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Abstract
Creation and exchange of knowledge depends on collaboration. Recent work has suggested 
that the emergence of collaboration frequently relies on geographic proximity. However, 
being co-located tends to be associated with other dimensions of proximity, such as social 
ties or a shared organizational environment. To account for such factors, multiple dimen-
sions of proximity have been proposed, including cognitive, institutional, organizational, 
social and geographical proximity. Since they strongly interrelate, disentangling these 
dimensions and their respective impact on collaboration is challenging. To address this 
issue, we propose various methods for measuring different dimensions of proximity. We 
then present an approach to compare and rank them with respect to the extent to which they 
indicate co-publications and co-inventions. We adapt the HypTrails approach, which was 
originally developed to explain human navigation, to co-author and co-inventor graphs. We 
evaluate this approach on a subset of the German research community, specifically aca-
demic authors and inventors active in research on artificial intelligence (AI). We find that 
social proximity and cognitive proximity are more important for the emergence of collabo-
ration than geographic proximity.

Keywords Dimensions of proximity · Co-authorships · Co-inventorships · Embedding 
techniques · Collaboration

Introduction

Collaboration is a powerful tool to advance the frontier of knowledge in science and inno-
vation. Both, the share of co-authored research articles and the average number of authors 
per paper increased strongly in the past decades and patents follow similar trends (Wuchty 
et  al., 2007). These developments add to the importance of better understanding the emer-
gence and effects of research collaboration. Numerous studies have highlighted the impact of 
geographic closeness for collaboration in science and innovation. However, geography is only 
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one of several dimensions of proximity upon which collaboration builds. Further proximities 
are cognitive, institutional, organizational and social, which have been shown to be relevant 
in prior research (Boschma, 2005; Broekel & Boschma, 2011). As geographic co-location is 
often associated with similarity in prior knowledge (cognitive proximity; Nooteboom (2001)), 
and also with high levels of social, institutional, and organizational proximity   (Breschi & 
Lissoni, 2009; Heinisch et al., 2016), disentangling their impacts is challenging (Bode et al., 
2019). In this paper, we explore how the various dimensions of proximity are related to the 
emergence of successful collaboration in research on artificial intelligence (AI). In our case 
study, we focus on the German AI landscape since Germany has a rapidly emerging AI com-
munity, with about 100 new professorships to be created in the near future 1 and AI is expected 
to have a strong impact on future technological and economic development. To identify aca-
demic collaboration in AI research, we employ the German AI Network (GAI), a novel data 
set that incorporates bibliographic information for 2131 researchers. The GAI builds upon the 
DBLP data set (Ley, 2009) and includes both journal publications and contributions to confer-
ences in computer science and related fields of research. This allows us to consider conference 
proceedings in which the outcomes of successful collaboration in AI research are often com-
municated. In addition to co-authorships, we trace co-inventions of AI researchers employing 
the Crios-Patstat patent data set  (Tarasconi, 2014). These bibliographical data sets are used 
to construct several similarity functions measuring how close researchers are to each other 
in terms of cognitive, institutional, organizational, social and geographic proximity. In con-
structing these proximity measures, bibliographic information is complemented by web data 
and information about academic genealogies. We also employ similarity measures for the text 
documents in our data set based on Natural Language Processing (NLP). We then adapt the 
Bayesian HypTrails approach (Singer et al., 2015), which originally was designed to compare 
explanations of human navigation, to the domain of co-authorship and co-inventorship. This 
allows to rank proximity dimensions according to how well they explain the collaboration pat-
terns observed in our data. Our results indicate that social proximity is a key factor in the 
emergence of successful collaboration in German AI research.

The present paper contributes to the scientometric literature in terms of data, methods 
and results. First, we curate a novel data collection of German researchers from the domain 
of artificial intelligence and integrate rich data from various sources to obtain an encom-
passing view of their activities and mutual relationships. Second, regarding our contribu-
tion to research methods, we adapt the HypTrails approach to provide a new way of assess-
ing the relative ability of various factors to explain the observable patterns in collaboration 
data. Third, we contribute to the discussion on proximity dimensions started by Boschma 
(2005). Specifically, our results suggest that social proximity is the key factor for success-
ful collaboration between AI researchers in Germany.

Dimensions of proximity

Collaborative research activities, i.e., joint efforts to produce new knowledge, enable 
researchers to combine their individual knowledge base and thus to arrive at findings that 
they might not achieve individually  (Katz and Martin, 1997). Research collaboration has 
been the subject of extensive scholarly attention (e.g., Newman, 2001; Newman, 2004; Lee & 
Bozeman, 2005). There is substantial evidence that the quantity and quality of scientific out-
put may increase by collaboration (Glänzel & Schubert, 2005; Wuchty et al., 2007; Werker 

1 https:// knowl edge4 policy. ec. europa. eu/ ai- watch/ germa ny- ai- strat egy- report_ en.

https://knowledge4policy.ec.europa.eu/ai-watch/germany-ai-strategy-report_en.
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et al., 2019), even though too large team size may discourage creative insights (Heinze et al., 
2009). In line with these empirical findings, policy makers and funding agencies encour-
age collaborative research activities. For collaboration among researchers to be successful, 
the exchange of knowledge should result in meaningful ideas, which requires suitable col-
laboration partners. Recent work suggests that various forms of proximity are relevant for 
how researchers find partners. Specifically, Boschma (2005) distinguishes five dimensions of 
proximity: cognitive, institutional, organizational, social and geographic proximity.

Cognitive proximity is defined by the similarity of knowledge of two actors. To exchange 
knowledge and jointly discover new findings, collaborating researchers need mutual under-
standing, which requires overlap in their knowledge bases. Successful research collabo-
ration moreover depends on common interests in collaboration outcomes. We therefore 
expect that researchers are more likely to collaborate if they are cognitively close to each 
other. At the same time, researchers can only learn from each other if their prior knowl-
edge is not entirely identical. This suggests that there is an optimal degree of cognitive 
distance between collaborating researchers which is above zero (Nooteboom, 2001). Cog-
nitive proximity of researchers is widely investigated. For example, Liu et al. (2018) show 
that doctoral students are cognitively close to their advisors, and Hautala (2011) studies 
cognitive proximity in international research teams. Intuitively the knowledge of authors is 
reflected in their research. Hence, we assume that cognitive proximity can be approximated 
by the content of their publications. Specifically, overlaps in keywords  (Xu et  al., 2016) 
and technology classes of patents (Jaffe et al., 1993), but also similar uses of language and 
scientific jargon can be manifestations of cognitive proximity.

The degree of institutional proximity of two actors can be measured by comparing their 
institutional environment. Here, institutional environment refers to the routines, regulations 
and laws an actor is subject to (Nooteboom, 2001; Edquist & Johnson, 1996). To a large 
extent, the institutional environment is shaped at the societal macro level (Boschma, 2005). 
However, relevant institutional differences may also exist between different societal sub-
sectors. In our empirical context, we expect that institutional differences between public 
research institutions and corporate R&D affect the likelihood of researchers to collabo-
rate (Perkmann et al., 2013; Stern, 2004; Hirv, 2018).

Not only the type of organization that a given researcher is affiliated with (e.g., university 
or company), but also the specific individual affiliation is an important factor for collabora-
tion. Membership in the same organization thus provides a basic measure of organizational 
proximity (Crescenzi et al., 2016). It increases the likelihood of chance encounters, but more 
importantly collaborative research may be based on strategic decision making within the 
organization. That is, researchers can be allocated to research projects by their superiors 
within the organization. We can further refine the measure of organizational proximity by 
considering the departmental structure within organizations as well as relationships between 
organizations (Broekel & Boschma, 2011) that are independent of respective agents.

Social proximity reflects the extent to which actors are linked by social relations. Such 
relations can be based on kinship, friendship, familiarity based on prior contact or other 
kinds of social ties (Boschma, 2005). Their relevance for the emergence of research col-
laboration is twofold. On the one hand, actors linked by social ties tend know each other 
and may be aware of each other’s interests. Thus, social proximity enhances the potential to 
engage in collaboration. On the other hand, social ties affect the level of trust in potential 
collaboration partners and their competence. Accordingly, they may increase the willing-
ness to start a collaboration. In empirical studies of science and innovation, social proxim-
ity is frequently measured by pre-existing co-authorship  (Hardeman, 2015) or co-inven-
torship (Breschi & Lissoni, 2009) relations, including higher-degree connections (Balland, 
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2012). While these measures are not without limitations  (Katz and Martin, 1997), it is 
plausible that joint work establishes social ties among the collaborators.

Finally, geographical proximity is defined by the proximity of two agents in physical 
space. The importance of geographic proximity for innovation has been discussed at least 
since Marshall (1890), and it was rediscovered when the interest in industry clusters re-
emerged in the 1980s and 1990s (Audretsch & Feldman, 1996; Delgado et al., 2010). Fun-
damentally, the relevance of geographic proximity derives from the difficulty of communi-
cating tacit knowledge (Polanyi, 1966) other than through face-to-face interaction. Recent 
work demonstrates its significance even within organizations and at small geographic 
scales (Catalini, 2018).

Geographic proximity facilitates encounters and may allow face-to-face communication 
and observational learning, even if agents are not characterized by high levels of proximity 
in any of the other dimensions (Hoekman et al., 2010). However, there is a large body of 
prior work indicating that geographic proximity often reflects proximity in another dimen-
sion, such as social  (Breschi & Lissoni, 2009) or organizational  (Buenstorf & Klepper, 
2010) proximity. Since there are also overlaps between these other dimensions, our knowl-
edge about their individual roles is limited. In the remainder of this paper, we will develop 
a new approach to disentangle their individual role in the emergence of collaboration in 
German AI research. As the first step in this endeavor, the next section provides a detailed 
account of our empirical measures of the individual proximity dimensions.

Measuring and quantifying proximity

In this section we propose methods to quantify and compute proximity with respect to 
the different dimensions covered in previous section. These methods result in similar-
ity functions reflecting proximity of researchers given the respective dimension. An 
overview of the similarity functions is given in Table  1. These methods are intended 
for data sets of the following kind: We assume that R is a set of researchers, A a set of 
affiliations, P a set of publications and U a set of URLs. We then consider the follow-
ing relations: is_author_of ⊆ R × P , has_affiliation ⊆ R × A , PhD_at ⊆ R × A and 
has_homepage ⊆ R × U . In the section “Empirical context: the German AI community”, 
we present concrete data providing this information.

Cognitive proximity

Since publications reflect the creation and distribution of knowledge in the academic com-
munity, we use their content to capture the research topics of authors. Cognitive proximity 
between authors can then be measured using the text of their respective publications. Meas-
uring the similarity of text documents is a well studied research topic. Recently, a plenitude 
of methods for representation learning have been developed (Le & Mikolov, 2014; Sinoara 
et al., 2019). Representation learning, also called embedding, refers to the transformation 
of any data, for example text, into real-valued vector spaces, where the measurement of 
distances is well studied. Transforming text into vector representations can be accom-
plished by using weighted word counts  (Jones, 1972), approaches based on matrix-fac-
torization (Deerwester et al., 1990) or modern neural network architectures (Devlin et al., 
2019). To utilize these methods on researchers to extract their respective research topics, 
we first apply them on the set of publications P. Here, we use concatenations of titles and 
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abstracts of documents as input to generate a vector representation vp for each publication 
p ∈ P . Then, a representation for a researcher is computed as the mean point vector of the 
respective publication vectors. To calculate a similarity of two researchers, we then apply 
cosine similarity.

In this study, we use three approaches to create vector representations for each document 
and hence each researcher. Two approaches use TF–IDF factorization, whereas the last one 
is based on neural networks. For the first two approaches, the abstracts of the documents 
are encoded in a TF–IDF matrix M ∈ ℝ

m×n . Here, the entry Mi,j reflects how often the j-th 
term occurs in the i-th document normalized by the count of occurrences in all documents. 
This weighting scheme incorporates the significance of a term for a given document and 
does not overweight words that are frequently used over all documents.

In detail, if we have documents P = {p1,… , pm} , that are modeled as finite sequences 
over a set of terms T = {t1,… , tn} , then entry Mi,j is the product of the frequency of term tj 
(the term-frequency) in document pi with the inverse frequency of tj in all documents (the 
inverse-document-frequency). Based on this, we use Latent semantic analysis (LSA) (Deer-
wester et al., 1990) and non-negative matrix factorization (NMF) (Lee & Seung, 1999, Lee 
& Seung, 2000) to generate vector representations for publications p ∈ P.

LSA computes vector representations for a set of documents by computing a singular 
value decomposition of the TF–IDF matrix. Building up on this, a low-rank approxima-
tion is computed. LSA is well established in the realm of text mining  (Foltz, 1996; Foltz 
et al., 1998) and is intended to identify different words with similar meaning and to reveal 
the semantic structure of a given set of documents (Deerwester et al., 1990). Hence, LSA is 
known to compute vector representations where the measurement of distances is meaningful. 
In detail, LSA works as follows. It produces a factorization of the form M = U�V tr , with 
U ∈ ℝ

m×m,V ∈ ℝ
n×n,� ∈ ℝ

m×n such that � is a diagonal matrix. Let Ud ∈ ℝ
m×d be the 

matrix that results by extracting only the first d columns of U and let �d ∈ ℝ
d×d be the diago-

nal matrix that consists only of the first d rows and columns of � . Then the document vectors 

Table 1  Overview of similarity functions with their respective proximity dimension

Proximity Dimension Similarity Function Explanation

Cognitive sim LSA Latent Semantic Analysis
sim NMF Non Negative Matrix Factorization
sim BERT BERT embedding

Institutional sim aff_type Do two researchers have both a university or 
non-university affiliation?

Organizational sim Affiliation Amount of same affiliations
sim URL URLs sharing the same hosts
sim Hyperlink Distances in the Syntactic Hyperlink Graph
sim Hierachy Hierarchical distance between homepages

Social sim Diss_Loc Dissertation at same location?
sim DeepWalk DeepWalk embeddings
sim Node2vec-small-p node2vec embeddings using p = 0.25, q = 4

sim Node2vec-large-p node2vec embeddings using p = 4, q = 0.25

sim HOPE HOPE embeddings
Geographic sim Geo Shortest geographic distance between affili-

ations of two authors
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with dimension d are given by the rows of the matrix Md ∶= Ud�d . For more details, we refer 
the reader to (Manning et al., 2008).

Another approach to compute vector representations for a document corpus is given by 
NMF, which generates the vectors by factorizing the TF–IDF matrix into two non-negative 
matrices. Here, a specific row of the first matrix represents for the corresponding document a 
distribution over different topics and the rows of the second matrix represents to which extent 
a specific topic is connected to specific words. Hence, NMF can be used to compute under-
standable topic distributions for documents and therefore is commonly applied in the realm of 
text mining, for example for document clustering (Xu et al., 2003) or document summariza-
tion (Lee et al., 2009). In detail, NMF works as follows: To produce vector representations 
with dimension d ∈ ℕ for all publications p ∈ P , NMF factorizes the TF-IDF matrix M into 
two non-negative matrices W ∈ ℝ

m×d
≥0

,H ∈ ℝ
d×n
≥0

 such that M ≈ WH . Here, the rows of W are 
the vector representations of the documents.

The third approach to create vector representations is based on BERT (Devlin et al., 2019). 
BERT is designed for sentence inputs, where ‘sentence’ not necessarily refers to a linguistic 
sentence, but to an ordered sequence of words/tokens with a reasonable size. Hence, in our 
scenario, we are able to use the whole abstract of a given document as input. That BERT takes 
its input as an ordered sequence of terms is an important difference to the previous approaches, 
i.e. LSA and NMF. These are based on the TF-IDF matrix that is independent of the order 
of words. Therefore, similar use of language and scientific jargon will only be captured using 
BERT as an embedding approach. More specifically, BERT is a neural network model that is 
built upon multiple transformer layers  (Vaswani et  al., 2017). These models are pre-trained 
using a large corpus of text data, which allows them to incorporate a general language under-
standing. This has been shown to lead to impressive results in a variety of NLP tasks (Dev-
lin et al., 2019). To receive a vector representation for a given document, we use the title and 
abstract as input into the pre-trained BERT model and extract the vector representation from 
the output of the neural network’s last layer. While Devlin et al. (2019) provides multiple BERT 
models itself, we use SciBERT (Beltagy & Cohan, 2019), which is pre-trained using additional 
scientific texts and therefore better suited for the representation of scholarly publications.

The three approaches explained above lead to three embedding functions that map publica-
tions (i.e., their titles concatenated with their abstracts) to real-valued vectors. We name these 
functions fLSA , fNMF , fBERT . For a given embedding function f ∈ {fLSA , fNMF , fBERT } , we 
then compute the vector representation of a researcher r ∈ R by f (r) ∶= 1

�Pr�
∑

p∈Pr
f (p) , with 

Pr ∶= {p ∈ P ∣ (r, p) ∈ is_author_of } . For m ∈ {LSA , NMF , BERT } we then define a 
similarity function sim m via cosine similarity:

Institutional proximity

As mentioned in previous section, institutional proximity of two actors can be understood as 
the proximity of the regulations and laws they are subject to. Quantifying this kind of proxim-
ity is challenging and is seldom done in related work, especially with data that is freely acces-
sible. However, as a first step towards measuring institutional proximity, we assume that insti-
tutional circumstances differ in the private sector and the academic landscape. Hence, we state 
that two actors are close on the institutional level if they are both publishing from affiliations 

sim m(r1, r2) ∶=
⟨fm(r1), fm(r2)⟩
‖fm(r1)‖‖fm(r2)‖
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located in the private sector or if they both are working in academic research facilities. This 
binary differentiation of academic and non-academic affiliations does not capture nuanced 
affinities that may reflect, e.g., similarities between private companies and application-ori-
ented university departments. Nevertheless, previous work show its justification to serve as 
indicator for institutional proximity.  (Ponds et al., 2007). Research positions in industry are 
sufficiently different from those at universities (Aghion et al., 2008) that scientists may prefer 
worse-paid university positions (Stern, 2004). The resulting similarity function looks as fol-
lows: For each affiliation a ∈ A let ac (a) = 1 if a is an academic affiliation and ac (a) = 0 oth-
erwise. Here, non-university research institutions are considered as non-academic affiliations. 
Then for two researchers r1, r2 ∈ R we have

Here, authors with academic and non-academic affiliations are then considered institu-
tional proximate to all other authors, since they are subject to regulations and laws from the 
academic and private sector.

Organizational proximity

In this work we measure organizational proximity in multiple ways. First, we argue that 
researchers share a relevant amount of organizational relations if they work at the same affili-
ation. Here, we consider affiliations from the academic and the private sector. In detail, the 
similarity score of two researchers is the amount of shared affiliations:

Second, we are using the distance of the respective web pages as representative for organi-
zational proximity. Partnerships, internal hierarchies, individual researchers and projects 
of an organisation are usually reflected in their web appearance. Therefore, the hyper-
link structure is used to derive a representation of organizational proximity for individual 
researchers. Overall three similarity functions are build upon web data.

The first one simply matches hosts: Authors are considered proximate, if they have a home-
page on the same host. Since authors can have multiple homepages, we evaluate their similar-
ity by counting joint hosts. More formally, let host (u) be the host for a URL u ∈ U . Then, we 
can compute the similarity of two researchers via:

The next similarity function is an extension of sim URL and abstracts the distance between 
homepages u1 and u2 to the distance of their respective hosts. A connection between 
two hosts h1 and h2 exists, if any page (corresponding to a URL) from host h1 contains a 
hyperlink to a URL from h2 . Then distances are computed as the shortest path distance 
dHyperlink (u1, u2) between two URLs u1, u2 ∈ U using their respective hosts. We scale 
these distances to be between 0 and 1. To compute the distance dHyperlink (r1, r2) between 
researchers r1, r2 ∈ R , we average the distances between their URLs. This accounts for the 

sim aff_type (r1, r2) ∶=

⎧
⎪⎨⎪⎩

1 ∃(r1, a1), (r2, a2) ∈ has_affiliation

ac (a1) = ac (a2)

0 otherwise

sim Affiliation (r1, r2) ∶= |{a ∈ A ∣ (r1, a), (r2, a) ∈ has_affiliation }|

sim URL(r1, r2) ∶= |{ host (u) ∣ (r1, u) ∈ has_homepage ,

∃(r2, v) ∈ has_homepage ∶ host (u) = host (v)}|
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fact, that authors may have multiple homepages and we capture the authors’ multi-presence 
in the academic landscape. We define the corresponding similarity function via

Finally, the third similarity function is based on the hierarchy of web pages. Here we 
assume, that the hierarchy of the web is reflect in the URL paths. The distance between 
two authors is expressed as the shortest path between their homepages u, whereas it is only 
allowed to ‘climb’ or ‘descend’ in the hierarchy. For example, the distance between the 
URLs host.example.com/path1/author1 and host.example.com/path2/author2 would be 4. 
After climbing to the node host.example.com, which are two steps, we then descend to the 
target node with two more steps. Overall, we compute the distance d hierarchy (r1, r2) of two 
researchers r1, r2 ∈ R by their shortest connection. Again, we scale the distances and com-
pute the corresponding similarities of two researchers r1 and r2 as mean of all distances via

Assuming that universities have their own hosts and that university departments are placed 
as subdomains, this similarity function allows us to measure proximity on an intra-univer-
sity level. Hence it can be seen as a refinement of the similarity function sim Affiliation.

Social proximity

We present different similarity functions to approximate social proximity. As first approxi-
mation, we have a binary indicator stating two researchers as close with respect to social 
proximity if they have finished their PhD at the same affiliation. We expect that actors with 
the same roots (in terms of dissertation) will stay in contact and communicate  (Burris, 
2004). The similarity function is given by

where Diss_Loc maps researchers r ∈ R to their dissertation location.
For a second approach to measure social proximity, we compute the co-author relation 

{(r1, r2) ∈ R × R | ∃p ∈ P ∶ (r1, p), (r2, p) ∈ is_author_of } and build the co-author graph 
from this relation. Following the explanation of the relationship between social proxim-
ity and co-author graphs in section “Dimensions of proximity”, we argue that the social 
proximity of two researchers can be approximated by closeness in the co-author graph. 
However, quantifying the similarity of researchers in the co-author network is not straight-
forward. The naive approach would be to use the shortest path distance as a measure for 
social distances.2 However, since the shortest path distance produces a low amount of dif-
ferent values  (Watts, 2003), it would provide only a very shallow insight into similarity 
and distances. To overcome this issue, we use embedding methods. These methods use the 
structure of the graph to compute vector representations of nodes which incorporate mul-
tiple aspects of the surroundings of each node, for example, overlapping neighborhoods, 
direct connections or similar roles of nodes. To quantify the similarity of two researchers 
in the co-author network, we use node embeddings based on the co-author graph. Having 
an embedding of the researchers at hand, we again compute the corresponding similarity 

sim Hyperlink (r1, r2) ∶= 1 − dHyperlink (r1, r2).

sim Hierachy (r1, r2) ∶= 1 − dHierachy (r1, r2).

simDiss_Loc (r1, r2) ∶=

{
1 if Diss_Loc (r1) = Diss_Loc (r2)

0 otherwise
,

2 And thus as a measure for similarity under the common assumption that a lower distance corresponds to 
a higher similarity.
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via the cosine similarity of the embedding vectors. We focus on the following embedding 
techniques. The first embedding technique is DeepWalk  (Perozzi et al., 2014). It was the 
first work that applied the skip-gram (SG) approach (Mikolov et al., 2013b, Mikolov et al., 
2013a) on graphs. The SG approach was originally designed for word embeddings. Here, 
sentences are given as input to a two-layer network that is then trained to predict for a given 
word the words around it. Afterwards, the weights of the first layer matrix are used as vec-
tor representations. DeepWalk transfers this procedure to graphs in the following manner: 
For a given graph G = (V ,E) , the nodes v ∈ V  are treated as the ‘words’ of the vocabu-
lary. To generate embeddings, ‘sentences’ of nodes are generated via random walks. Today, 
DeepWalk is regularly used for node embeddings, since the embeddings (1) are adaptable 
to the emergence of new edges, (2) are capable of providing vectors where the measure-
ment of similarity is meaningful and (3) have proven to outperform handcrafted node fea-
tures in classification tasks (Perozzi et al., 2014).

The second embedding technique is node2vec  (Grover & Leskovec, 2016), which 
extends Deepwalk with two parameters p, q ∈ ℝ

≥0 that allow to bias the random walk pro-
cedure. While a low p value corresponds to walks that prefer a “breadth-first behavior”, 
low q values bias the walk towards a “depth-first behavior”. The additional parameters have 
proven to enlighten DeepWalk in common machine learning tasks such as node classifica-
tion or link prediction. As a drawback, the two additional parameters have to be chosen 
reasonable or have to be determined via grid-search. In our analysis, we use the p and q 
parameters to generate embeddings with distinctive, but reasonable properties to capture 
different aspects of the underlying graph. For this, we refer to (Grover & Leskovec, 2016), 
where the authors do parameter searching in {0.25, 0.5, 1, 2, 4} for p and q. Following this, 
we generate two different embeddings and thus two corresponding similarity functions by 
the “extreme” choices of p = 0.25, q = 4 and p = 4, q = 0.25.

The third embedding technique is HOPE  (Ou et  al., 2016). While DeepWalk and 
node2vec use “sentences of nodes” as input to compute the embeddings, HOPE encodes 
the input graph via a similarity matrix and then computes the vector representations via 
factorization. Here, different similarity matrices that incorporate different information 
of the graphs are possible. To generate embeddings of the co-author graph, we employ 
the Katz–Index similarity  (Katz, 1953), which is defined in the following manner. Let 
G = (V ,E) be a graph with adjacency matrix A ∈ ℝ

n×n , 𝛽 ∈ ℝ>0 and let In be the n-
th dimensional identity matrix. The similarity matrix with respect to � is then given by 
S�(G) ∶= (In − �A)−1�A. For a given d ∈ ℕ , HOPE then computes matrices U,V ∈ ℝ

n×d 
such that S� ≈ UV  . To get a vector representation of a node, the corresponding rows of U 
and V are concatenated.

Having the embedding methods at hand, we use the co-author graph to com-
pute functions that map researchers to vectors. We denominate the result-
ing functions with fDeepWalk , fNode2vec-small-p , fNode2vec-large-p and fHOPE . For each 
m ∈ {DeepWalk , Node2vec-small-p , Node2vec-large-p , HOPE } and for all researchers 
r1, r2 ∈ R , we define a corresponding similarity function via

sim m(r1, r2) ∶=
⟨fm(r1), fm(r2)⟩
‖fm(r1)‖‖fm(r2)‖
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Geographic proximity

As explained in previous section, geographic proximity reflects the spatial separation of 
two actors. We simplify it by considering the longitudinal and lateral coordinates of the 
city associated with the affiliation of the author. As a measure of separation of two cities, 
we use the great-circle distance dGeo . Furthermore, all similarity scores are scaled between 
0 and 1. The similarity score of two researchers r1, r2 ∈ R is is then calculated by

 

Ranking hypotheses about the origin of collaboration

The methods introduced in the previous section allow to quantify proximity between 
authors in various dimensions. Now, we present an approach, namely HypTrails, that 
allows to rank and compare these dimensions with respect to their impact on the emer-
gence of cooperation in the form of joint publications and patents. In the following, we will 
shortly repeat the basics of HypTrails and introduce the needed adoption for our setting.

HypTrails is a descriptive approach which was originally developed to compare different 
hypotheses about human navigation. Human navigation can be represented by any kind of 
sequences, such as geographical movement  (Singer et  al., 2015), tagging behavior  (Nie-
bler et al., 2016b) or click trails in the web (Niebler et al., 2016a). Using the example of 
web trails, possible navigation behaviors could be browsing, e.g. clicking links randomly 
or links to items with a discount, or searching, where the clicks leads to a specific target 
page (Koopmann et al., 2019). Given a click sequence made by a user, HypTrails is able 
to compare different intuitions of navigation. More generally, HypTrails generates a rank-
ing of hypotheses H = {H1,H2,… ,Hn} with respect to their plausibility for the observed 
data D. Here, D represent the users click trails, which are transformed into an adjacency 
matrix N. Each entry Ni,j in the matrix expresses the amount of observed transitions 
between discrete states S = {s1, s2,… , sm} . Therefore HypTrails leverages the first order 
Markov Model and hence ignores second level dependencies when creating the matrix. In 
the web navigation example, the states represents web pages and the entries represents the 
normalized amount of clicks between pages by users. Furthermore, each hypothesis H ∈ H 
is expressed by its own transition matrix Q constructed on the belief of users on a specific 
navigation behaviour property. The “browsing” hypothesis could be a uniform distribution 
to express the random clicking behaviour or a matrix with high transition probability for 
clicks to discounted items.

For a given hypothesis H, HypTrails uses Bayesian inference to calculate the marginal 
likelihood P(D|H), also called evidence, with respect to the observed data D. The input of 
the model are two adjacency matrices. Q is representing a hypothesis (also called prior) 
and N is created from the data transitions. To calculate the evidence, Hyptrails adapt the 
Trial-roulette method  (Gore, 1987). This method incorporates a concentration factor k, 
which displays the belief in the given hypothesis. Here, k reflects the ratio of uniform dis-
tributed transitions and transitions that directly follow the hypothesis. Hence, k indicates 
how strongly the underlying hypothesis influences the transitions. For more detail on the 
computation of the evidences, we refer the reader to Singer et al. (2015).

For a given k, the marginal likelihoods {P(D|H) | H ∈ H} are used to generate an order 
of the hypotheses H . More precise, hypotheses H1,H2 ∈ H can be compared with the 

sim Geo (r1, r2) = 1 − dgeo(r1, r2).
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Bayes factor B1,2 =
P(D|H1)

P(D|H2)
 . However, determining an appropriate k is challenging. There-

fore, we use a range of concentration factors to compare a set of hypotheses H.
Our setting HypTrails originally analyses sequential navigation data. Graphs can be 

interpreted as a generalization of sequences. Therefore, Espín-Noboa et al. (2017) showed, 
that the transition probabilities required for HypTrails can also be inferred from so-called 
attributed multi-graphs. Here an attributed multi-graph describes an undirected, weighted 
graph, which contains descriptive attributes for its nodes. Since co-author and co-inventor 
can be interpreted as such graphs, HypTrails can be applied as follows: The discrete states 
are given by the researchers R = {r1,… , rm} and the transitions Ni,j of matrix N are collab-
orations (co-authorships or co-inventions) between the researchers ri and rj . Furthermore, 
the matrices corresponding to the hypotheses H can be extracted by leveraging attributes 
for author pairs, which in our case are the values from the similarity functions presented in 
section  “Measuring and quantifying proximity”. More specifically, for a similarity func-
tion sim from Table 1, we derive a hypothesis H with corresponding adjacency matrix Q 
via Qi,j = sim (ri, rj) . Here, for a given similarity function sim , the belief of the hypothesis 
H ∈ H is, that a high similarity value sim (r, s) for researchers r, s ∈ R indicates the emer-
gence of collaboration between r and s. In the following, we will not differentiate anymore 
between a similarity function and the corresponding hypothesis and thus use the terms 
interchangeably.

The result is a ranked list of hypotheses based on the extent to which they indicate an 
influence on collaboration. By selecting one hypotheses for each dimension of proximity, 
our approach allows to rank these dimensions.

Empirical context: the German AI community

To measure proximity dimensions and their impact on collaboration in the German AI 
landscape, we employ a data foundation that captures publication activities and inventions 
in this community.

The German AI network

The German AI Network (GAI) is a bibliometric data set of German AI researchers and 
their publications. The GAI is publicly available via Zenodo (Stubbemann & Koopmann, 
2020). It is built upon the DBLP data set (Ley, 2009),3 which contains bibliographic infor-
mation of publications in the realm of computer science. DBLP is, in our experience, 
impressively tidy and consistently structured, especially for the amount of covered data. 
Furthermore, it contains information about conference proceedings, which are the pre-
dominant publishing channels in computer science. To identify the academic authors that 
belong to the domain of artificial intelligence, we rely on the work by Kersting et al. (2019), 
which provides a collection of central AI venues and the relevant venues that belong to the 
expanded environment of AI. Furthermore we identify German authors by using the affilia-
tions provided by DBLP. In detail, we create the data set as follows:

3 We use the DBLP dump from 2020-01-01, which can be found at https:// dblp. org/ xml/ relea se/ dblp- 2020- 
01- 01. xml. gz.

https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
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– First, we extract all publications that were published in one of the venues mentioned in 
Kersting et al. (2019).

– Next, we identify all authors of these papers as (international) AI authors.
– Afterwards, we filter the German authors by using the given affiliations from DBLP. In 

detail, we search for the substring Germany in each affiliation. We discovered that well-
formated affiliations are formed such as University of Kassel, Germany, for example.

– The data set consists of all authors identified in the step above and all of their respective 
publications, not limiting to publications of AI venues.

We optimize the construction of the data set and matching of German authors towards high 
precision. Accordingly, authors are included only if they are identified with a high level 
of confidence as German AI authors. This results in a comparatively smaller subset of the 
German AI community, but a small to non-existent number of false positives. While DBLP 
provides comparatively well disambiguated bibliographic data, it does not contain informa-
tion of citations or abstracts. To enrich our data with the latter, we link it with the Semantic 
Scholar Corpus (Ammar et al., 2018).4 The linking process primarily relies on titles. How-
ever, as different papers with equal titles can result in false positives, we add further linking 
constraints such as DOIs, years and the fact whether both publications are pre-prints or not. 
Basic statistics of the GAI can be found in Table 2.

The German AI inventors

We define the German AI inventors as authors who work and publish in the academic 
domain of artificial intelligence, which we covered with the GAI data set, and also contrib-
ute to technological change as patenting inventors. To extract these author-inventors, we 
use the GAI (defined above) as our starting point. We link this data set, based on names, 
with CIROS-Patstat5  (Tarasconi, 2014) only considering inventors listed with a German 
residence.6 This approach yields 423 possible candidates with the same name in both 
data sets. As before, we aim towards a high precision and hence want to ensure to have as 
few false positives in our sample as possible. This is achieved by analyzing the publica-
tion neighborhood. More specifically, we compare co-inventors and co-authors for each 
candidate. If a candidate has at least one identical co-author and co-inventor (as before 
based on names), we consider this candidate as a true positive. This approach leads to 
212 individuals. While this is a relatively small number, given our search strategy it rep-
resents the subset of publishing AI researchers in Germany who also patent. This focus 

Table 2  Basic statistics of the German AI Network. We display, from left to right, (1) Number of German 
AI authors, (2) Number of publications (3) Number of publications on AI venues (4)Number of authors 
with at least one collaboration (5)Number of co-authorships

Authors Publications AI publications Coll. authors Co-author-
ships

2131 127,780 11,344 1937 6064

4 We use the Semantic Scholar dump from 2020-01-01.
5 CRIOS – Patstat provides a disambiguated data set based on the European Patent Office.
6 We prepossess the date and also respect German umlauts.
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on author-inventors is consistent with our interest in research collaboration, as it ensures 
that both collaborating partners are active researchers. Table 3 provides a summary of the 
resulting data. We name the resulting data set the German AI inventors (GAI-I).

The German academic web

We complement the previously mentioned data sets with web information, which allows to 
to capture additional information about AI researchers. In contrast to the bibliometric data, 
the German Academic Web (GAW) reflects an expression of the hierarchical organizational 
structure. At the same time, the web allows everybody to freely display their research inter-
ests and link themselves with other authors.

Overall, the GAW data set (Paris & Jäschke, 2020) has been created in an effort to 
establish a knowledge base of the academic landscape in Germany. It is an accumulation 
of semi-annual crawls since 2012, containing web pages of 150 major universities and 
research institutions. To match and find home pages of authors, we use URLs given by 
DBLP and reduce them by matching to GAW crawl seeds7. This allows us to remove hosts 
such as “gitlab” or “Orcid”, which do not represent the homepage of an author. With this 
process we are able to find 1,163 researchers of the GAI in the GAW data set.

Analysis: ranking of proximity dimensions

Previous sections explained how we measure different forms of proximity, how we intend 
to compare them and which data we use. In this section, we describe our analysis which 
compares the proximity dimensions with respect to the extent they indicate collaboration.

Analytical setup

The aim of the analysis is to compare different hypotheses for the emergence of collabora-
tion between different researchers. Every similarity function corresponds to a hypothesis 
H and the resulting pairwise similarity scores are used as entries for the prior adjacency 
matrix Q. The similarity functions introduced earlier depend on different hyperparameters. 
We display the names of the used hypotheses, the similarity functions and the used param-
eters in Table 4. The hyperparameters follow default choices of Scikit-Learn or from the 
papers where the methods were introduced. Overall, we run two different analysis. First, we 
study academic collaboration, where we consider co-published publications and secondly, 

Table 3  Basic statistics of the German AI Inventors. We display, from left to right, (1) Number of German 
AI inventors (2) Number of inventions (3) Number of inventions with at least two inventors (4) Number of 
inventors with at least one collaboration (5)Number of co-inventorships

Inventors Innovations Co-inventions Coll. inventors Co-inventor-
ships

212 1,007 55 72 92

7 We use the most recent snapshot from 2019/12.
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we analyze collaboration in terms of co-patentships. Some hypotheses use external infor-
mation, which are not in the GAI. Here, we briefly explain the underlying data sources. 
The hypothesis Diss Loc leverages dissertation data from DNB8. Here, we are able to col-
lect 1035 relevant dissertations. Hypotheses that are based on web data use the linked URls 
from DBLP with the GAW. Geographic distances between authors are computed using the 
coordinates of German cities, which we extract from Wikidata. 9 

Setup for the analysis of co-authorships. The hypotheses in the realm of social prox-
imity, namely the graph embeddings, are build upon the co-author graphs and hence 
rely on the co-authorships we want to explain in our first analysis. Additionally, future 
collaborations should just be explained with data from previous co-authorships and pub-
lications. To tackle this problems, we split the publications and hence the co-author-
ships into two parts. We use all publications published until 2017 to create the hypoth-
eses that are build upon text and graph embeddings. To create the observed transition 
matrix N, which contains the collaboration we want to analyse, we use the weighted 
co-author graph of 2018 and 2019. Setup for the analysis of co-inventorships.  For the 
second analysis, we compare hypotheses with respect to the question, to which extent 
they describe co-patentships. Here, the matrix N of the observed transitions is given by 
the adjacency matrix of the weighted co-inventor graph. Due to the linking process, we 
have pairwise similarity scores for all inventors in the co-inventor graph. Therefore we 

Table 4  Overview of the hypotheses. For each hypothesis, we display the corresponding similarity function 
and the choice of hyperparameter, if needed. d: dimensions of the embedding, w: window size, � : walks per 
node, t: walk length, p, q: node2vec bias parameters, � : parameter for HOPE embedding

Proximity dim. Hypothesis similarity function parameter settings used data

Cognitive LSA sim LSA d = 100 GAI
NMF sim NMF d = 100 GAI
BERT sim BERT d = 768 GAI

Institutional Academic sim aff_type – GAI
Organizational Affiliation sim Affiliation – GAI

URL – GAI,GAW 
Hyperlink sim Hyperlink – GAI,GAW 
Hierarchy sim Hierachy – GAI,GAW 

Social Diss Loc sim Diss_Loc – GAI,DNB
DeepWalk sim DeepWalk d = 100,w = 10 , � = 10, GAI

t = 80

Node2vec sim Node2vec-small-p d = 100,w = 10 , � = 10, GAI
Small p t = 80, p = 0.25, q = 4

Node2vec sim Node2vec-large-p d = 100,w = 10 , � = 10, GAI
Large p t = 80, p = 4, q = 0.25

Hope sim HOPE d=100, � = 0.1 GAI
Geographic Geo sim Geo – GAI,

Wikidata

8 The DNB is the German National Library. The data set is based on Heinisch and Buenstorf (2018), and 
supplemented from the DNB homepage if necessary.
9 https:// query. wikid ata. org/ on 2020-05-07.

https://query.wikidata.org/
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can use the same hypotheses H as in the first analysis with one difference. No overlap 
between data for the hypotheses and the observed data has to be prevented. In conse-
quence, we omit the time split from our fist analysis. Only a small subset of German AI 
researchers do indeed collaborate over inventions. This can be seen when comparing 
GAI and GAI-I with 1, 937 AI authors which collaborate over co-publications and only 
72 authors that collaborate over co-inventions. Since the aim of this work is to find key 
factors of collaboration, we only consider these 72 inventors for the data matrix and 
all hypotheses. In detail, for a given hypothesis H, represented by a adjacency matrix 
N, we omit the rows and columns that correspond to authors without any edges in the 
co-inventorship graph. Evaluation setup As a baseline hypothesis, we use a Random 
Co-author hypothesis, which is build by assuming that researchers choose their co-
authors randomly. This works as follows. For a publication with l authors and for each 
of its authors we create an artificial publication with l − 1 randomly selected co-authors. 
We scale all plots with respect to this baseline. To clearly arrange the results, we first 
analyze each proximity dimension separately. Then, we use the hypothesis with the 
highest evidence as representative for each dimension of proximity and compare the 
different dimensions of proximity. Since institutional and geographical proximity only 
have one hypothesis, we only include them in the comparison over the different dimen-
sions. When comparing the different dimensions of proximity, we also include the True 
hypothesis, which represents the actual transitions as hypothesis. Hence, it is the best 
possible explanation and can be understand as ground truth.

Analyzing co‑authorships

Figure  1 shows the evidence scores over a selected range of k-values for different 
hypothesis. Figure 1a compares hypotheses that belong to cognitive proximity. For all 
concentration factors, the LSA hypothesis extracts cognitive proximity in a way, which 
yields the highest evidence scores. It is followed by the NMF and BERT hypotheses. 
Figure 1b shows the analysis of organizational proximity. For small k values, the Affili-
ation and URL hypothesis have the highest evidence scores. When increasing k, hence 
believing more in every transitions stated by the hypotheses, the Affiliation hypothesis 
drops below URL and Hyperlink. Interestingly, the Hierachy hypothesis has the low-
est evidence scores overall. Social proximity is depicted in Fig. 1c. Here, a gap between 
graph based hypotheses (upper four hypotheses) and the Diss Loc hypothesis can be 
observed. The Deepwalk hypotheses has overall the highest evidence, followed by both 
node2vec approaches and HOPE. Finally, Fig. 1d shows the comparison of all proxim-
ity dimensions. Overall, the representative of social proximity yields the best explana-
tion of collaboration. It is followed by the representative of cognitive proximity and 
organisational proximity. Institutional and geographic proximity conclude the ranking.

Analysing co‑inventorships

Figure 2 shows the results for cognitive proximity. The results are similar to the previ-
ous analysis. The LSA hypothesis yields overall the highest evidence, followed by NMF 
and BERT. The organizational proximity is depicted in Fig.  2b. Here, all hypotheses 
lead to comparatively low evidence scores and even drop below the baseline for high 
k-values. For low k-values the Affiliation hypothesis ranks highest. On the other hand, 
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for high k-values the Hyperlink hypothesis has the highest evidence, followed by URL, 
affiliation and Hierachy hypothesis. The results for social proximity are depicted in 
Fig.  2c. Similar to the previous analysis, the Diss Loc is the worst indicator for col-
laboration. The highest evidence is achieved by the Hope hypothesis. Finally, Fig. 2d 
shows the combined view over the different proximities. As for the co-authorship, social 

Fig. 1  HypTrail graphs for co-author graphs. For Fig. 1d we choose the LSA hypothesis for cognitive prox-
imity, URL hypotheses as representative for organizational proximity and Deepwalk hypothesis for social 
proximity. Institutional and geographic proximity are represented by the only one hypothesis each



Scientometrics 

1 3

proximity is the best indicator for collaboration. In contrast to previous analysis, for 
low k values organizational proximity represented by the Affiliation hypothesis achieves 
the second highest evidence. When increasing the believe (higher k factors), cognitive, 
institutional and geographic proximity have higher evidences.

Fig. 2  HypTrail graphs for co-inventorships. For Fig. 2d we choose the LSA hypothesis as representative 
for cognitive proximity, the affiliation hypothesis for organizational proximity and Hope hypothesis for 
social proximity. Institutional and geographic proximity are represented by only one hypothesis each
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Discussion

For both forms of collaboration, social proximity serves as the best indicator, followed by 
cognitive proximity. Both dimensions lead to higher results then geographic proximity, 
indicating that social connection between actors and similar knowledge are more impor-
tant for collaboration than being co-located. This is consistent with prior findings that the 
role of geography mostly derives from the localization of social networks (Breschi and 
Lissoni, 2009). Its relevance may be further reduced by the increasing adoption of com-
munication technologies. Our findings do not suggest that organizational proximity is an 
important driver of collaboration. However, our ability to analyze hypotheses based on web 
data is limited since we could not collect web pages for all researchers. URLs for only 1163 
of 2131 researchers can be found in the GAW. This effect amplifies in the second analy-
sis, which only considers a subset of German AI researchers. The Diss Loc hypothesis 
suffers from the same issue, where we found dissertation locations of 1035 researchers. 
Furthermore, we notice differences when comparing the ranking of proximities between 
co-authorship and co-inventorship. Organizational proximity seems to be a poor indica-
tor of co-inventorship, finding even less support than the hypothesis that co-inventorships 
are chosen randomly. Furthermore, for describing co-inventorship, institutional proximity 
is more important than geographic proximity, which does not hold for co-authorships. This 
result is plausible because we expect co-inventorships to be more common in industrial 
contexts, where both inventors are connected to a non-academic affiliation. Another issue 
influencing the results are missing time-stamps for affiliations and homepages. This leads 
to hypotheses being built upon all data. Additionally, in the case of co-inventorships no 
temporal split was made because the overall number of collaborations is rather small. Our 
analysis primarily serves to identify associations between various forms of proximity and 
collaboration, whereas it is not designed to find key factors for the identification of future 
collaboration. Finally, various alternative representations for the different dimensions of 
proximity have not yet been evaluated. For example, social media data can be used to cre-
ate reasonable similarity functions for social proximity.

Conclusion

In this study we presented methods to identify relationships between different dimensions 
of proximity and the emergence of collaboration. For each dimension, we proposed several 
methods to quantify the similarity of two researchers. These methods were used to cre-
ate hypotheses about the origin of collaboration. To compare them with respect to their 
plausibility, we adapted the HypTrails approach. For our analyses, we used a novel data 
set of 2131 German AI researchers. By linking author data with web data, we were able to 
compute similarity scores between authors based on their web presence. With these linked 
data, we analyzed two forms of collaboration, namely co-authorship and co-inventorship. 
For the latter, we additionally linked our data with patent date from CRIOS Patstat. Our 
findings suggest that social proximity is the key factor to explain collaboration.

In future work, we plan to investigate additional forms of proximity and collaboration. 
For example, present-day communication and interaction often relies on social media. 
Hence, hypotheses based on data from such sources would lead to further interesting prox-
imity measures. Furthermore, an interesting aspect is the influence of funded projects. 
Further research can study whether such projects indeed lead to more co-publications. 
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Additionally, joint projects can be interpreted as a form of collaboration. Hence, further 
investigation could tackle the question which dimensions of proximity are relevant for joint 
projects.
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