
with different cost options and found that a penalty of ten times
higher than the neutral value delivered good results for the
SVM. We also recalculated the other classifiers using cost op-
tions. Table 5 shows the changed F1M and false positive rates
of classification using all features. Cost-sensitive learning on
all features with logistic regression returns the best results.

4.1.3 Ranking

The web search algorithm PageRank [6] reflects the idea that
a web page is important if there are many pages linking to it,
and if those pages are important themselves.13 In [23], we em-
ployed the same underlying principle for Google-like search
and ranking in folksonomies. The key idea of our FolkRank al-
gorithm is that a resource which is tagged with important tags
by important users becomes important itself. The same holds,
symmetrically, for tags and users. We have thus a graph of ver-
tices which are mutually reinforcing each other by spreading
their weights. In this section we briefly recall the principles
of the FolkRank algorithm and explain how elements can be
ranked with respect to an arbitrary subset of elements in the
folksonomy.

Because of the different nature of folksonomies compared
to the web graph (undirected triadic hyperedges instead of di-
rected binary edges), PageRank cannot be applied directly on
folksonomies. In order to employ a weight-spreading rank-
ing scheme on folksonomies, we overcome this problem in
two steps. First, we transform the hypergraph into an undi-
rected graph. Then, we apply a differential ranking approach
that deals with the skewed structure of the network and the
undirectedness of folksonomies, and which allows for topic-
specific rankings.

Folksonomy-Adapted PageRank First, we convert the folkson-
omy F = (U,T,R,Y) into an undirected tri-partite graph GF =
(V,E). The set V of nodes of the graph consists of the dis-
joint union of the sets of tags, users and resources (i. e., V =
U ·∪T ·∪R). All co-occurrences of tags and users, users and re-
sources, tags and resources become edges between the respec-
tive nodes, i. e., each triple (u, t,r) in Y gives rise to the three
undirected edges {u, t}, {u,r}, and {t,r} in E.

Like PageRank, we employ the random surfer model, that
is based on the idea that an idealized random web surfer nor-
mally follows links (e. g., from a resource page to a tag or a
user page), but from time to time jumps to a new node with-
out following a link. The rank of the vertices of the graph is
computed with the weight spreading computation

wt+1← dATwt +(1−d)p , (1)

13 This idea was extended in a similar fashion to bipartite subgraphs of
the web in HITS [31] and to n-ary directed graphs in [53].

9

where w is a weight vector with one entry for each node in V ,
A is the row-stochastic version of the adjacency matrix14 of the
graph GF defined above, p is the random surfer vector – which
we use as preference vector in our setting, and d ∈ [0,1] is de-
termining the strength of the influence of p. By normalization
of the vector p, we enforce the equality ||w||1 = ||p||1. This15

ensures that the weight in the system will remain constant. The
rank of each node is its value in the limit w := limt→∞ wt of the
iteration process. For a global ranking, one will choose p = 1,
i. e., the vector composed by 1’s. For a topic-specific ranking
as described in [17], however, we give higher weight to the
node(s) we are interested in.

As the graph GF is undirected, most of the weight that went
through an edge at moment t will flow back at t + 1. The re-
sults are thus rather similar (but not identical, due to the ran-
dom surfer) to a ranking that is simply based on edge degrees.
In [23] we observed that the topic-specific rankings are biased
by the global graph structure. As a consequence, we developed
in [23] the following differential approach.

FolkRank – Topic-Specific Ranking The undirectedness of the
graph GF makes it very difficult for other nodes than those with
high edge degree to become highly ranked, no matter what the
preference vector is. This problem is solved by the differential
approach in FolkRank, which computes a topic-specific rank-
ing of the elements in a folksonomy. A “topic” can be hereby
basically an arbitrary subset of items in the folksonomy. As
an example, when computing tag recommendations, the topic
is determined by the user/resource pair (u,r) under consider-
ation. Another possibility is to equate topics with tags; in this
case, one can compute a ranking of all folksonomy items rel-
ative to a given tag. We will stick here to the recommendation
scenario, as we will come back to it in Section 5.1.1.

In order to generate recommendations, however, p can be
tuned by giving a higher weight to the user node and to the
resource node for which one currently wants to generate a rec-
ommendation. The recommendation T̃ (u,r) is then the set of
the top n nodes in the ranking, restricted to tags.

1. Let w(0) be the fixed point from Equation (1) with d = 1.
2. Let w(1) be the fixed point from Equation (1) with p[u] =

0.5, p[r] = 0.5 and p = 0 else; and d < 1.
3. w := w(1)−w(0) is the final weight vector.

Thus, we compute the winners and losers of the mutual re-
inforcement of nodes when a user/resource pair is given, com-
pared to the baseline without a preference vector. We call the
resulting weight w[x] of an element x of the folksonomy the
FolkRank of x.

In [23] we showed that w provides indeed valuable results
on a large-scale real-world dataset while w(1) provides an un-
structured mix of topic-relevant elements with elements hav-
ing high edge degree. In [24], we applied this approach for

14 ai j := 1
degree(i) if {i, j} ∈ E and 0 else

15 . . . together with the condition that there are no rank sinks – which
holds trivially in the undirected graph GF.

Figure 9 Example of a semantic browsing facility by displaying semanti-
cally ‘similar’ tags. The example here is the tag page for python; one can
see that the ‘similar’ tags (upper arrow) are substantially different from
the ‘related’ tags (lower arrow), yielding other programming languages
like perl or c++.

detecting trends over time in folksonomies. In Section 5.1.1
we present FolkRank as a method to compute tag recommen-
dations – an example for a tag-specific FolkRank computation
is described in the implementation Section 4.2.3.

4.2 Implementation Issues

When browsing a folksonomy, users can directly experience
its small-world properties, as they will discover new and inter-
esting content in a serendipitous way. From an implementation
point of view, these properties are inherent to a folksonomy
system and do not require further special considerations or de-
sign choices on the developers side. This is why we now focus
on the implementation of the similarity measures, the spam
classification framework and the FolkRank ranking, which ex-
emplify the knowledge transfer from our research into the run-
ning system.

4.2.1 Similarity Measures

As stated in the previous research section, our primary goal
when investigating similarity measures among tags was to fa-
cilitate a ‘semantic’ direction of browsing along implicit edges
in the folksonomy graph. As a result of our research, it turned
out that cosine similarity in the vector space of the 10,000 most
popular tags yields semantically close tags at a comparatively
low cost of complexity. However, due to the size of our sys-
tem (and the size of folksonomy systems in general), even this
computationally lightweight measure is not feasible for online
computation of similar tags. In order to make available our
findings to our users, we hence decided to implement a daily
update mechanism which executes the following steps:

1. Extract the 10,000 most popular tags of the system.
2. Extract the candidate tag set Tcand by including tags used

at least 10 times within the system.
3. Build a vector representation for each tag t ∈ Tcand in the

vector space of the top 10,000 tags.
4. Compute pairwise cosine similarity among all tags t ∈Tcand.
5. Store the 10 most similar tags for each tag t ∈ Tcand.

10

As of May 2010, this procedure involves approximately
21.000 tags present in the candidate tag set. It takes roughly 90
minutes (using approximately 700 MB of RAM) on a machine
equipped with two six-core 2.4Ghz AMD Opteron processors.
This computation time is reasonable for now, but we are exper-
imenting with more efficient methods for all-pairs similarity
search like in [2] to be prepared for growing amounts of data.

Now, instead of computing similar tags online (and possi-
bly delaying the delivery of the rendered HTML page) we can
simply perform lookups in the database. When a user is brows-
ing on a tag page for a given tag in our system (e. g., http://
www.bibsonomy.org/tag/python), we provide an additional kind
of browsing facility by displaying ‘similar tags’ (see Figure 9).
From this example one can see that this does in fact introduce
additional ‘implicit’ connections: While the ‘related’ tags (rep-
resenting the explicit co-occurrence links) do mainly contain
rather general or broadly related tags like web, programming or
software, the ‘similar’ tags comprise almost exclusively other
programming languages like python or c++. This allows for a
previously hidden direction of browsing.

4.2.2 Spam Detection

With growing popularity, BibSonomy started to attract more
and more spammers (i. e., users who abuse the system, e. g., for
advertising purposes). While manual classification was feasi-
ble in the initial phase, the issue of a scalable automatic spam
classification framework became more and more pressing. A
main reason for this is that the starting page of BibSonomy
displays the most recent posts of all BibSonomy users. When
spammers post inappropriate content, this is hence directly vis-
ible when visiting our homepage. We think that this is a critical
factor for the uptake of our system in possible new user com-
munities.

We included the insights of our research in the design of
this framework. In addition, the implementation was guided
by the following requirements:

Quick classification: A typical usage pattern of a spammer is
that he registers at BibSonomy and directly starts to post
malicious content. Hence, it is important that the spammer
classification takes place quickly after registration or by the
latest after the first posting activity.

Data sparsity: When trying to classify a user quickly after reg-
istration, there is naturally not much data available; hence
we needed robust classification algorithms able to deal with
this data sparsity.

Concealment: When spam users realize that they have been
classified as spammers, they will possibly perform coun-
teractive measures or create even more accounts in order to
conceal their purpose or identity. Our goal was to hide (as
far as possible) the fact of being classified from the spam-
mers; basically they can keep on using the system like nor-
mal users, but their content is only visible to themselves.
As a side effect, this behaviour does not impede regular
users that have been misclassified from using the system.

Figure 10 Administrator interface of the automatic spam classifcation
framework (partial screenshot). There are several lists of new and classi-
fied users available (left arrow), and the classificator settings can be mod-
ified (right arrow).

Reversibility and manual intervention: One insight of our re-
search was that none of the investigated algorithms had an
optimal performance. Hence it is important to be able to
manually intervene and reverse a classification in case of
an error without any loss of data for the user.

Figure 10 shows the outcome as a screenshot of the admin-
istration interface of our spammer classification framework.
The classification itself takes place on an external machine,
which exchanges data with BibSonomy via our API. Regu-
larly (currently each 30 seconds) the framework reports new
users to the classification engine, which makes a graded deci-
sion if each new user is a spammer or not: The possible classes
are spammer, spammer (unsure), no spammer (unsure) and no
spammer. The assignment of a new user to one of these classes
depends on the output of the chosen classifier and some config-
urable thresholds. We randomly keep on surveying manually
the results in order to revert misclassifications and to fine-tune
the parameters. In general, we are very satisfied with the over-
all performance and have the feeling that our framework leads
to a remarkably better usability of BibSonomy both for our
users and us as administrators.

4.2.3 Topic-specific Ranking by FolkRank

In Section 4.1.3, we introduced the FolkRank algorithm [23]
for search and ranking in Folksonomies.It has been integrated
into BibSonomy. The computation of FolkRank is done offline,
due to performance reasons.

Usually, resources in our system are displayed ordered by
date, showing up the latest posts on top. On the tag pages
(reachable by the URL /tag/t1 ... tn), we provide a re-
ordering of the resources based on FolkRank, relative to the
chosen tag(s) t1, . . . , tn. Since FolkRank computes a ranking
for all three dimensions of a Folksonomy – users, tags, and
resources – BibSonomy also shows in the sidebar the ranked
tags as ‘related tags’ and the users as ‘related users’, providing
another ‘semantic’ navigation facility, which is not restricted to
explicit edges in the folksonomy graph. An example of the top
five bookmarks and publication references for the tag folkson-
omy can be seen in Figure 11, the corresponding related users
and tags in Figure 12.

11

Figure 11 A screenshot of the top five bookmark and publication posts
for the tag folksonomy sorted by FolkRank. The screenshot shows a part of
the page http://www.bibsonomy.org/tag/folksonomy?order=folkrank on
June 8th, 2009.

To allow for efficient retrieval of the FolkRank ordered
posts, we regularly pre-compute for each tag t ∈ T the rank-
ing of all resources, users, and tags and store the top 100 ele-
ments in each dimension in the database. Retrieval for queries
with only one tag (i. e., /tag/t) then simply returns those
rows for the tag t. However, due to the combinatorial explo-
sion, the offline computation for queries with more than one
tag, i. e., /tag/t1 ... tn is not possible. Thus, we simply
merge the rankings for the tags t1, . . . , tn using the function

Figure 12 A screenshot of the top twenty related users and tags for the tag
folksonomy sorted by FolkRank. The screenshot shows the sidebar of the
page http://www.bibsonomy.org/tag/folksonomy?order=folkrank on June
8th, 2009.

w[r](t1, . . . , tn) := ∑
n
i=1 w[r](ti) which sums the FolkRank weights

for resource r ∈ R – using the tags ti as preference – as defined
in Section 4.1.3.

5 Entering Content

Social resource sharing systems like BibSonomy allow users to
archive, organize, search and share resources with other users,
thereby enabling and exploiting collaborative interactions. Com-
pletely relying on user generated content, the process of enter-
ing data has to be kept as simple as possible. Furthermore, the
user should be encouraged to annotate resources extensively.
Accordingly, a crucial aspect is how to minimize the users’
participation effort while maximizing the qualitity of the re-
sulting metadata.

BibSonomy incorporates techniques for automatically ex-
tracting information from web pages, thus allowing the user
to import resource metadata from the World Wide Web by a
simple mouse click – without the need for tedious manual typ-
ing. These so-called scraping techniques are described in Sec-
tion 5.2.2.

Beside providing a resource’s meta information, the user
has to annotate the resource with a set of meaningful words,
so-called tags, describing the resource (from the user’s point of
view). Allowing the user to freely choose arbitrary words was
a key to the success of these sharing systems, but also led to
heterogeneous vocabulary among different users. For increas-
ing tag homogeneity and simultaneously lowering the effort
needed for annotating a resource in BibSonomy, a list of tag
suggestions where a tag can be chosen from by a simple mouse
click is presented while posting a resource. In Section 5.2.1. we
evaluate different methods for tag recommendations in collab-
orative tagging systems.

Probably the easiest way for a user to generate metadata
is to copy an existing post from another user in the system
– this also happens extensively in BibSonomy. The resulting
copy network exhibits an interesting structure, where possible
communities of interest become visible. We present a first anal-
ysis of this network in Section 5.1.2.

5.1 Research Questions

5.1.1 Tag Recommendations

To support users in the tagging process and to expose different
facets of a resource, most collaborative tagging systems offer
some kind of tag recommendations. Recommending tags can
serve various purposes, such as: increasing the chances of get-
ting a resource annotated, reminding a user what a resource is
about and consolidating the vocabulary across the users. Rec-
ommender systems can use the content of resources, the con-
text of the user, or other sources of data as basis for their rec-
ommendation. We here focus on tag recommendation methods
that require only the folksonomy data of collaborative tagging

12

systems. This section is based on work published in [28] and
[29].

Problem Definition The task of a tag recommender system is
to recommend, for a given user u ∈ U and a given resource
r ∈ R with T (u,r) = /0, a set T̃ (u,r) ⊆ T of tags.16 In many
cases, T̃ (u,r) is computed by first generating a ranking on the
set of tags according to some quality or relevance criterion,
from which then the top n elements are selected.

Notice that the notion of tag relevance in social bookmark-
ing systems can assume different perspectives, i. e., a tag can
be judged relevant to a given resource according to the society
point of view, through the opinion of experts in the domain or
based on the personal profile of an individual user. For all the
evaluated algorithms, we focus here on measuring the individ-
ual notion of tag relevance, i. e., the degree of likeliness of a
user for a certain set of tags, given a new or untagged resource.

Collaborative Filtering Due to its simplicity and promising re-
sults, Collaborative Filtering (CF) has been one of the most
dominant methods used in recommender systems. The main
idea of Collaborative Filtering is to predict the utility of a cer-
tain tag based on the opinion of like-minded users [45, 5, 43].
Therefore, one represents each user as a vector and computes
the k-nearest neighbors of a user using a vector similarity mea-
sure (e. g., cosine measure). Then, for a given resource, the tags
are ranked by decreasing frequency of occurrence in the ratings
of the neighbors, weighted by the similarity of each user.

Because of the ternary relational nature of folksonomies,
traditional CF cannot be applied directly, unless we reduce
the ternary relation Y to a lower dimensional space [36]. To
this end we consider as user-similarity matrix X alternatively
the two 2-dimensional projections πURY ∈ {0,1}|U |×|R| with
(πURY)u,r := 1 if there exists t ∈ T s. t. (u, t,r) ∈ Y and 0 else,
and πUTY ∈ {0,1}|U |×|T | with (πUTY)u,t := 1 if there exists
r ∈ R s. t. (u, t,r) ∈ Y and 0 else.

Having defined matrix X, and having decided whether to
use πURY (CF-UR) or πUTY (CF-UT) for computing user neigh-
borhoods, we have the required setup to apply Collaborative
Filtering. For determining, for a given user u, a given resource
r, and some n ∈ N, the set T̃ (u,r) of n recommended tags, we
compute first Nk

u as described above, followed by:

T̃ (u,r) :=
n

argmax
t∈T

∑
v∈Nk

u

sim(xu,xv)δ (v, t,r) (2)

where δ (v, t,r) := 1 if (v, t,r) ∈ Y and 0 else. For our setting
we found the best value for k to be 20 for the UT variant and
30 for the UR variant.

FolkRank For generating a tag recommendation for a given
user/resource pair (u,r), we compute the ranking as described
in Section 4.1.3 and then restrict the result set T̃ (u,r) to the top
n tag nodes. For both the adapted PageRank and FolkRank we

16 We are using the notation introduced in Section 1.

Table 6 Characteristics of the datasets.

dataset |U | |T | |R| |Y | |P|
raw dump 1,037 28,648 86,563 341,183 96,972
p-core at level 5 116 412 361 10,148 2,522

set d = 0.7 and stopped computation after 10 iterations. In p,
we gave higher weights to the user u and the resource r at hand:
While each user, tag and resource got a preference weight of
1, u and r got a preference weight of 1+ |U | and 1+ |R|, resp.
We then normalized p by division by |T |+2|U |+2|R|.

Most Popular Tags Here we introduce methods based on tag
counts which are particulary cheap to compute and therefore
are good candidates for online computation of recommenda-
tions. (1) Recommending the most popular tags of the folk-
sonomy is the most simplistic approach. It recommends, for
any user and any resource the same set of tags. (2) Tags that
globally are most specific to the resource will be recommended
when using the most popular tags by resource. (3) Since users
might have specific interests for which they already tagged sev-
eral resources, using the most popular tags by user is another
option. (4) We can also mix the two former recommendations
which results in the most popular tags mix 1:1. Therefore, we
add the counts for each tag and then sort the tags by their count.
(5) Another mix variant is the most popular tags ρ–mix, where
the tag counts of the two participating sets are normalized and
weighted with a factor ρ before they are added. For the evalu-
ation we set ρ = 0.6.

Evaluation We created a complete snapshot of all users, re-
sources (both publication references and bookmarks) and tags
publicly available at April 30, 2007, 23:59:59 CEST. From the
snapshot we excluded the posts from the DBLP computer sci-
ence bibliography17 since they are automatically inserted and
all owned by one user and all tagged with the same tag (dblp).
Therefore they do not provide meaningful information for the
analysis. We disregarded if the tags had lower or upper case,
since this is the behaviour when querying for posts tagged with
a certain tag. Many recommendation algorithms suffer from
sparse data and will thus produce bad recommendations on the
‘long tail’ of items which were used by only few users. We
follow the conventional approach and restrict the evaluation to
the ‘dense’ part of the folksonomy. To this end, we adapt the
notion of a p-core [1] to tri-partite hypergraphs. The p-core of
level k is a subset of the folksonomy with the property, that
each user, tag and resource has/occurs in at least k posts. We
chose k = 5 for our dataset. Table 6 shows the resulting sizes
of the folksonomy.

To evaluate the recommenders we used a variant of the
leave-one-out hold-out estimation [18] which we call Leave-
PostOut. In all datasets, we picked randomly, for each user
u, one resource ru, which he had posted before. The task of
the recommenders was then to predict the tags the user as-
signed to ru, based on the folksonomy (U,T,R,Y ′) with Y ′ :=

17 http://www.informatik.uni-trier.de/∼ley/db/

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

FolkRank
adapted PageRank

Collaborative Filtering UT
Collaborative Filtering UR

most popular tags
most popular tags by resource

most popular tags by user
most popular tags 0.6-mix

Figure 13 Recall and Precision for BibSonomy p-core at level 5.

Y \ ({u}×T (u,ru)×{ru}). As performance measures we used
precision and recall which are standard in such scenarios [18].
We averaged precision and recall over all users:

recall =
1
|U | ∑

u∈U

|T (u,ru)∩ T̃ (u,ru)|
|T (u,ru)|

(3)

precision =
1
|U | ∑

u∈U

|T (u,ru)∩ T̃ (u,ru)|
|T̃ (u,ru)|

(4)

This process was repeated ten times, each time with another
resource per user.

Results In Figure 13 we see the results of the evaluation in
a precision-recall plot. A datapoint on a curve stands for the
number of tags recommended (starting with the highest ranked
tag on the left of the curve and ending with ten tags on the
right). The results have a rather large standard deviation, as can
be seen by the error bars. This is due to the fact that every run
is averaged over 116 users only and thus the performance of
the ten runs differs. FolkRank provides on average best preci-
sion and recall, followed by the most popular tags 0.6–mix rec-
ommender. Both Collaborative Filtering algorithms and most
popular tags by resource show similar results for higher num-
bers of tags.

Conclusion The presented results show that the graph-based
approach of FolkRank is able to provide tag recommendations
which are significantly better than those of approaches based
on tag counts and even better than those of state-of-the-art rec-
ommender systems like Collaborative Filtering. The tradeoff
is, though, that computation of FolkRank recommendations is
cost-intensive so that one might prefer less expensive methods
to recommend tags in a social bookmarking system. The most
popular tags ρ–mix approach has proven to be considered as a
solution for this problem. It provides results which can almost
reach the grade of FolkRank but which are extremely cheap
to generate. Especially the possibility to use index structures
(which databases of social bookmarking services typically pro-
vide anyway) makes this approach a good choice for online
recommendations.

Figure 14 Users can copy posts by clicking on the ‘copy’ link or on the
star next to the title.

5.1.2 Analysis of the ‘copy’ Network

Perhaps the most simple way to store a post in BibSonomy is
by copying it from another user. This is possible by just click-
ing on the ‘copy’ link or on the ‘star’ next to each post (see
Figure 14). One then only has to add some tags to the post and
then can store it.

Besides the practical act of storing a post, copying a post
from another user expresses to a certain extent interest in his
posts and thus in the topics the user is interested in. Hence,
analysing the copying behaviour might reveal connections be-
tween users which are the result of common interests. By look-
ing at groups of users which are connected by the posts they
have copied from each other, one could thus find communi-
ties of users with common interests. To further investigate this
theory, we take a look at the copy network inside BibSonomy.
There, a user a is connected to another user b, if a copied a
post from b.

We extracted from BibSonomy’s access log the requests
which originated from copying a publication post for the pe-
riod from October 13th, 2007 to July 27th, 2009. We disre-
garded copy requests from posts of the user ‘dblp’ and from
spammers. The resulting 9,255 requests form a graph with 1,553
users as nodes, connected by 3,779 (directed) edges. We weighted
the edges by the number of resources the user copied from the
other user. To visualize this network, we removed edges with
weight less than three. The largest component of the resulting
graph is shown in Figure 15. It consists of 244 users, connected
by 411 edges.

Probably the most noticeable active ‘consumers’, i. e., users
which copy other users posts, are the users ‘dnoack’ and ‘rin-
negatomai’ which both have connections to more than 35 other
users. While ‘rinnegatomai’ copied more than three posts from
45 other users which are distributed all over the graph, ‘dnoack’
mostly copied posts from unconnected users. Furthermore, the
strongly connected users in the top right also copied posts from
‘dnoack’. Thus, this user is a kind of ‘hub’. There are also users
whose posts have been copied by many other users. Besides
the users in the strongly connected component in the top right,
these are the users ‘hotho’, ‘stumme’, and ‘kochm’ which all
have more than ten incoming connections. Thus, they are rather
central and seem to posess interesting posts.

Finally, one is also able to identify various links between
the users of our research group (‘beate’, ‘dbenz’, ‘folke’, ‘hotho’,
‘jaeschke’, ‘schmitz’, ‘stumme’). This correctly suggests that

14

hansgeorgbecker

msn

cabird
andreab

paregorios

avs

benediktroth

roos

servusuk

deynard

bsmyth

smartens

rim

trude

enterldestodes
mgrani

teresina

diana

adkos

ontoman

pp

gwpl

bertolt

lillejul

daks

ludaesch

dlee21

subjectivity

simonhinz

sschenk

smazanek

milina

kaischibruhn

diam_eter

kirylenka

rokummer

achorley

seb

sascha

maroco

juver

mginf

pkramer

faba

powidl

bane

boehr

kasimiro

dret

nf

neilernst

vzach

stumme

closingtheloop

pitman

goalscoringsuperstarhero

p.maghferat

acbullinger

hotho

else_project

flˆ¶ckchen

harveymellar
flashback333

akg-erlangen

wdees

beefer

fil

akpe

tobidiplom

ht09

rwoz

siso

griesbau

dbenz

burkestar

gron

zeno

iswc2007

mchaves

kregulski

jabreftest

brian.mingus

wnpxrz

aschmidt

michi

robo

dnoack

huiyangsfsu

c.hermann

mschuber

denisegst

liors

suny

michael.krengel

anaappel

pprett

berrueta

hainst

arsenij

e.senol

jonas

kleinerkeks
ankel

kochm

valhe

pdeleenh

rinnegatomai

folke

philipp.fischer

nschlitt

sandra_pyka

haschek

siggi

davidlan

soeren

derkleinedude

gromgull

chirayukong

attilaszallas

krass

allansly

mcdiaz

domenico79

jaeschke

mobileinteractionpublicspaces

cschenk

baste101

tmalsburg

kweller

spiegi

diego_ma

jsicot

cdifsinarbonne

georgemacgregor

maanand

iccs

hjansen

rogargon

sugarhill

dawinci

skasey

pac

aliceholka

sschaefers

stefano

wt_08

peter.ralph

awm08intentional

tobold

manish

nearchos

ramaz

m_faber

danielt

refikk

dofis

aho

nesty.nov

igrat

chwie

bluedolphin

markvanheeswijk

mmcgloho

ixam1@gmx.de

paul

niebuhr

elcario

steppken

chriskoerner

antares

zoka

guruignazio
utrust_user

jorgecardoso

beate

gruntzc

tkirsten

eswc2008

imann

tmcphillips

schaal

minguez

stevenw
cameron

piwi

steff83

kde

ana

acka47

tfalk

claudia.wagner

ghosamivittorio.loreto

marciomr

brusilovsky

ordinaryamsel

sosbuch

yish

bronmymind

mature

sb3000

terraces

rossyer

emanuel

imtm

idsia

cherzog

seandalai

cwillems

olhah

thau

ewomant

ans

otfloria

leobard

kiwi

benedikt.linse

lukasz

dbenz_test

lysander07

aljsanchez

schmitz

nina88

seebi

semsearch08

stiefen

tberg

ist_spl

au7334

ivan_herman

q

sutefuwr

mkroell

smicha

p_ansell

mwagner

unhammer

brefeld

korth ctprojekt

sercarfe

mstrohm

torstenjacob

a.richter

Pajek

Figure 15 The copy network of BibSonomy publications. An arrow from user a to b indicates that a has copied at least three publications from b.

we are interested in similar topics and supports the idea that
the copy network could be a good starting point to detect com-
munities of interest in folksonomies.

5.2 Implementation Issues

5.2.1 Tag Recommendation Framework

The topic of tag recommendations in social bookmarking sys-
tems has attracted quite a lot of attention in the last years and,
accordingly, different approaches for computing tag sugges-
tions emerged. These algorithms are typically evaluated by com-
puting some performance measure (e. g., precision and recall)
in an ‘off-line’ setting, that is, by iterating over posts in a dataset,
which was derived from a social bookmarking system, pre-
senting only a user and a resource to the recommender sys-
tem (splitting the data set for training and testing if necessary).
Thus, for each post, the set of suggested tags can be compared
with those the user had assigned.

These evaluation scenarios not only ignore some constraints
of real live applications (e. g., response time, CPU usage and
memory consumption), they also can’t take into account the

effect of presenting a set of recommended tags to the user. For
evaluating these effects, a recommender system must be inte-
grated into a real live application.

To facilitate such evaluations, we implemented a frame-
work, designed for integration of arbitrary recommender sys-
tems and thus providing researchers a testbed to test and evalu-
ate their methods in a live system. The framework was also the
cornerstone of the 2009 ECML PKDD Discovery Challenge,18

where one task required the participants to deliver live rec-
ommendations for BibSonomy. 15 recommenders, distributed
over six countries (Canada, Greece, Spain, South-Korea, United
Kingdom, and Germany) took part in the competition. This
was a larger stress test for external recommenders and the frame-
work itself – which it passed bravely.

Recommender Interface One central element of the framework
is the recommender interface. It specifies which data is passed
from a recommendation request to one of the implemented rec-
ommenders and how they shall return their result. Figure 16
shows the UML class diagram of the TagRecommender inter-
face one must implement to deliver recommendations to Bib-

18 http://www.kde.cs.uni-kassel.de/ws/dc09

15

Sonomy. We decided to keep the interface as simple as possible
by requiring only three methods, building on BibSonomy’s ex-
isting data model (see Section 3.1) and adding as few classes as
possible (RecommendedTag, RecommendedTagComparator).

The getRecommendedTags method returns – given a post
– a sorted set of tags; addRecommendedTags adds to a given
(not necessarily empty) collection of tags further tags. Since –
given a post and an empty collection – addRecommendedTags
should return the same result as getRecommendedTags, the lat-
ter can be implemented by delegation to the former. Nonethe-
less, we decided to require both methods to cover the sim-
ple “give me some tags” case as well as more sophisticated
usage scenarios (think of ‘intelligent’ collection implementa-
tions, or a recommender which improves given recommenda-
tions). The post given to both methods contains data like URL,
title, description, date, user name, etc. that will later be stored
in the database and that the recommender can use to produce
good recommendations. It might also contain tags, i. e., when
the user edits an existing post or when he has already entered
some tags and requests new recommendations. Implementa-
tions could use those tags to suggest different tags or to im-
prove their recommendation. With the setFeedback method the
final post as it is stored in the database is given to the recom-
mender such that it can measure and potentially improve its
performance. Finally, the getInfo method allows the program-
mer to provide some information describing the recommender.
This can be used to better identify recommenders or be shown
to the user.

Two further classes augment the interface: Recommended-
Tag basically extends the data model’s Tag class by adding
floating point score and confidence attributes. A corresponding
RecommendedTagComparator can be used to compare tags,
e. g., for sorted sets. It first checks textual equality of tags (ig-
noring case) and then sorts them by score and confidence. Con-
sequently, tags with equal names are regarded as equal.

Implementations are not restricted to Java: Using a remote
recommender one can implement a recommender in any lan-
guage that is then integrated using XML over HTTP requests.

Multiplexing Tag Recommender Our framework’s technical core
component is the so called multiplexing tag recommender Im-
plementing BibSonomy’s tag recommender interface, it pro-
vides the web application with tag recommendations, using
one of the recommenders available. All recommendation re-
quests and each recommender’s corresponding result are logged
in a database. For this purpose, every tag recommender is reg-
istered during startup and assigned to a unique identifier. For
technical reasons, we differentiate between locally installed
and remote recommenders. Whenever the getRecommended-
Tags method is invoked, the corresponding recommendation
request is delegated to each recommender, spawning separate
threads for each recommender. After a given timeout period
(e. g., 1000 ms), one of the collected recommendations is se-
lected. The evaluation of the algorithms submitted to the ECML
PKDD Discovery Challenge 2009 showed that the timeout was

indeed a hard requirement for some of the recommenders. The
selection was done following a preconfigured selection strat-
egy: In our current setting we implemented a “sampling with-
out replacement” strategy, choosing exactly one recommender
i and all of its recommended tags Ti(u,r) When each recom-
mender was chosen exactly once, this process restarts.

5.2.2 Importing Publication References from Digital Libraries

BibSonomy contains more than 60 so called “scrapers” which
automatically extract publication metadata from digital libraries
like SpringerLink19 or IEEE Xplore.20 The scrapers are an
important part of BibSonomy because most publications (and
their metadata) can nowadays be found online in digital li-
braries. When visiting such a site, users can post the publi-
cation metadata to BibSonomy with a one-button click in their
web browser.21 The scrapers extract all available information
and transform it into BIBTEX format (if necessary). The com-
plete list of supported digital libraries can be found at http:
//www.bibsonomy.org/scraperinfo; we also provide a web ser-
vice22 which only extracts the metadata from a given URL and
returns it in BIBTEX or RDF format. Finally, the source code of
all scrapers is available online in a Maven repository.23

Typically, literature references can be imported only from
services known by BibSonomy (i. e., supported by a scraper)
or in well-defined formats like BIBTEX. This is a strong restric-
tion, since many literature references in the web are neither
available in BIBTEX format nor does BibSonomy offer an ap-
propriate scraper. Those references rather appear in the form
of human readable publication lists as shown in Figure 17.
Hence, our efforts to enhance import focused on techniques
to allow for the import of such resources. We integrated the
MALLET [38] system in BibSonomy which uses information
extraction techniques [40] to fill BIBTEX fields like title, au-
thor, or year from such references. Of course, this machine
learning approach does not work perfect, but in most cases
it eases the transfer of the information from such proprietary
lists into the BibSonomy post form. We also ensured to save
the original text besides the user corrected metadata in the
database to use it for training the algorithm.

6 Accessing the Content

In the last sections, we mainly focused on how users interact
with BibSonomy when browsing, searching or entering content
into the system. We now shift perspective to the content itself.
The first important aspect hereby is the design of the database
back-end to store the large amounts of data while keeping re-
sponse time to queries low. Then, we detail on the different

19 http://www.springerlink.de/
20 http://ieeexplore.ieee.org/
21 The corresponding buttons are available at http://www.bibsonomy.

org/buttons and can easily be added to the browser’s toolbar.
22 http://scraper.bibsonomy.org/
23 http://dev.bibsonomy.org/

16

<<interface>>
TagRecommender

+ getRecommendedTags(post : Post<? extends Resource>) : SortedSet<RecommendedTag>
+ addRecommendedTags(recommendedTags : Collection<RecommendedTag>, post : Post<? extends Resource>)
+ setFeedback(post : Post<? extends Resource>)
+ getInfo() : String

Figure 16 The UML class diagram of the tag recommender interface.

Figure 17 A typical literature reference as it can often be found on
personal homepages of researchers. Using information extraction, the
BIBTEX fields title (“ELKI: A Software System for Evaluation of Sub-
space Clustering Algorithms”), author (“Achtert E., Kriegel H.-P., Zimek
A.”), booktitle (“Proc. 20th Int. Conf. on Scientific and Statistical
Database Management (SSDBM ’ 08)”, and year (“2008”) can be filled
automatically.

facilities of BibSonomy to access the data, namely our web
front-end with various export formats and the REST API.

6.1 Database Back-End

The core of each collaborative tagging system is a database
which stores the folksonomy, answers queries to browse and
search it, and allows the user to enter new or update existing
data. In this section we look at the requirements on a database
for this specific scenario, give an overview of our implementa-
tion, and perform an exemplary performance test of our solu-
tion.

6.1.1 Objectives and Requirements

The folksonomy use-case is a typical “few updates, many se-
lects” setting where many users often issue select queries against
the database and only few users issue insert, update, or delete
queries. Thus, we want to optimize the majority case and get
fast answers for typical folksonomy queries like “get all book-
marks of user ‘nepomuk’ with the tags ‘fca’ and ‘folkson-
omy”’, while sub-optimal insert statements are not an issue.

Another requirement is scalability, meaning an increase in
available resources is accompanied with a comparable increase
in performance. Practically, we need a system which is exten-
sible and thereby benefiting from better or more hardware to
cope with an increased number of requests in the future.

Furthermore, the database implementation should not be
limited to handling of folksonomy data but rather be a standard
solution with good support, extensibility and the option to ex-
change it by another, similar product. This also requires us to
keep the number of dependencies to a specific implementation
low.

res_ctr

 res_id

 ctr

posts

 user

 group

 date

 post_id

 res_id

 title

 ...

relations

 user

 subtag

 supertag

users

 user

 email

 password

 realname

 homepage

groups

 group

 user

user

tas

 tag

 user

 group

 date

 post_id

posts

 user

 group

 date

 post_id

 res_id

 title

 ...

 groupuser

post_id

res_ctr

 res_id

 ctr

tag_ctr

 tag

 ctr

tagtag_ctr

 tag1

 tag2

 ctr

user

 user

group

 res_id tag

Figure 18 Relational schema of the most important tables.

6.1.2 Implementation

We decided to use a relational database management system
(RDBMS) in favour of other approaches like object-relational
mapping or RDF stores because of the greater adjustability.
Using an RDBMS one has to a certain extent control on how
the data is stored and how it is retrieved. In particular, we can
optimize the schema and the queries. Furthermore, there are
several standard solutions available.

Relational Schema BibSonomy’s database schema is centered
around four tables: one for bookmark posts, one for publication
posts, one for tag assignments (tas) and one for relations. Two
further tables store informations regarding users and groups. In
Figure 18, the two posts tables (bookmark posts and publica-
tion posts) are shown as one, and it is only hinted that these are
really two tables. The reason to show them as one table posts
is that they’re very similar – the publication post table has just
some additional columns to hold all the BIBTEX fields. They
are separated in the database for efficiency reasons, since these
extra columns just need to be stored for publications.

The posts table is connected with the tas table by the key
post id. The scheme is not normalized – on the contrary we
have added a high amount of redundancy to speed up queries.
For example, besides storing group, user name and date in the
posts table, we also store this information in the tas table to
minimize the rows touched when selecting rows for the vari-
ous views. A comparison of this schema against a normalized
version is shown in Section 6.1.3. Several other tables hold
counters (i. e., how many people share one resource, how of-
ten a tag is used, . . .) and a lot of indexes (12 in the tas table
alone) build the basis for fast answering of queries.

17

Table 7 Statistics on the number of rows in the BibSonomy database on
August 12th, 2009. The ‘public’ column shows the counts disregarding
spammers and non-public posts; the publication posts table also contains
1,220,775 posts from DBLP.

rows in table all public
tas (= |Y |) 41,108,680 3,244,245
bookmark posts 5,118,340 331,414
publication posts 1,792,887 1,584,997
users (= |U |) 242,704 85,018
groups 155 155
relations 12,330 9,893

Setup As RDBMS we use MySQL24 with the iBATIS25 data
mapper framework as an intermediate layer between our Database-
Logic component and MySQL. IBatis couples SQL statements
(described in XML) with the objects of the model and thereby
separates the Java code from the SQL code.

Overall, we spent a lot of time investigating and optimizing
SQL queries and the table schema and tested both with folk-
sonomy data of up to 8,000,000 posts. At the moment, Bib-
Sonomy has almost reached this size (see Table 7) and still
delivers reasonable response times – as we will see in the next
section. The system is scalable, since distribution of queries
over synchronised databases is possible with MySQL. Conse-
quently, to reduce the load on the main system, we are already
running the database in a master/slave setting. The master han-
dles all write access (and replicates it to the slave), as well as
all non-search engine read access. The slave handles a part of
the search engine read access as well as all reads necessary
for offline computations. The computations are necessary to
create tag counts, spam predictions, FolkRank rankings, or the
fulltext search indexes.

6.1.3 Performance Analysis

As described in the previous section, for performance reasons
the database scheme of BibSonomy is not normalized. Here
we want to confirm this decision by comparing the query time
of queries using a normalized schema against queries using the
redundancy we introduced.

One of the most common queries in social bookmarking
systems delivers all posts of a user which have one or more
given tags attached. An example of such a query is the page
http://www.bibsonomy.org/user/nepomuk/fca+folksonomy which
requests all public posts of the user ‘nepomuk’ with the tags
‘fca’ and ‘folksonomy’ sorted by date in descending order.

In a normalized scheme, the user, group, and date informa-
tion is stored in the bookmark posts table only, since it is the
same for each tag assignment. Thus, the corresponding query
in Listing 1, which extracts the bookmarks for the exemplary
request, can restrict the rows in the tas table only by the ‘tag’
column. The query contains a self-join on the tas table to select
only those posts which have both of the tags ‘fca’ and ‘folkson-
omy’.

24 http://www.mysql.com/
25 http://ibatis.apache.org/

Listing 1 The query using the normalized schema.

1 SELECT a.url, a.title, a.date, a.ctr, t.tag
2 FROM (
3 SELECT u.url, b.title, b.date, u.ctr
4 FROM bookmark_posts b
5 JOIN urls u USING (res_id)
6 JOIN tas t1 USING (post_id)
7 JOIN tas t2 USING (post_id)
8 WHERE b.group = "public"
9 AND b.user = "nepomuk"

10 AND t1.tag = "fca"
11 AND t2.tag = "folksonomy"
12 ORDER BY b.date DESC LIMIT 10
13) AS a
14 LEFT OUTER JOIN tas AS t USING (post_id)
15 ORDER BY a.date DESC, a.post_id DESC

Listing 2 The query using the redundant schema.

1 SELECT a.url, a.title, a.date, a.ctr, t.tag
2 FROM (
3 SELECT u.url, b.title, b.date, u.ctr
4 FROM bookmark_posts b
5 JOIN urls u USING (res_id)
6 JOIN tas t1 USING (post_id)
7 JOIN tas t2 USING (post_id)
8 WHERE t1.content_type = 1
9 AND t1.group = "public"

10 AND t1.user = "nepomuk"
11 AND t1.tag = "fca"
12 AND t2.tag = "folksonomy"
13 ORDER BY t1.date DESC LIMIT 10
14) AS a
15 LEFT OUTER JOIN tas AS t USING (post_id)
16 ORDER BY a.date DESC, a.post_id DESC

In our scheme with high redundancy, the analogous query
shown in Listing 2 is able to restrict the rows in the tas table
by using the redundant columns ‘group’ and ‘user’ (lines 9 and
10). The ‘content type’ column allows to distinguish between
joins with the bookmark posts or the publication posts table
(line 8) and thus further narrows down the result space. Finally,
the sorting by date and subsequent limiting of the result set can
be accomplished by using the ‘date’ column of the tas table.

To assess the performance of these two exemplary queries,
we have performed tests on the live system of BibSonomy us-
ing the master database. Therefore, we measured the time it
took to execute a query and retrieve all of its result rows. The
setup is as follows:

1. We randomly choose a number k of tags with 1≤ k ≤ 5.
2. We randomly choose a user u who has at least one public

post and at least k tags.
3. We randomly choose k tags t1, . . . , tk from that user.
4. We query the database for all public bookmark posts of

user u which have all of the tags t1, . . . , tk attached with
both query types (i. e., using the normalized and the redun-
dant scheme). The order in which we dispose the queries
is randomly chosen.

18

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5

av
er

ag
e

qu
er

y
tim

e
[m

s]

number of tags

normalized scheme
redundant scheme

Figure 19 Comparison of the queries for bookmarks of a user – given
some tags – using a normalized and a redundant scheme. The bars above
and below each data point depict the standard deviation over 100 runs of
step 5.

5. We measure the time it takes to execute step 4 and repeat
steps 1 to 4 5,000 times. Thus, each number of tags (on
average) is requested 1,000 times. Then, we compute the
average query time for k tags tk.

6. We repeat step 5 100 times and compute the average and
standard deviation of tk for each k over those 100 runs.

The machine hosting the databse has two 2GHz quad-core AMD
Opteron processors. There, MySQL 5.0.67 was running with
22GB main memory and RAID-5 disks using the InnoDB stor-
age engine.

The maximum query time was 6400 ms for the normalized
and 446 ms for the redundant scheme queries. In general, the
average query time is rather low with less than 3 ms for all
numbers of tags (cf. Figure 19). With an increasing number of
tags the growing number of self joins on the tas table causes
increasing average query times. However, the average query
time for one, two, and three tags for the normalized scheme
does not follow this behaviour – we can’t explain that, yet. As
expected, the redundant scheme performs better – with both
lower average query time and smaller standard deviation.

6.2 Web Front-End

The HTML-based web application is the most common way to
interact with BibSonomy. It shows bookmark and publication
lists together with navigational elements (see Figure 2). As de-
scribed in Section 4, users can browse and search BibSonomy’s
underlying folksonomy by following links in the web inter-
face that point to different pages or by entering search terms
into input fields. Section 6.2.1 details on the semantics of the
different pages accessible in the web application. BibSonomy
also offers export facilities to a variety of formats like BIBTEX
or RIS, suitable for integration into different text processing
systems for automatic generation of bibliographies which are
described in Section 6.2.2. Finally, the Application Program-

ming Interface (API) which allows for easy interaction of Bib-
Sonomy with other systems is described in Section 6.2.3.

6.2.1 URL Scheme of the Web Application

Each of the pages accessible through the web application shows
posts with certain properties, e. g., the /tag/t page shows all
posts which contain the tag t. Here, we describe the seman-
tic of all pages showing (bookmark and/or publication) posts
but omit system pages which are necessary for the usage of
BibSonomy like /help, /settings or /postBookmark,
since their semantic is straightforward. All URLs are relative
to http://www.bibsonomy.org/, i. e., only the path part is given.
The following list describes the contents C of all pages which
show posts in BibSonomy:

/tag/t1 ... tn Every post which has all the tags t1, . . . , tn
attached: Ct1,...,tn := {(u,S,r) ∈ P | {t1, . . . , tn} ⊆ S}

/user/u All posts of user u: Cu := {(û,S,r) ∈ P | û = u}
/user/u/t1 ... tn Every post of user u with all the tags

t1, . . . , tn: Cu,t1,...,tn := {(û,S,r)∈ P | û = u,{t1, . . . , tn} ⊆ S}
/concept/t1 ... tn Every post (u,S,r)∈ P which has for

every tag t ∈ {t1, . . . , tn} at least one of its subtags in ≺
∩ ({u}×T ×T) or t itself attached: Ct1,...,tn := {(u,S,r) ∈
P | ∀ti(i = 1, . . . ,n)∃t ∈ S : (u, t, ti) ∈ ≺ ∨ t = ti}

/concept/user/u/t1 ... tn Every post of user u which
has for every tag t ∈ {t1, . . . , tn} at least one of its subtags
or t itself attached: Cu,t1,...,tn := {(û,S,r)∈ P | û = u,∀ti(i =
1, . . . ,n)∃t ∈ S : (û, t, ti) ∈ ≺ ∨ t = ti}

/concept/group/g/t1 ... tn Every post which has for
every tag t ∈ {t1, . . . , tn} at least one of its subtags in ≺
∩ ({g}×T ×T) or t itself attached and where the user be-
longs to group g:26 Cg,t1,...,tn := {(u,S,r)∈ P | u∈ g,∀ti(i =
1, . . . ,n)∃t ∈ S : (g, t, ti) ∈ ≺ ∨ t = ti}

/url/r If r is a bookmark: All posts of the resource r: Cr :=
{(u,S, r̂) ∈ P | r̂ = r}

/url/r/u If r is a bookmark: The post of user u of the re-
source r: Cr,u := {(û,S, r̂) ∈ P | r̂ = r, û = u}

/bibtex/r If r is a literature reference: All posts of the re-
source r: Cr := {(u,S, r̂) ∈ P | r̂ = r}

/bibtex/r/u If r is a literature reference: The post of user
u of the resource r: Cr,u := {(û,S, r̂) ∈ P | r̂ = r, û = u}

/group/g All posts of all users belonging to the group g:
Cg := {(u,S,r) ∈ P | u ∈ g}

/group/g/t1 ... tn Every post which has all of the tags
t1, . . . , tn attached and where the user belongs to group g:
Cg,t1,...,tn := {(u,S,r) ∈ P | u ∈ g,{t1, . . . , tn} ⊆ S}

/viewable/g All posts which are set viewable for mem-
bers of the group g.

/viewable/g/t1 ... tn All posts which are set viewable
for members of the group g and which have all of the tags
t1, . . . , tn attached.

26 Each group in BibSonomy is represented as a user and thus can par-
ticipate in the ≺ relation.

19

/search/s All resources, whose full text matches the search
expression s.

/basket All publication posts which the user has picked in
his basket.

/popular The three most often posted resources of the last
7, 30, and 120 days.

/ This is the home page of BibSonomy, it shows the entries
posted most recently.

/author/a1 ... an All publication posts which contain
all of the names a1, . . . ,an in the author or editor field.

/bibtexkey/k Publication posts with the BIBTEX key k.

An interesting feature, described in the following section,
is the option to prepend all paths of URLs described above, by
a string which changes the output format. In general, posts are
shown as HTML lists surrounded by navigation elements and a
tag cloud (as seen in Figure 2), but this feature allows the user
to get her output in formats like BIBTEX or as an RSS feed.

6.2.2 Exporting Bookmarks and Publication References

Exporting publication references in BIBTEX format is accom-
plished by preceding the path of a URL showing publication
posts with the string /bib – this returns all publications shown
on the respective page in BIBTEX format. For example, the
page http://www.bibsonomy.org/bib/search/text+clustering re-
turns a BIBTEX file containing all literature references which
contain the words ‘text’ and ‘clustering’ in their fulltext.

More general, every page which shows posts can be repre-
sented in several different ways by preceding the path part of
the URL with one of the strings described here:

/ the typical HTML view with navigation elements
/csv bookmarks and publications in CSV27 format
/xml bookmarks in XML format
/rss bookmarks as RSS feed
/bib publications in BIBTEX format
/endnote publications in EndNote format
/publ publications in a simple HTML format suited for in-

tegration into a web page (for an integration example see
http://www.kde.cs.uni-kassel.de/pub)

/publrss publications as RSS feed
/swrc publications in RDF format according to the SWRC

ontology28

/burst publications as RSS feed containing the complete
metadata according to the SWRC ontology, embedded ac-
cording to the BuRST29

/json bookmarks and publications in JSON30 format (for
an integration example using Simile Exhibit31 see http://
www.kde.cs.uni-kassel.de/hotho/publication json.html)

27 Comma Separated Values
28 Semantic Web for Research Communities, see http://ontoware.org/

projects/swrc/
29 Bibliography Management using RSS Technology, see http://www.

cs.vu.nl/∼pmika/research/burst/BuRST.html
30 JavaScript Object Notation, see http://www.json.org/
31 http://code.google.com/p/simile-widgets/

/layout/l publications in one of the available JabRef32 lay-
outs. Valid values for l include harvard (RTF (Rich Text
Format); can be edited by Microsoft Word and OpenOf-
fice), html, simplehtml, tablerefs, tablerefs-
absbib, tablerefsabsbibsort (different HTML lay-
outs), or docbook (DocBook33 XML).

/layout/custom publications in the custom layout of the
user. Users can upload custom JabRef layouts34 using the
/settings page.

For an overview of the available export formats for pub-
lications, one can use the /export path extension which is
also linked on all web pages showing publication posts. As an
example, the URL http://www.bibsonomy.org/publrss/tag/fca
represents an RSS feed showing the most recent publications
tagged with the tag fca.

These export options simplify the interaction of BibSo-
nomy with other systems. RSS feeds allow easy integration of
resource lists into web sites or RSS aggregators, BIBTEX out-
put can be used to automatically generate bibliographies for
scientific publications (as done with this work), JSON eases
the handling of posts with JavaScript. In addition, further for-
mats are implemented easily by extending the URL scheme
and adding an appropriate JSP view which generates the out-
put, or by writing a new JabRef layout filter. Rendering of the
JabRef-based layouts is accomplished by the Layout compo-
nent.

6.2.3 The REST-based API

Right from the start of BibSonomy, users demanded to open
BibSonomy for programmatic access by providing an Applica-
tion Programming Interface (API) which allows for easy inter-
action of BibSonomy with other systems. Furthermore, experi-
ence has shown that an API is crucial for a system to gain suc-
cess. Consequently, we integrated a lightweight API [4] based
on the idea of REST (Representational State Transfer) [13]
which can be used and accessed also by not so experienced
programmers. Every registered user can access the API at the
URL http://www.bibsonomy.org/api/.

Adhering to the REST principle, the HTTP methods GET,
PUT, POST, and DELETE are used to perform correspond-
ing actions on BibSonomy’s data by applying them to certain
URLs. For example, a GET request to /api/tags returns
the list of all tags of the system; a POST request to /api/
users/u/posts creates a new post for user u. The API’s
input and output is XML data based on BibSonomy’s data
model which is serialized using the XML schema defined by
the Model component. For a detailed description of the avail-
able methods we refer to the online documentation available at
http://www.bibsonomy.org/help/doc/api.html.

32 http://jabref.sourceforge.net/
33 http://www.docbook.org/
34 http://jabref.sourceforge.net/help/CustomExports.php

20

There is already an abundant amount of applications using
the API, most of them are probably private developments of in-
dividuals and institutions using BibSonomy and thus unknown
to the public. Prominent exceptions are the spam framework of
BibSonomy (cf. Section 4.2.2), a plugin35 for the Java based
bibliographic reference manager JabRef,36 and an add-on for
the Firefox web browser.37 Another important example is the
Library of the University of Cologne, which has made various
efforts for close interaction of its catalogue38 with BibSonomy.

7 Related Work

The first social bookmarking system which gained wide pop-
ularity is Delicious. It has been founded in 2003 by Joshua
Schachter and is operated by Yahoo! Inc. since December 2005.
More than three million users39 have contributed bookmarks
to Delicious and thereby probably make it the largest human-
annotated collection of web links.

CiteULike40 is the largest collaborative tagging service for
bibliographic references. In contrast to BibSonomy, only ref-
erences imported from one of the supported digital libraries
appear on the central web pages. On the one hand, this discour-
ages spam posts, on the other hand, it restricts the freedom of
the users to share publication references not listed on the main
sites (e. g., books, technical reports, project works, etc.).

Another service which allows its users to share bibliographic
references is Connotea,41 operated by the Nature Publishing
Group. In its size, it is comparable to BibSonomy. Both ser-
vices started at the end of 2004.

In principle all these systems follow a similar usage pat-
tern. The services provide a bookmarklet for the browser to
make the posting of a new reference as easy as possible. As
mentioned, reference information is automatically imported from
a large fraction of publisher webpages and other digital li-
braries. Furthermore, every user has the freedom to organize
his own references, but he can use the shared information of
others to search and browse for new, potentially interesting
publications.

The Connotea system is written in Perl, uses a MySQL
database and is released as open source software. It provides an
API which offers the basic function of a bookmarking system.
The community has developed a remarkable list of tools.42

As far as we know, there is no special search function. An
item recommender which offers a list of similar items is in-
tegrated. Unfortunately, Connotea responds often very slowly

35 http://www.bibsonomy.org/help/doc/jabref-plugin/index.html
36 http://jabref.sourceforge.net/
37 missingreference
38 “Kölner Universitäts-Gesamtkatalog”, http://kug.ub.uni-koeln.de/
39 This is a well-founded estimate based on the authors’ regular crawl-

ing activity. On September 25th 2006, Joshua Schachter announced to
have reached the one million mark [46].

40 http://www.citeulike.com/
41 http://www.connotea.org/
42 http://www.connotea.org/wiki/ConnoteaTools

which seems to be a problem of the underlying database. The
FAQ states that it has some spam prevention, but no details
about the applied methods are mentioned.

In contrast to BibSonomy and Connotea, CiteUlike is a
closed source system and the information about the internal
structure is rare. CiteULike uses Lucene as search backend
(mentioned on the help pages) and PostgreSQL as a database
in combination with several scripting languages (cf. [16]). It
does not provide an API, but there is a community SVN for
import filters. Again, an item recommender is included.43 The
service recommends new references to the user based on its
currently stored references (cf. [3]). The system maintainers
have worked a lot on the interface in the past, and response
times of CiteUlike are always short. In a blog post44 it is men-
tioned that CiteUlike has only a small fraction of spam posts,
but the inspection of the released dataset shows a significant
amount of spam.

Another service similar to BibSonomy is LibraryThing.45

Its paradigm is more a copy of the user’s bookshelf than a
scientific library, and the system focuses on a more general
audience rather than on scientists. Further away in the appli-
cation landscape is the web browser plug-in Zotero, followed
by stand-alone reference managing systems like JabRef, Cite-
Smart, Citavi, EndNote, or Mendeley. BibSonomy is integrated
with the first three systems, while Mendeley goes the other way
around, and is complementing its desktop based tool with a
web sharing component.

Folksonomies and especially data mining on folksonomies
are a relatively young research area. Meanwhile, work for spe-
cific areas has shown up. To discuss the related work for all
methods mentioned in the previous sections is beyond the scope
of this article. More detailed surveys can be found in the cor-
responding papers [27, 21, 25, 10, 33, 23, 32, 29, 30].

To start with folksonomies and to learn more about their
strengths and weaknesses one may look into [16, 35, 37]. One
of the first works defining a model of semantic-social networks
for extracting lightweight ontologies from Delicious was [39].
Work on more specialized topics such as structure mining on
folksonomies – e. g., to visualize trends [12], analyze patterns
in users’ tagging behavior [47] and the semiotic dynamics of
the tagging vocabulary [8], or Halpin’s analysis of the dynam-
ics and semantics [15] – has been presented. Steels [48] con-
siders – looking from a pychological perspective – collabora-
tive tagging as distributed cognition. More practical questions,
e. g., if [20] and how [54] social bookmarking can improve
keyword based (web) search, have come up more recently.

43 http://blog.citeulike.org/?p=11
44 http://network.nature.com/people/mfenner/blog/2009/01/30/

interview-with-kevin-emamy
45 http://www.librarything.com/

21

8 Conclusion

Data Mining on folksonomies is a new research area having at-
tracted a lot of attention in the last years, as new types of data
with unknown and interesting properties appear. In this paper
we presented our own system, BibSonomy, for managing pub-
lications on a daily basis which is open for integration of new
data mining techniques and thus serves as a research environ-
ment. We presented new methods for analyzing the properties
of folksonomies, the application and adaptation of known data
mining approaches, and the usage of this data to extract se-
mantic information. We showed how these techniques were re-
alized and used in BibSonomy and which constraints of such a
real life application have to be considered thereby.

Recent research cooperations, as well as hosting of the 2009
ECML PKDD Discovery Challenge underpin the success of
this work. BibSonomy is under active development and still
evolving, so insights into new data mining methods and their
application are to be expected.

Acknowledgements Parts of this research were funded by the European
Union in the Tagora and Nepomuk projects, by the German Research
Foundation (DFG) in the projects “Info 2.0 – Informationelle Selbstbe-
stimmung im Web 2.0” and “PUMA – Akademisches Publikationsman-
agement”, and by Land Hessen in the VENUS project.

References

1. Batagelj V, Zaversnik M (2002) Generalized cores. CoRR
cs.DS/0202039, URL http://arxiv.org/abs/cs/0202039

2. Bayardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs
similarity search. In: WWW ’07: Proceedings of the 16th
international conference on World Wide Web, ACM, New
York, NY, USA, pp 131–140

3. Bogers T (2009) Recommender systems for social book-
marking. PhD thesis, Tilburg University, Tilburg, The
Netherlands, URL http://ilk.uvt.nl/∼toine/phd-thesis/

4. Bork M (2006) Webservice API für Bibsonomy.
Project report, URL http://www.kde.cs.uni-kassel.de/
lehre/arbeiten/documents/bork2006webservice.pdf

5. Breese JS, Heckerman D, Kadie C (1998) Empirical anal-
ysis of predictive algorithms for collaborative filtering. In:
Proceedings of the 14th Conference on Uncertainty in Ar-
tificial Intelligence, pp 43–52

6. Brin S, Page L (1998) The Anatomy of a Large-Scale Hy-
pertextual Web Search Engine. Computer Networks and
ISDN Systems 30(1-7):107–117

7. Budanitsky A, Hirst G (2006) Evaluating wordnet-based
measures of lexical semantic relatedness. Computational
Linguistics 32(1):13–47

8. Cattuto C, Loreto V, Pietronero L (2006) Collaborative
tagging and semiotic dynamics. CoRR abs/cs/0605015,
URL http://arxiv.org/abs/cs/0605015

9. Cattuto C, Schmitz C, Baldassarri A, Servedio VDP,
Loreto V, Hotho A, Grahl M, Stumme G (2007) Net-

work properties of folksonomies. AI Communications
20(4):245–262

10. Cattuto C, Benz D, Hotho A, Stumme G (2008) Semantic
grounding of tag relatedness in social bookmarking sys-
tems. The Semantic Web - ISWC 2008 pp 615–631

11. Chang CC, Lin CJ (2001) LIBSVM: a library for sup-
port vector machines. Software available at http://www.
csie.ntu.edu.tw/∼cjlin/libsvm

12. Dubinko M, Kumar R, Magnani J, Novak J, Raghavan P,
Tomkins A (2006) Visualizing tags over time. In: Proceed-
ings of the 15th International WWW Conference

13. Fielding RT (2000) Architectural styles and the design of
network-based software architectures. PhD thesis, Univer-
sity of California, Irvine

14. Golder S, Huberman BA (2005) The structure of col-
laborative tagging systems. CoRR abs/cs/0508082, URL
http://arxiv.org/abs/cs.DL/0508082

15. Halpin H, Robu V, Shepard H (2006) The dynamics and
semantics of collaborative tagging. In: Möller K, de Waard
A, Cayzer S, Koivunen MR, Sintek M, Handschuh S (eds)
Proceedings of the 1st Semantic Authoring and Annota-
tion Workshop (SAAW’06), CEUR-WS.org, vol 209

16. Hammond T, Hannay T, Lund B, Scott J (2005) Social
Bookmarking Tools (I): A General Review. D-Lib Maga-
zine 11(4)

17. Haveliwala TH (2003) Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search. Tech-
nical Report 2003-29, Stanford InfoLab, URL http://
ilpubs.stanford.edu:8090/750/, extended version of the
WWW2002 paper on Topic-Sensitive PageRank.

18. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004)
Evaluating collaborative filtering recommender systems.
ACM Trans Inf Syst 22(1):5–53

19. Heymann P, Koutrika G, Garcia-Molina H (2007) Fight-
ing spam on social web sites: A survey of approaches and
future challenges. IEEE Internet Computing 11(6):36–45

20. Heymann P, Koutrika G, Garcia-Molina H (2008) Can so-
cial bookmarking improve web search? In: WSDM ’08:
Proc. of the Int. Conf. on Web Search and Web Data Min-
ing, ACM, New York, NY, USA, pp 195–206

21. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Bib-
Sonomy: A social bookmark and publication sharing sys-
tem. In: de Moor A, Polovina S, Delugach H (eds) Proc.
of the Conceptual Structures Tool Interoperability Work-
shop, Aalborg University Press, Aalborg, Denmark, pp
87–102

22. Hotho A, Jäschke R, Schmitz C, Stumme G (2006)
Emergent semantics in BibSonomy. In: Hochberger C,
Liskowsky R (eds) Informatik 2006 - Informatik für Men-
schen, Gesellschaft für Informatik, Bonn, Lecture Notes
in Informatics, vol 94

23. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) In-
formation retrieval in folksonomies: Search and rank-
ing. In: Sure Y, Domingue J (eds) The Semantic Web:
Research and Applications, Springer, Berlin/Heidelberg,

22

Lecture Notes in Computer Science, vol 4011, pp 411–426
24. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Trend

detection in folksonomies. In: Avrithis YS, Kompatsiaris
Y, Staab S, O’Connor NE (eds) Proc. First International
Conference on Semantics And Digital Media Technology
(SAMT), Springer, Berlin/Heidelberg, Lecture Notes in
Computer Science, vol 4306, pp 56–70

25. Hotho A, Jäschke R, Benz D, Grahl M, Krause B, Schmitz
C, Stumme G (2009) Social Bookmarking am Beispiel
BibSonomy. In: Blumauer A, Pellegrini T (eds) Social Se-
mantic Web, X.media.press, Springer, Berlin/Heidelberg,
chap 18, pp 363–391, DOI 10.1007/978-3-540-72216-8

26. Jiang JJ, Conrath DW (1997) Semantic Similarity based
on Corpus Statistics and Lexical Taxonomy. In: Proceed-
ings of the International Conference on Research in Com-
putational Linguistics (ROCLING), Taiwan

27. Jäschke R, Grahl M, Hotho A, Krause B, Schmitz C,
Stumme G (2007) Organizing publications and bookmarks
in BibSonomy. In: Alani H, Noy N, Stumme G, Mika P,
Sure Y, Vrandecic D (eds) Workshop on Social and Col-
laborative Construction of Structured Knowledge (CKC
2007) at WWW 2007, Banff, Canada

28. Jäschke R, Marinho LB, Hotho A, Schmidt-Thieme L,
Stumme G (2007) Tag recommendations in folksonomies.
In: Kok JN, Koronacki J, de Mántaras RL, Matwin S,
Mladenic D, Skowron A (eds) Knowledge Discovery
in Databases: PKDD 2007, Springer, Berlin/Heidelberg,
Lecture Notes in Computer Science, vol 4702, pp 506–514

29. Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L,
Stumme G (2008) Tag recommendations in social book-
marking systems. AI Communications 21(4):231–247

30. Jäschke R, Eisterlehner F, Hotho A, Stumme G (2009)
Testing and evaluating tag recommenders in a live system.
In: RecSys ’09: Proc. of the 2009 ACM Conf. on Recom-
mender Systems, ACM, New York, NY, USA, (to appear)

31. Kleinberg JM (1999) Authoritative sources in a hyper-
linked environment. Journal of the ACM 46(5):604–632

32. Krause B, Jäschke R, Hotho A, Stumme G (2008) Log-
sonomy - social information retrieval with logdata. In: HT
’08: Proc. of the 19th ACM Conference on Hypertext and
Hypermedia, ACM, New York, NY, USA, pp 157–166

33. Krause B, Schmitz C, Hotho A, Stumme G (2008) The
anti-social tagger – detecting spam in social bookmarking
systems. In: AIRWeb ’08: Proceedings of the 4th Interna-
tional Workshop on Adversarial Information Retrieval on
the Web, ACM, New York, NY, USA, pp 61–68

34. Lehmann F, Wille R (1995) A triadic approach to formal
concept analysis. In: Ellis G, Levinson R, Rich W, Sowa
JF (eds) Conceptual Structures: Applications, Implemen-
tation and Theory, Springer, Berlin/Heidelberg, Lecture
Notes in Artificial Intelligence, vol 954, pp 32–43

35. Lund B, Hammond T, Flack M, Hannay T (2005) Social
Bookmarking Tools (II): A Case Study - Connotea. D-Lib
Magazine 11(4)

36. Marinho LB, Schmidt-Thieme L (2007) Collaborative
tag recommendations. In: Proceedings of 31st Annual
Conference of the Gesellschaft für Klassifikation (GfKl),
Freiburg, Springer

37. Mathes A (2004) Folksonomies – Cooperative Clas-
sification and Communication Through Shared Meta-
data. URL http://www.adammathes.com/academic/
computer-mediated-communication/folksonomies.html

38. McCallum AK (2002) MALLET: A Machine Learning for
Language Toolkit. URL http://mallet.cs.umass.edu/

39. Mika P (2005) Ontologies are us: A unified model of so-
cial networks and semantics. In: Gil Y, Motta E, Ben-
jamins VR, Musen MA (eds) Proc. of the 4th Int. Seman-
tic Web Conference, Springer, Berlin/Heidelberg, Lecture
Notes in Computer Science, vol 3729, pp 522–536

40. Peng F, McCallum A (2004) Accurate information extrac-
tion from research papers using conditional random fields.
In: HLT-NAACL, pp 329–336

41. Quintarelli E (2005) Folksonomies: power to the
people. URL http://www-dimat.unipv.it/biblio/isko/doc/
folksonomies.htm

42. Reenskaug T (1979) Models-views-controllers. Tech. rep.,
Xerox PARC

43. Resnick P, Iacovou N, Suchak M, Bergstorm P, Riedl J
(1994) GroupLens: An Open Architecture for Collabora-
tive Filtering of Netnews. In: Proceedings of ACM 1994
Conference on Computer Supported Cooperative Work,
ACM, Chapel Hill, North Carolina, pp 175–186

44. Salton G (1989) Automatic text processing: the transfor-
mation, analysis, and retrieval of information by computer.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA

45. Sarwar BM, Karypis G, Konstan JA, Reidl J (2001) Item-
based collaborative filtering recommendation algorithms.
In: World Wide Web, pp 285–295

46. Schachter J (2006) now serving: 1,000,000. Blog post,
URL http://blog.delicious.com/blog/2006/09/million.html

47. Schmitz C, Hotho A, Jäschke R, Stumme G (2006) Min-
ing association rules in folksonomies. In: Batagelj V,
Bock HH, Ferligoj A, Žiberna A (eds) Data Science and
Classification: Proc. of the 10th IFCS Conf., Springer,
Berlin/Heidelberg, Studies in Classification, Data Analy-
sis, and Knowledge Organization, pp 261–270

48. Steels L (2006) Collaborative tagging as distributed cog-
nition. Pragmatics & Cognition 14(2):287–292

49. Stumme G (2005) A finite state model for on-line ana-
lytical processing in triadic contexts. In: Ganter B, Godin
R (eds) Proceedings of the 3rd International Conference
on Formal Concept Analysis, Springer, Berlin/Heidelberg,
Lecture Notes in Computer Science, vol 3403, pp 315–328

50. Vander Wal T (2007) Folksonomy. Blog post, URL http:
//vanderwal.net/folksonomy.html

51. Wille R (1982) Restructuring lattice theory: an approach
based on hierarchies of concepts. In: Rival I (ed) Ordered
sets, Reidel, Dordrecht–Boston, pp 445–470

23

52. Witten IH, Frank E (1999) Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann

53. Xi W, Zhang B, Lu Y, Chen Z, Yan S, Zeng H, Ma W, Fox
E (2004) Link fusion: A unified link analysis framework
for multi-type interrelated data objects. In: Proc. 13th In-
ternational World Wide Web Conference, New York

54. Yahia SA, Benedikt M, Lakshmanan LVS, Stoyanovich
J (2008) Efficient network aware search in collabora-
tive tagging sites. Proceedings of the VLDB Endowment
1(1):710–721, DOI 10.1145/1453856.1453934

24

