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Abstract. Previous work on learning physical systems from data has
focused on high-resolution grid-structured measurements. However, real-
world knowledge of such systems (e.g. weather data) relies on sparsely
scattered measuring stations. In this paper, we introduce a novel sim-
ulated benchmark dataset, DynaBench, for learning dynamical systems
directly from sparsely scattered data without prior knowledge of the
equations. The dataset focuses on predicting the evolution of a dynami-
cal system from low-resolution, unstructured measurements. We simulate
six different partial differential equations covering a variety of physical
systems commonly used in the literature and evaluate several machine
learning models, including traditional graph neural networks and point
cloud processing models, with the task of predicting the evolution of
the system. The proposed benchmark dataset is expected to advance the
state of art as an out-of-the-box easy-to-use tool for evaluating models in
a setting where only unstructured low-resolution observations are avail-
able. The benchmark is available at https://anonymous.4open.science/
r/code-2022-dynabench/.
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1 Introduction

Dynamical systems, which are systems described by partial differential equations
(PDEs), are ubiquitous in the natural world and play a crucial role in many areas
of science and engineering. They are used in a variety of applications, including
weather prediction [5], climate modeling [7], fluid dynamics [22], electromagnetic
field simulations [33] and many more. Traditionally, these systems are simulated
by numerically solving a set of PDEs that are theorized to describe the behavior
of the system based on physical knowledge. An accurate modelling technique is
crucial for ensuring accurate predictions and simulations in these applications.
However, the equations used are often just an approximation of a much more
complex reality, either due to the sheer complexity of a more accurate model
which would be computationally infeasible or because the true equations are not
known [27].

In recent years, several models have been proposed in the deep learning com-
munity, which address the problem of simulating physical systems by learning to
predict dynamical systems directly from data, without knowing the equations a
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priori [6,11,18,25,31]. These types of approaches have a distinct advantage over
classical numerical simulations, as they do not require estimating the parame-
ters of the equations, such as the permeability of a medium or the propagation
speed of a wave. To ensure that the proposed models and architectures perform
and generalize well and to be able to draw a fair comparison between them,
it is necessary to compare them in a common experimental setting. As there
are very few real-world datasets readily available for this purpose, it is common
practice to employ simulated data as a simplified but easy-to-use and available
alternative to evaluate novel machine learning methods [1, 4, 11,19,35].

While some progress has been made towards creating a standardized bench-
mark [17, 29, 35] dataset of physical simulations, the previous work in this area
mainly focuses on the task of reconstructing the forward operator of the nu-
merical solver, for which the full computed solution on a high-resolution grid
of the differential equation is needed as training data. This makes it difficult to
assess the applicability of any approach evaluated this way on real data, where
measurements are typically neither high resolution nor grid-based, but instead
rely on a sparse network of measuring stations (cf. Figure 1).

Fig. 1: Map of weather stations within the European Climate Assessment
and Datasets (ECA&D) monitoring network for temperature and precipitation
data [15]. Monitoring stations are not located on a grid but instead strategi-
cally placed based on a variety of factors such as topography, accessibility, and
weather patterns.

To achieve greater fidelity to real-world conditions, we propose a novel bench-
mark dataset, DynaBench, that focuses on the challenging task of predicting the
evolution of a dynamical system using a limited number of measurements that
are arbitrarily distributed within the simulation domain. This more closely re-
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sembles a real-world setting and allows for a more accurate assessment of the
applicability of different models to real-world data. The benchmark consists of
simulations of six physical systems with different properties that are commonly
used as synthetic data for learning dynamical systems. The simulations have
been generated using a numerical solver. Our aim is not to cover all possible
physical systems, parameters, and equations but rather to provide a good start-
ing point to develop and compare machine learning models suited for this task.
The selection we propose is a combination of typical equations used to evaluate
deep learning models and equations with different properties (such as order of
derivatives and number of variables) that complement them.

In addition, we present a detailed evaluation of various comparison models
capable of learning functions on arbitrary geometries, including graph neural
networks [14,18,21,37], point cloud neural networks [32,34,40], and continuous
convolution models [36,39]. Our objective is to provide a set of strong baselines
for further research, and thus facilitate the development and testing of new
machine learning methods for predicting physical systems from unstructured
low-resolution data. Our results show that the selected models are capable of
providing accurate short-term predictions, but long-term forecasting remains an
open challenge.

With the release of DynaBench, we hope to provide a valuable resource for
the machine learning community, which will facilitate research and thus advance
the state-of-the-art in learning dynamical systems from data on unstructured
low-resolution observations.

The main contributions of our work can be summarized as follows.

1. We propose a new benchmark dataset for learning dynamical systems from
data under the assumption that measurements are sparse and not structured
on a grid.

2. We generate the dataset by simulating several differential equation systems
typically used for the task of learning dynamical systems.

3. We thoroughly evaluate several models capable of learning functions on ar-
bitrary geometries on the DynaBench dataset, including both graph neural
networks and point-cloud processing models.

4. We release both the dataset and the code for evaluating all models, to facil-
itate further research in this field 1.

2 Related Work

Several approaches for learning dynamical systems from grid data have been
proposed in recent years, but they lack comparability as different sets of equa-
tions and simulation parameters are used. Ayed et al. [4] propose a hidden-
state neural solver-based model and use a system of shallow water equations
and an Euler fluid simulation to evaluate it. Long et al. [26] evaluate their
numeric-symbolic hybrid model on the Burgers’ equation, diffusion equation and
1 The code is available at https://anonymous.4open.science/r/code-2022-dynabench/

https://anonymous.4open.science/r/code-2022-dynabench/
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convection-diffusion equation with a reactive source. Dulny et al. [11] evaluate
their neuralPDE Model based on neural solvers on several PDE systems, includ-
ing advection-diffusion, Burgers’ and wave equations. Li et al. [25] propose a
resolution invariant method based on the fourier transformation and test it on
Burgers’ equation, simplified Navier-Stokes system and steady-state darcy flow.

Similarly, authors proposing models for unstructured data (i.e. measurements
not on a grid) also do not evaluate their models on a common set of systems.
Karlbauer et al. [19] propose a graph-based recurrent model (Distana) to learn
spatio-temporal processes and evaluate it on the wave propagation equation.
Iakovlev et al. [18] use an advection-diffusion problem, as well as the heat equa-
tion and Burger’s equation, to evaluate their graph message passing approach.
Another approach proposed by Li et al. [24], the multipole graph neural opera-
tor, is evaluated on the steady state darcy flow, as well as the viscous variant of
the Burgers’ equation.

Recently, some progress has been made towards creating a standardized
benchmark for learning PDEs from data. Huang et al. [17] proposed a dataset
containing simulations of incompresible Navier-Stokes equations for fluid dy-
namics. While the main audience of the dataset is not the machine learning
community, as its central purpose is to compare different discretization and
solving schemes, the data could in theory still be used to train different models
for learning the solutions from data. However, it remains limited in the choice
of equations, as it only uses the Navier-Stokes equations, and furthermore is
not suited for evaluating models in a low-resolution regime. Otness et al. [29]
propose a benchmark specifically aimed at learning to simulate physical sys-
tems from data. However, the simulations are discrete systems (spring systems)
rather than continuous spatiotemporal processes defined by partial differential
equations. For this reason they cannot be used for the intended purpose of learn-
ing continuous systems from low-resolution measurements.

Takamoto et al. [35] propose a very extensive benchmark of eleven differ-
ent equation systems called PDEBench, including fluid simulations, advection
and diffusion equations, Burgers’ equation and more. The authors also provide
extensive experiments and evaluations for a variety of models. The benchmark
is well suited for learning in a high-resolution framework, where the whole dis-
cretized grid used during numerical solving is also used for training the mod-
els. However, the selection of equations consisting mainly of fluid simulations is
unsuitable for low-resolution predictions, as such systems show turbulent and
chaotic behavior [9,13] and therefore require a high-resolution discretization. As
such PDEBench is neither suited nor easily usable in a low-resolution regime,
where only limited number of scattered observation are available.

3 Dataset

In this section we describe the overall structure of the datasets, which equations
were included in the benchmark, how the simulations were executed, and what
postprocessing steps were performed.
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3.1 Setting

A PDE is a equation in which an unknown function is to be found, based on the
relations between itself and its partial derivatives in time and space. It can be
summarized in the form:

F (u,
∂u

∂t
,
∂u

∂x
,
∂u

∂y
, ...) = 0 (1)

As mentioned in Section 1 such equations can be used to model a variety of phys-
ical systems, by solving a previously known equation system using a measured
initial state. In the context of scientific machine learning, a typically researched
task is to reconstruct the parameters of the equation (i. e. the function F ) from
data obtained from a mixture of exact measurements and simulations. Recon-
structing the differential equations requires high-resolution data (both in time
and space), which is unavailable in a real world setting [11]. Our benchmark is fo-
cused on a different task, namely learning to predict the evolution of a dynamical
system from data, under the assumption that only low-resolution measurements
are available. Formally, a PDE solver seeks to approximate the true solution

u : Ω × T −→ R

by some approximate
ûh : Ω̂h × T̂h −→ R,

where Ω̂h is a high-resolution discretization of the solution domain Ω ⊆ Rn (typ-
ically a grid) and T̂h is a high-resolution time discretization of T ⊆ R (typically
T̂h = {t(h)k , k ∈ N} for t

(h)
k := t0 + k∆ht and some small ∆ht > 0).

For our task we assume that only low-resolution observations ûl at measure-
ment locations Ω̂l of the physical process u are available (i.e. |Ω̂l| ≪ |Ω̂h|), and
the temporal resolution T̂l = {t(l)k , k ∈ N} for t

(l)
k := t0 + k∆lt of the measure-

ments is also low (|∆lt| ≪ ∆ht). The task is then to predict the evolution of
the system ûl(Ω̂l, t

(l)
k+1), ûl(Ω̂l, t

(l)
k+2), . . . , ûl(Ω̂l, t

(l)
k+R), from the past observations

ûl(Ω̂l, t
(l)
k−H), . . . , ûl(Ω̂l, t

(l)
k−1), ûl(Ω̂l, t

(l)
k ).

3.2 Equations

Overall we curated a set of six different PDE equation systems, typically used
in the context of learning dynamical systems from data, with various properties
as summarized in Table 1. In the following we shortly describe each equation in
more detail.

Advection The advection equation

∂u

∂t
= −∇ · (cu) (2)

describes the displacement of a quantity described by a scalar field u in a medium
moving with the constant velocity c. It is a widely used benchmark equation due
to its simplicity and straightforward dynamics [11,26]
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Table 1: Summary of the PDE systems used in our benchmark dataset

Equation Components Time Order Spatial Order

Advection 1 1 1
Burgers 2 1 2
Gas Dynamics 4 1 2
Kuramoto-Sivashinsky 1 1 4
Reaction-Diffusion 2 1 2
Wave 1 2 2

Burgers’ Equation The Burgers’ equation

∂u

∂t
= R(ν∇2u− u · ∇u) (3)

is a non-linear second order PDE with respect to spatial derivatives
The equation describes the speed u of a fluid in space and time with ν

representing the fluid’s viscosity and R describing the rate of the simulation.
It is one of the most often used equations in the context of deep learning for
dynamical systems [11,18,24,35].

Gas Dynamics In gas dynamics, the system of coupled non-linear PDEs

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v

∂T

∂t
= −v · ∇T − γT∇ · v + γ

Mk

ρ
∇2T

∂v

∂t
= −v · ∇v − ∇P

ρ
+

µ

ρ
∇(∇v)

(4)

describes the evolution of temperature T , density ρ, pressure P and velocity v
in a gaseous medium. The equations are derived from the physical laws of mass
conservation, conservation of energy, and Newton’s second law [3]. The param-
eters specify the physical properties of the system, γ being the heat capacity
ratio, M the mass of a molecule of gas, and µ the coefficient of viscosity. This
equation can be seen as a simplified weather system.

Kuramoto-Sivashinsky The Kuramoto-Sivashinsky equation

∂u

∂t
= −1

2
|∇u|2 −∇2u−∇4u (5)

describes a model of the diffusive–thermal instabilities in a laminar flame front.
Solutions of the Kuramoto–Sivashinsky equation possess rich dynamical char-
acteristics [8] with solutions potentially including equilibria, relative equilibria,
chaotic oscillations and travelling waves.
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Reaction-Diffusion The Reaction-Diffusion system

∂u

∂t
= Du∇2u+ au(u− u3 − k − v)

∂v

∂t
= Dv∇2v + av(u− v)

(6)

describes the joint concentration distribution of a two component chemical reac-
tion, where one of the components stimulates the reaction and the other inhibits
it. The parameters Du and Dv describe the diffusion speed of the activator and
inhibitor respectively, k is the activation threshold, while au and av describe the
reaction speed of the two components. The equation has applicability in describ-
ing biological pattern formation and forms rich and chaotic systems [12,35].

Wave The wave equation
∂2u

∂t2
= ω2∇2u (7)

describes the propagation of a wave in a homogeneous medium (e.g. water sur-
face) where u describes the distance from equilibrium and ω represents the
material-dependent speed of propagation. It is a linear, second-order PDE that
has been widely used in scientific machine learning [11,19,20,28,30].

3.3 Simulation Parameters

The machine learning task for which our benchmark has been designed, is to learn
predictions from observations of a physical system. The system is assumed to
evolve according to a set of fixed physical laws that are have constant parameters
such as thermal conductivity, diffusion coefficients etc. To create simulations
of such systems, we specify the constant parameters with which the selected
equations are solved, as shown Table 2. The parameters have been chosen to
ensure a good balance between the complexity of the system and the numerical
stability of the simulations.

Table 2: Equation parameters used for the simulations

Equation Parameters

Advection cx = 1, cy = 1

Burgers ν = 0.5, R = 25

Gas Dynamics µ = 0.01, k = 0.1, γ = 1, M = 1

Kuramoto-Sivashinsky -
Reaction-Diffusion Du = 0.1, Dv = 0.001, k = 0.005, au = 1, av = 1

Wave ω = 1

The spatial domain of the simulation is set to Ω = [0, 1]× [0, 1] and the tem-
poral domain to T = [0, 200]. We initialize the state of each system using zeros,
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uniform (u) or normally (n) distributed noise, or a sum of Gaussian curves, indi-
vidually for each field, similar to what has been used in related work [11,19,35].
The exact specification of which initial condition is used for each individual vari-
able is summarized in Table 3. The sum of Gaussian curves has been calculated
in the following manner:

I(x, y) =

K∑
i=1

Aie
−

(x−µix)2+(y−µiy)2

σ2 (8)

The positions (µix, µiy) of each component i are sampled uniformly from
the simulation domain Ω, while their contributions Ai are sampled uniformly
from the interval [−1, 1]. The fixed parameters K and σ are set to 5 and 0.15
respectively.

Equation Field Initial Cond.

Advection u gaussian
Burgers u gaussian

v gaussian
Gas Dynamics ρ gaussian

T gaussian
vx zero
vy zero

Kuramoto-Sivashinsky u noise (u)
Reaction-Diffusion u noise (n)

v noise (n)
Wave u gaussian

∂u
∂t

zero

Table 3: Initial conditions used for each
system
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Fig. 2: Example of a gaussian
initial condition as defined in
Equation (8)

To run the simulations, the domain Ω is discretized as a 64× 64 grid, which
yields a cell size of ∆x = ∆y = 0.0156. The equations are solved using the
method of lines as numerical scheme [11]. We use the Explicit Runge-Kutta
method of order 5(4) [10] as the numerical integrator.

3.4 Postprocessing

The simulation is saved with a temporal resolution of ∆t = 1, producing ex-
actly 201 observations per simulation. As some of the equations produce non-
stationary physical processes, we normalize the data to ensure that range of
values remains similar across different equations, simulations and times. Finally,
we sample measurements to form the non-grid observation domain, by selecting
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uniformly K points from the simulation domain Ω and bilinearily interpolate
the values from the grid measurements.

3.5 Data availability

In total we generate 7000 different simulations for each equation, divided into
5000 training simulations and 1000 validation and test simulations each. For
each simulation, we use a different initial seed to sample the initial condition.
The benchmark is available in three different resolutions, where either K = 225,
K = 484, or K = 900 measurements are recorded. Additionally we provide a low-
resolution variant of the simulation measured on a grid with the same number
of points in total - 15× 15, 22× 22, 30× 30.

The full dataset (including the original high-resolution simulations) can be
downloaded from https://zenodo.org/2. Alternatively the same data can be gen-
erated from scratch using the provided source code and predefined seeds3.

4 Experiments

In this section we describe a selection of experiments that we performed on the
DynaBench dataset.

4.1 Models

In the following, we briefly describe the models used during the experiments.
We select several graph neural network and point cloud network baselines as
a comparison for available state-of-the-art architectures proposed for learning
dynamical systems from scattered measurements - graph kernel networks and
graph PDE networks. We do not include Distana [19] and Multipole Graph
Operator [24] (cf. Section 2) as there is no code available for the former and
the latter requires measurements obtained at different resolution levels and is
unsuitable for our setting.

Additionally, to better understand how the change of structure affects the
accuracy of the predictions, we evaluate three models that work on grid data
trained on a version of the dataset using the same number of measurements
but aligned on a grid, as described in Section 3.5. These include two variants
of a simple convolutional neural network [23] - with and without residual con-
nections [16] and neuralPDE, a model specifically designed to learn dynamical
systems from gridded data [11].

Finally, we use the persistence baseline as a reference point for all deep learn-
ing models.
2 To ensure anonymity, the link to the data will be published upon acceptance. The

data used for our experiments can be accessed from the following link: https://drive.
google.com/drive/folders/1IOgHdQxRxGn41mIHM3tM4pSssQjbStk9?usp=sharing

3 The code is available at https://anonymous.4open.science/r/code-2022-dynabench/

https://zenodo.org/
https://drive.google.com/drive/folders/1IOgHdQxRxGn41mIHM3tM4pSssQjbStk9?usp=sharing
https://drive.google.com/drive/folders/1IOgHdQxRxGn41mIHM3tM4pSssQjbStk9?usp=sharing
https://anonymous.4open.science/r/code-2022-dynabench/
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PointGNN is a graph neural network proposed by [34] to solve the task of object
detection in a LiDAR point cloud. It uses MLP-based feature aggregation within
a local neighborhood with an additional perturbation mechanism to offset the
coordinates of the neighboring points. This increases the translation invariance
of the calculated filters with respect to the center vertex coordinates.

Point Transformer (Point TF) is a model originally proposed by Zhao et
al. [40] for object classification and segmentation on 3D point clouds. It uses self-
attention, similar to transformer networks, to process features within a spatially
local neighborhood. We modify the original segmentation architecture to use 2D
point coordinates where the physical system has been measured.

Feature-Steered Graph Convolutions (FeaStNet) is a graph convolution
operator developed by Verma at al. [38] for 3D object analysis. It uses the node
features from the preceding layer to determine the correspondence between filter
weights and nodes in a local neighborhood. Thus it is able to adjust the filters
dynamically based on the final prediction task.

Graph Convolution Network (GCN) proposed by Kipf et al. [21] is a simple
generalization of convolutions to graph structures where no ordering of the neigh-
bors exists. It uses a first-order approximation of spectral graph convolutions to
aggregate features from neighboring nodes.

Graph Attention Network (GAT) proposed by Veličković et al. [37] incorpo-
rates an attention mechanism into convolutions on graphs used as weights for
aggregating the features from neighboring nodes in each layer. The attention
mechanism is able to (implicitly) assign different weights to different nodes in a
neighborhood.

Graph Kernel Network (KernelNN) is a deep learning approach proposed by
Anandkumar et al. [2] for learning a mapping between two infinite-dimensional
spaces. It uses kernel integration with a learnable Nyström kernel as an approx-
imation of the true neural operator. In the original experiments Anandkumar
et al. use a high-resolution grid on which the simulation is computed, but the
model itself can be applied to non-grid measurements.

Graph PDE Networks (GraphPDE) proposed by Iakovlev et al. [18] use the
neural network to parameterize the dynamics (rate of change) of the system
rather than making predictions directly. Similar approaches have been proposed
for grid data [4,11], outperforming classical architectures for this type of task. All
of these approaches, including graph PDE networks, use the parameterization
learned by message passing graph neural networks together with an differentiable
ODE solver to obtain predictions.

CNN originally developed by LeCun et al. [23] uses learnable convolutional
filters to enforce translation invariance of the learned mapping with respect to
the input position. While it was originally proposed for computer vision tasks it
has since been used in the context of learning to predict dynamical systems from
data. In our experiments we include a simple architecture with several stacked
CNN layers, as well as ResNet variant with residual connections [16].
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NeuralPDE is a model proposed by Dulny et al. [11] combing a convolutional
neural network used to parametrize the dynamics (rate of change) of a physical
system with differentiable ODE solvers to calculate predictions. The authors use
convolutional layers to approximate partial differential operators, as they directly
translate into a discretization using finite differences. This type of architecture
has been shown to perform exceptionally well on a variety of physical data.

Persistence describes the baseline obtained by applying the rule “today’s weath-
er is tomorrow’s weather”. It suggests the last known input as the prediction of
the next state. Any forecasting model should be able to outperform this baseline,
to be counted as useful. The persistence baseline is a common method used in
machine learning for time series forecasting tasks.

4.2 Setup

We trained and evaluated all selected models on the DynaBench dataset using
7000 simulations for each equation as training data, and 1000 for validation
and testing each. The input for the models is a H-step lookback of the system
state (the previous H states) measured at K locations that we merge along the
feature dimension. Specifically, for an physical system describing D variables,
the resulting input has the dimension H ×D.

We train all models on predicting the next step of the simulation by mini-
mizing the mean squared error (MSE):

min
ϕ

E
[
mϕ(Xt ∥Xt−1 ∥ . . . ∥Xt−H+1)−Xt+1

]2 (9)

Where Xt+1, Xt, Xt−1, . . . describes the state of the physical system at times
t+ 1, t, t− 1, . . .; mϕ is the neural network model with learnable parameters ϕ;
H is the lookback history; and ∥ denotes the concatenation operator.

For evaluating the models we rollout R predictions steps in a closed-loop
setting where the predictions of previous states are used as input for predicting
the new state. Specifically:

X̂t+1 =mϕ(Xt ∥Xt−1 ∥ . . . ∥Xt−H+1)

X̂t+2 =mϕ(X̂t+1 ∥Xt ∥ . . . ∥Xt−H+2)

X̂t+3 =mϕ(X̂t+2 ∥ X̂t+1 ∥ . . . ∥Xt−H+3)

...

X̂t+R =mϕ(X̂t+R−1 ∥ X̂t+R−2 ∥ . . . ∥ X̂t−H+R)

(10)

In our experiments we use H = 8, K = 900 and R = 16.

4.3 Results

Table 4 shows the results of our experiments for single-step predictions on the
test simulations. Our results show that non-grid models, such as kernel-based



12 Anonymous

neural networks and graph-based neural networks, can perform similarly to grid-
based models for short-term (1-step) predictions. Among the models trained on
unstructured data, the PointGNN and Point Transformer show the best perfor-
mance.

Table 4: MSE after 1 prediction step. The best perfoming model for each
equation has been underlined. Additionally, the best non-grid model has been
::::::::::
underwaved. A = Advection, B = Burgers’, GD = Gas Dynamics, KS =
Kuramoto-Sivashinsky, RD = Reaction-Diffusion, W = Wave

model A B GD KS RD W

FeaSt 1.30 · 10−4 1.16 · 10−2 1.62 · 10−2 1.18 · 10−2 4.89 · 10−4 5.23 · 10−3

GAT 9.60 · 10−3 4.40 · 10−2 3.75 · 10−2 6.67 · 10−2 9.15 · 10−3 1.51 · 10−2

GCN 2.64 · 10−2 1.39 · 10−1 8.43 · 10−2 4.37 · 10−1 1.65 · 10−1 3.82 · 10−2

GraphPDE 1.37 · 10−4 1.07 · 10−2 1.95 · 10−2 7.20 · 10−3 1.42 · 10−4 2.07 · 10−3

KernelNN 6.31 · 10−5 1.06 · 10−2 1.34 · 10−2 6.69 · 10−3 1.87 · 10−4 5.43 · 10−3

Point TF 4.42 · 10−5 1.03 · 10−2 7.25 · 10−3
::::::::

4.90 · 10−3
::::::::

1.41 · 10−4 2.38 · 10−3

PointGNN 2.82 · 10−5
::::::::

8.83 · 10−3

::::::::
9.02 · 10−3 6.73 · 10−3 1.36 · 10−4

::::::::
1.39 · 10−3

::::::::

CNN 5.31 · 10−5 1.11 · 10−2 4.20 · 10−3 6.70 · 10−4 3.69 · 10−4 1.43 · 10−3

NeuralPDE 8.24 · 10−7 1.12 · 10−2 3.73 · 10−3 5.37 · 10−4 3.03 · 10−4 1.70 · 10−3

ResNet 2.16 · 10−6 1.48 · 10−2 3.21 · 10−3 4.90 · 10−4 1.57 · 10−4 1.46 · 10−3

Persistence 8.12 · 10−2 3.68 · 10−2 1.87 · 10−1 1.42 · 10−1 1.47 · 10−1 1.14 · 10−1

However, for longer-term predictions, the grid-based models outperform the
non-grid models as shown in Table 5. For the grid-based models the underlying
spatial structure is fixed and they do not need to additionally learn the depen-
dencies between neighboring measurements. We hypothesize that because of the
simpler spatial dependencies, grid-based models are able to generalize better and
thus capture the long term evolution of the system more accurately.

Interestingly, we found that the models specifically designed to learn solving
PDEs, such as KernelNN and GraphPDE, were not as good as the other models
when the data was low-resolution as opposed to high-resolution data on which
they were originally evaluated. This suggests that their underlying assumptions
may be too strong to handle such data effectively.

Additionally, our study brings to light that long-term predictions are still an
unsolved challenge for all models. The divergence in predictions, as illustrated
in Figure 3, occurs rapidly and is particularly prominent in systems such as
Gas Dynamics and Kuramoto-Sivashinsky equations, where the prediction error
exceeds 0.5 after only 16 prediction steps. This level of error, which is half of the
standard deviation of the data (as explained in Section 3.4), renders it impossible
to make use of these long-term predictions. Thus, our findings emphasize the
need for further research and development in this field to address this issue.
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(b) Burgers
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(c) Gas Dynamics
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(d) Kuramoto-Sivashinsky
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(e) Reaction-Diffusion
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(f) Wave

Fig. 3: Visualization of the accumulation of errors for 16 step predictions for all
equations in DynaBench. For better readability, MSEs for diverging predictions
are not fully displayed.
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Table 5: MSE after 16 prediction steps, * - denotes that the system diverges
(MSE > 10). The best perfoming model for each equation has been underlined.
Additionally, the best non-grid model has been

::::::::::
underwaved. A = Advection, B

= Burgers’, GD = Gas Dynamics, KS = Kuramoto-Sivashinsky, RD = Reaction-
Diffusion, W = Wave

model A B GD KS RD W

FeaSt 1.48 · 100 5.61 · 10−1 8.20 · 10−1 3.74 · 100 1.30 · 10−1 1.61 · 100
GAT * 8.33 · 10−1 1.21 · 100 5.69 · 100 3.86 · 100 2.38 · 100
GCN * 1.31 · 101 7.21 · 100 * * 7.89 · 100
GraphPDE 1.08 · 100 7.30 · 10−1 9.69 · 10−1 2.10 · 100 8.00 · 10−2 1.03 · 100

:::::::

KernelNN 8.97 · 10−1 7.27 · 10−1 8.54 · 10−1 2.00 · 100
:::::::

6.35 · 10−2 1.58 · 100

Point TF 6.17 · 10−1
::::::::

5.04 · 10−1

::::::::
6.43 · 10−1
::::::::

2.10 · 100 5.64 · 10−2
::::::::

1.27 · 100

PointGNN 6.61 · 10−1 1.04 · 100 7.59 · 10−1 2.82 · 100 5.82 · 10−2 1.31 · 100

CNN 1.61 · 10−3 5.55 · 10−1 9.95 · 10−1 1.26 · 100 1.83 · 10−2 5.61 · 10−1

NeuralPDE 2.70 · 10−4 6.60 · 10−1 4.43 · 10−1 1.06 · 100 2.24 · 10−2 2.48 · 10−1

ResNet 8.65 · 10−5 1.86 · 100 4.80 · 10−1 1.07 · 100 7.05 · 10−3 2.99 · 10−1

Persistence 2.39 · 100 6.79 · 10−1 1.46 · 100 1.90 · 100 2.76 · 10−1 2.61 · 100

5 Conclusion

We have proposed a new benchmark dataset for learning dynamical systems from
data under the assumption that measurements are sparse and not structured
on a grid. This is closer to real-world data than other resources available, as
typically measurements are obtained from monitoring stations scattered withing
the observation domain.

The DynaBench dataset covers a wide range of physical systems with differ-
ent properties such as number of connected variables, degree of the differential
operators etc. We have thoroughly evaluated several models capable of learning
functions on arbitrary geometries on the DynaBench dataset, including graph
neural networks, point-cloud processing models and several state-of-the-art ap-
proaches. Our results show that the selected models are on par with state-of-
the-art grid models in providing accurate short-term predictions, but long-term
forecasting remains an open challenge.

We hope that the release of DynaBench will facilitate and encourage research
in this area, leading to advancements in the state-of-the-art and as a consequence
more accurate models for real-world data, which our benchmark is mirroring.
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Ethical statement

This research paper proposes a benchmark dataset and evaluates several machine
learning models for learning dynamical systems from data. The use of bench-
marking is a common practice in the machine learning community to compare
different models in a standardized setting. Synthetic datasets are used because
they allow for a controlled environment and can be generated easily. However,
it should be noted that synthetic data can never perfectly represent real-world
data, and as such, every model should also be evaluated on real-world data before
being used in critical applications.

Potential risks associated with incorrect predictions of important systems
such as weather and climate simulations or electromagnetic field simulations
for safety assessment should be discussed thoroughly. Synthetic datasets can
provide a useful starting point for model evaluation and the development of
new approaches, but they need to be assessed on domain-specific data for real-
world deployment. Particularly for safety-critical applications. While our pro-
posed benchmark dataset and evaluated machine learning models provide useful
insights into learning dynamical systems, they should not be used as the sole
basis for making important political decisions, particularly concerning weather
or climate data.

While data-driven approaches have again and again shown their superior-
ity over classical methods in a variety of applications, they are also prone to
overfitting and adversarial attacks, if not carefully designed and validated. The
risks and benefits of replacing existing numerical simulations or expert knowl-
edge with deep learning approaches should always be taken into account and
thoroughly discussed when developing and applying new models. Any decision
based on machine learning models should be made after considering the poten-
tial sources of errors the models introduce, as well as the lack of explainability
of black-box approaches.
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