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Abstract. Sensor-equipped beehives allow monitoring the living conditions of
bees. Machine learning models can use the data of such hives to learn behavioral
patterns and find anomalous events. One type of event that is of particular inter-
est to apiarists for economical reasons is bee swarming. Other events of interest
are behavioral anomalies from illness and technical anomalies, e.g. sensor fail-
ure. Beekeepers can be supported by suitable machine learning models which
can detect these events.

In this paper we compare multiple machine learning models for anomaly
detection and evaluate them for their applicability in the context of beehives.
Namely we employed Deep Recurrent Autoencoder, Elliptic Envelope, Isolation
Forest, Local Outlier Factor and One-Class SVM. Through evaluation with real
world datasets of different hives and with different sensor setups we find that the
autoencoder is the best multi-purpose anomaly detector in comparison.

Keywords: Precision beekeeping · Anomaly detection · Deep learning ·
Autoencoder · Swarming

1 Introduction

Supporting beekeepers in their care decisions is the goal of precision apiculture. To this
end, sensors are used which collect data on 1) apiary-level (i.e. meteorological param-
eters), 2) colony-level (i.e. beehive temperature), or 3) individual bee-related level (i.e.
bee counter) [24]. For colony-level data, environmental sensors are installed in bee-
hives in order to monitor and quantify the beehive’s state continuously. Sensor values
we expect most of the times are defined as normal regions of observations, while values
differing considerably from this norm are called anomalies. Defining norm and anomaly
is always contingent on the context of the analysis. We differentiate between behavioral
anomalies, sensor anomalies and external interference. The first anomaly type is charac-
terized by irregular behavior of the bees, the second type occurs when there are irregular
measurements due to the sensors, and the last type represents anomalies induced by any
external force.

An important behavioral anomaly for beekeepers is swarming, which describes a
queen leaving her hive accompanied by worker bees in order to establish a new colony.
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First, there is the prime swarm where the current queen leaves the hive with a large num-
ber of worker bees. This can be followed by multiple after swarms with fewer workers
departing. These events can even lead to the complete depletion of a colony [23]. Bee-
keepers want to prevent swarming as it reduces honey production. Additionally, swarm-
ing requires immediate action to recollect the new colonies. Due to the highly stochastic
nature of this reproduction process the prediction of these events is difficult.

Anomalies which are not directly related to bees can also occur. On the one hand,
there are sensor anomalies which are caused by defective sensors. These require repair
in order to restore a beehive’s complete functionality. On the other hand, there can be
anomalies due to external interference. This usually occurs through physical interaction
of the beekeeper with the hive, e.g. when the hive is opened to yield honey.

For large datasets of beehive data it is infeasible to find anomalies manually. There-
fore, we apply automatic anomaly detection methods. A number of machine learning
algorithms have shown to provide this functionality in other domains. It is therefore
interesting to assess how these methods perform in the context of beekeeping.

In this work, we evaluate multiple common anomaly detection models, namely
Deep Recurrent Autoencoders, Elliptic Envelope, Isolation Forests, Local Outlier Fac-
tor and One-Class SVMs, for their applicability with beehive data. We evaluate these
models on three datasets for this work: Two short term datasets, one from [25] and the
other from we4bee (https://we4bee.org/), and one long term dataset from the HOBOS
(https://hobos.de/) project containing four years of data. These datasets contain labelled
swarming events (e.g. observed events by the apiarist) and other anomalies without
labels (e.g. hidden or unobserved). The models are trained to find anomalies based on
temperature readings of a beehive in an univariate setting (with one temperature sen-
sor) and in a multivariate setting (with three temperature sensors). We use the labelled
swarms to assess anomaly detection performance of our models quantitatively. Our
results suggest that recurrent autoencoders provide consistently good results across the
datasets for both, the univariate and the multivariate setting, compared to the other mod-
els. Elliptic Envelope’s performance is inconsistent, since it showed by far the best
performance when trained on one beehive but also the worst when trained on another
beehive. This implies, prediction quality is strongly dependent on the training data. The
other models have also shown to provide relatively good performance. Furthermore, we
present other types of anomalies found through automatic anomaly detection, namely
through the recurrent autoencoder, for which no labels exist and discuss the usage of
anomaly detection for non-swarming anomalies.

Our contribution is twofold: First, we compare typical anomaly detection machine
learning models for swarm detection in both a univariate and a multivariate sensor set-
ting. Second, we present other types of anomalies found by the recurrent autoencoder
in the beehive datasets and discuss anomaly detection for these anomalies.

In this work we present an extension of our work in [6]. This includes a broader
spectrum of anomaly detectors, not solely the recurrent autoencoder. Furthermore we
added a quantitative analysis of the swarm prediction quality of all detectors. The anal-
ysis was done in a univariate sensor setting, as well as a multivariate setting.

This work is structured as follows: Related research is presented in Sect. 2. Section
3 describes the datasets used in this work. The different anomaly detection models of

https://we4bee.org/
https://hobos.de/


Anomaly Detection in Beehives 3

our comparison are presented in Sect. 4. A description of our experiments can be found
in Sect. 5 while their results are shown in Sect. 6. We discuss our results in Sect. 7
before concluding the work in Sect. 8.

2 Related Work

There are a number of works which encompass monitoring and detection of swarms in
beehives.

Ferrari et al. [8] analyzed humidity, temperature and sound in beehives to under-
stand how these variables change before and during swarming. To this end, they used
data from three beehives where nine swarming events had occurred. The authors iden-
tified that a change in temperature and a shift in sound frequency might be useful indi-
cators for swarming.

Kridi et al. [11] determined pre-swarming behavior through clustering temperature
data. If measurements cannot be assigned to clusters of typical beehive temperature
patterns for several hours, the authors consider this an anomaly.

Zacepins et al. [25] proposed an rule-based algorithm for swarming detection using
data from a single temperature sensor. Their algorithm (from here on denoted as RBA)
detects a swarming event if the temperature is above 35.5 ◦C for between two and
twenty minutes. Events with shorter or longer temperature anomalies are not consid-
ered to be swarms.

Zhu et al. [27] link a linear rise in temperature to pre-swarming behavior. They
recommend placing a temperature sensor between the bottom of the first frame and
the beehive’s wall, as this is the most suited location for measuring this increase in
temperature.

While some of these works propose swarm detection methods, none of them evalu-
ated a larger set of common machine learning approaches for anomaly detection. Pop-
ular models include One-Class SVMs [21], Local Outlier Factor (LOF) [3], Elliptic
Envelope [19], Isolation Forests [13] and neural networks [20]. As for neural net-
works, recurrent autoencoders performed particularly well on sequential data across
many anomaly detection settings [4,9,15,22]. Therefore, we evaluate these algorithms
to identify which is the most promising for this task.

3 Datasets

We obtained datasets from three sources for our studies: HOBOS, we4bee, and a subset
of Zacepins et al. [25] dataset. We selected two HOBOS beehives in Würzburg and Bad
Schwartau and one we4bee hive in Markt Indersdorf for our experiments. Zacepins et
al. data was collected in Jelgava. From here on, we refer to all datasets by the location
of the beehive.

3.1 Würzburg and Bad Schwartau

HOBOS collected evironmental data from five sensor equipped beehives (species apis
mellifera; beehive type: zander beehive) in Bournemouth, Münchsmünster, Gut Dietl-
hofen, Bad Schwartau and Würzburg. We selected the hives in Bad Schwartau as there
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are three verified swarming events. In contrast, data for the Würzburg beehive is com-
pletely unverified. We use this beehive to assess cross-beehive applicability of our mod-
els. HOBOS beehives come with different sensor configurations. Figure 1 shows the
maximum sensor configuration: 13 temperature sensors, named T1 to T11 mounted
between the honeycombs and T12 and T13 mounted on the back and front of the hive
respectively, plus weight, humidity, and carbon dioxide (CO2) sensors. The beehives in
Bad Schwartau and Würzburg are both missing some of the temperature sensors: Bad
Schwartau is not equipped with T2, T3, T9, T10 and T12 and Würzburg is not equipped
with T2 and T3. HOBOS collected data from May 2016 to September 2019. During
this time, sensor readings were collected once per minute for every sensor. As the typ-
ical swarming period for honey bees is May to September [7], we limit data for our
preliminary study to the swarming period. HOBOS granted us access to their complete
dataset.

Analysis. The Pearson correlation coefficients between different sensors, e.g. inter-
sensor correlations, are visualized in Fig. 8 in the appendix. Within the normal data
portion of the dataset, these correlations are strong, especially between adjacent sen-
sors. Correlations are even higher for the sensors T4–T10 placed in the center of the
beehive, and go beyond directly adjacent sensors, i.e. sensors T4 and T10 still correlate
positively. The sensors placed at the outer margins of the apiary tend to correlate with
the sensors placed outside, as well as their opposite counterpart.

During days containing anomalies, correlations are not that strong, except for neigh-
boring sensors. This implies, that certain sensors are more sensible for swarm detection,
as also stated in [27].

Fig. 1. Back of a HOBOS beehive. Temperature sensors T1–T11 are mounted between honey-
combs, temperature sensors T12 and T13 are mounted on the back and the front of the hive,
respectively. E denotes the hive’s entrance on the front of the beehive [6].
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3.2 Jelgava

Zacepins et al. monitored ten colonies (apis mellifera mellifera; norwegian-type hive
bodies) with a single temperature sensor placed above the hive. The observation ran
from May to August in 2015 and recorded one measurement per minute. The authors
recorded nine swarming events during their observation period and granted us access to
the nine days in the dataset that contain these events.

3.3 Markt Indersdorf

we4bee started rolling out 100 smart top bar hives to schools and interested individuals
all over Germany in 2019. In the same year, first bee colonies have been introduced into
the hives. One successful hive of this first project year is the hive in Markt Indersdorf
(apis mellifera; top bar hive). Figure 2 shows the cutaway view of a we4bee hive: it
includes four temperature sensors on the inside of the hive and one on the outside. Three
temperature sensors inside the hive distributed along the length of the hive, the fourth is
located at the back. The inner temperature sensors are referred to as Tl, Tm, and Tr for
the sensors in the hive body; the sensor at the back is named Ti. The outside sensor is
called To. we4bee hives also report other environmental quantities: air pressure, weight,
fine dust, humidity, rain and wind. For Markt Indersdorf we obtained data from June
(when the colony was introduced to the hive) to September 2019. All sensors except
fine dust reported one measurement per second; fine dust was recorded once every three
minutes.

Fig. 2. Cutaway view of a we4bee beehive. Tl, Tm, Tr , and Ti are mounted on the inside, laterally
to the honeycombs. To is placed outside at the pylon. E denotes the entrance on the front of the
beehive [6].
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4 Methods

4.1 (Recurrent) Autoencoder

An autoencoder (AE) consists of two neural networks, an encoder φ and a decoder ψ.
The encoder maps the input space X into the feature space (φ : X → F). In contrast,
the decoder remaps the feature space into the input space (ψ : F → X ). The task
of the encoder-decoder pair is to adapt both mapping steps in a way, that decoding an
encoded sequence closely resembles the input itself: x̄ = ψ(φ(x)) ∼ x. When training
the AE with normal data, this kind of data is encoded very well within the feature space,
whereas anomalous data cannot be reconstructed properly, incurring a high difference
in prediction and input.

This difference is quantified by a loss function L, which is often the l2 norm [26] or
the MSE (mean squared error) [22]. The optimization task can be stated as follows:

φ, ψ = arg minφ,ψL(x, ψ(φ(x))).

An anomaly is any input with a resulting loss that is greater than α, which is the anomaly
threshold: L(x, x̄) ≥ α. This hyperparameter can either be set manually or determined
with a labelled anomaly set in a second training step. Optimally, α is set high enough
to detect all anomalies, but not too low to be overly sensible within predictions [16].

4.2 Local Outlier Factor

The local outlier factor [3] estimates the degree or probability of an instance being an
anomaly, rather than performing a binary classification. The algorithm is based on the
idea of density based clustering, which generally requires two parameters: a minimum
number of objects k and a volume value. Together, these parameters define a local
density. Regions with densities higher than the density threshold form clusters and are
separated by regions with densities below the density threshold.

As an extension of this idea, the local outlier factor algorithm only relies on one
parameter, the minimum number of neighbors k. Densities are calculated by using
the k-heighborhood. The local reachability density is the average reachability dis-
tance of a point to its k neighborhood. The reachability distance of two points is the
maximum of the k-distance or the distance between the two points: rdk(A,B) :=
max{k − distance(B), d(A,B)} [3]. Finally, the local outlier factor of a point is cal-
culated as the average local reachability density of the k neighborhood divided by the
local reachability of a given point.

A local outlier factor of ≤1 indicates an (cluster) inlier, whereas values >1 indicate
outliers.

4.3 Isolation Forest

While most anomaly detectors build internal profiles of normal data and report anoma-
lies that do not fit in these profiles, the isolation forest is based on the idea of isolating
anomalies [13,14]. An isolation forest consists of several isolation trees, or iTrees. An
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iTree is a binary search tree, which consists of external nodes (e.g. nodes without chil-
dren) and internal nodes (e.g. nodes with exactly two children). Internal nodes split the
data by a random attribute q and a corresponding split value p. If a data point fullfills the
“test” function q < p the path to the first child is followed, otherwise the second path
is pursued. This structure is repeated until all data points x in the dataset are isolated in
an external node.

Since anomalies are isolated more easily, the path length h(x) for an anomalous
point is shorter than for normal data. An anomaly score can be computed as s(x,m) =
pow(2,−E(h(x))/c(m), where E(h(x)) is the average h(x) from all iTrees and c(m)
represents the average path length given the sample size m. The anomaly score indicates
an anomaly if it is close to 1 and normal data for values close to or below 0.5.

4.4 Elliptic Envelope

Elliptic envelope is an anomaly detection algorithm that is based on the minimum
covariance determinant (MCD) estimator and assumes the data to be sampled from
an elliptically symmetric unimodal distribution. MCD is a highly robust estimator of
multivariate location and scatter [18].

The method subsamples the data X in H1 and computes an estimate of the location
T1 and the covariance of each sample S1. A new subsample H2 is built with the h =
(n + p + 1)/2 samples with the lowest robust distance [19], where n is the number of
samples in H1 and p the number of features. This subsampling process is repeated until
the determinant of the covariance converges within a given tolerance. Elliptic envelope
finally flags every sample as outlier that has a robust distance above a cutoff value√

χ2
p,0.975 [19].

4.5 One-Class SVM

The one-class support vector machine (SVM) [12], is an extension of the standard sup-
port vector machine [5] for unsupervised outlier detection. The SVM algorithm is nor-
mally applied to supervised two class classification problems. Input is classified by
finding a hyperplane with maximum distance to the closest instances of the two classes.
Data points of the same class, in our setting normal data or anomalous data, are grouped
on the same side of this plane. To account for datapoints still being non-seperable, a
penalty parameter is introduced. The One-Class SVM reuses the SVM algorithm by
setting all class labels to the same class. This means, the separating hyperplane is an
envelope around the normal data, with a maximum distance towards all anomalies.

5 Experimental Setup

All models described in Sect. 4 are evaluated on the datasets outlined in Sect. 3.

Data Splitting. We used the HOBOS hives for training and validation purposes. That is,
we trained on Bad Schwartau and Würzburg in independent settings using the reported
and found [6] swarming events. Explicitly, we built two setups: one with training the
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models on the normal behavior of Bad Schwartau, using its anomalous behavior as a
validation set for the parameter search, and one with the training step consisting of
the normal behavior of Würzburg, while validating on its anomalous behavior set. The
datasets from Jelgava and Markt Indersdorf, as well as the test set from the untrained
hive were only used for evaluation. All models were provided with the same splits of
input data to ensure comparability.

As customary in novelty detection (i.e. AE, Isolation Forest), the training data
shouldn’t be polluted by outliers. For that, we visually examined the datastream and
marked each day as normal behavior, or as an outlier, e.g. an anomaly. We defined
normal behavior as any temperature sensor trace remaining nearly constant at 34.5 ◦C
as the core temperature [8,25]. Any larger deviation form this norm temperature were
considered as anomalous days. Figure 3 shows sensor data to be expected from a nor-
mal day. Training and validation parts consist exclusively of normal data, while test
and holdout sets combine normal and anomalous data. Test sets are any portions of the
dataset with anomalous data, that don’t originate from the beehive used for training.
The holdout set, which contains the anomalous behavior from the training hive, is used
for the parameter search of the estimators.

An exemplary view of the data splitting procedure for the Bad Schwartau hive can
be seen in Fig. 4. Keep in mind, that the test and holdout sets also contain slices of
normal data and are not necessarily only windows with anomalies.

Input Data. In any univariate sensor setting, we use central temperature sensors. For
the hives in Würzburg and Bad Schwartau, those are T6 – T8, from which we evaluate
data on T6 and T8. In Markt Indersdorf this is Tm, which we additionally downsampled
to one minute resolution to be consistent with the other datasets. For Jelgava the single
temperature sensor at the top is used. In the multivariate sensor setting, we used senors
T6, T7, T8 for the hives Bad Schwartau and Würzburg, whereas we used Tl, Tm, Tr in
Markt Indersdorf.

Fig. 3. Normal behavior of all three sensors [6].
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Any model is given a 60 min window of sensor data, which corresponds to 60 con-
secutive input values of temperature data per sensor. According to [8,25,27] swarming
events last from 20 min to 60 min in duration.

In the multivariate sensor setting, the AE is provided with sensor data of 60 × 3,
whereas the other models are given 60 · 3 values, i.e. concatenating the three sensors.

Input data for the AE was normalized via standard scaling (e.g. their z-score). The
non-autoencoder models were provided with the raw and unscaled sensor values, since
scaling impaired their predictions.

Model Training. The optimal parameter settings for the models were found employing
a random search [2]. A table with all parameters that were optimized is given in the
appendix (see Table 4). Parameters were optimized using the normal data of a beehive,
while using the anomalous behavior of that hive as the validation set for this search.
The F1 score of predicting swarms was used as the metric to be maximized.

For the models Local Outlier Factor, Elliptic Envelope, Isolation Forest and One-
Class SVM we relied on the implementations in [17]. In the same setting we searched
for the remaining parameter α for the pre-trained AE, which we could not do in [6] due
to missing labels. Within this (second) parameter setting step for the swarm detection,
we used a windowing technique, shifting the window by 15 min forward in time to
extract the next window.

Pre-training of the AE was done in a preliminary random search (see appendix),
finding the best hyperparameters for the reconstruction task itself. The Adam optimizer
[10] was used with the default parameters (lr = 10−3) and the mean squared error
(MSE) as the loss function. Early stopping with five epoch patience was employed
to prevent overfitting. For pre-training, we used all suitable measurement windows by
shifting the window one time step further.

Fig. 4. The data splits used for Bad Schwartau. The autoencoder is trained on Bad Schwartau’s
‘Training’. The hyperparameters and α are tuned using its ‘Validation’ and ‘Holdout’, respec-
tively. The model is then tested on all ‘Test’. For Würzburg, the splits are set accordingly using its
‘Training’, ‘Validation’, and ‘Test’ as ‘Holdout’. We provide the recording time for all splits [6].
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Predictions. RBA [25] is utilized on all anomalous behavior subsets to predict swarm-
ing events. We additionally used it on the normal behavior portions of the dataset to
ensure no swarming events in the training steps of both training hives.

Predictions with all other models were made by using the best model configura-
tion found in the random search, while predicting events within the tests sets, e.g. the
anomalous sets. For instance, a model was trained on Bad Schwartau, using its hold-
out set for the grid search, while predicting the anomaly sets of Würzburg, Jelgava and
Markt Indersdorf.

Evaluation. To evaluate the various classifiers, we used standard classification metrics.
True positives (TP) contain all time series correctly classified as swarms, whereas true
negatives (TN) represent all time series correctly labelled as non-swarms. The other two
units quantify miss-classifications. false positives (FP) are any non-swarms classified as
swarms, and false negative (FN) any swarms categorized as non-swarms.

With these quantifiers, we can calculate performance measures of the classifiers:

P :=
TP

TP + FP
R :=

TP

TP + FN
F1 :=

2 · P · R

P + R

where P represents the precision, R the recall and F1 the F1-measure.

6 Results

6.1 Univariate

Table 1 lists the classification metrics for swarming events in the univariate sensor set-
ting for temperature sensor T8 on the hives Würzburg and Bad Schwartau respectively.
The left hand side shows classification metrics using Bad Schwartau as the training hive,
the right hand side shows this for Würzburg. The best results in the category precision
and F1 are highlighted in bold, except for RBA. For full disclosure, Markt Indersdorf is
listed in this table, too, but since there are no true positives for swarms, the metrics are
degrade and therefore it is not taken into account for calculations.

Discussion. As already mentioned in Sect. 5, we only optimized the parameters regard-
ing the F1 score for predicting swarming events. This has direct implications on the
displayed metrics of Tables 1 and 2, since any true anomaly that is not a swarm is
reported as a false positive. As we only have labels for swarming events, these tables
are meant to show the differences in predictions when automatically optimizing models
with very sparse (Würzburg: 8, Bad Schwartau: 24 swarming windows) events and no
specialization.

When comparing Table 1 predictions from both different training hives, there are a
few remarkable differences: Overall, the classification results are better when training
on Bad Schwartau (F1 : [.09, .12]) in contrast to training on Würzburg (F1 : [.03, .12]).
The main reason for that is the very high inclination of the classifiers towards never
predicting a swarming event in Würzburg. Some anomaly detectors even report no true
positive for swarming events (Elliptic Envelope, One-Class SVM). Even the metrics
on the Jelgava test set decline significantly (Bad Schwartau: F1 : [.48, .69], Würzburg:
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Table 1. Overview of classification metrics and results. Results are only calculated by the true
positives of swarms! The estimators are trained on Bad Schwartau on the left hand side and
Würzburg on the right hand side (separated by vertical double lines), both with sensor T8. Preci-
sion (P), Recall (R), and F1 are reported, and set to 0 for no correct classification and F1 set as
NA. Corresponding true positives (TP), false positives (FP), false negatives (FN), and true nega-
tives (TN) values are also reported. The overall metrics are calculated from the weighted scores
from each hive.

Classifier Hive P[%] R[%] F1[%] TP FP TN FN Hive P[%] R[%] F1[%] TP FP TN FN

Local Outlier Factor Jel. 0.32 1.00 0.48 36 78 723 0 Jel. 0.07 1.00 0.13 36 484 317 0

Wü. 0.01 0.63 0.02 5 485 4268 3 B. S. 0.01 1.00 0.01 24 3925 716 0

All 0.06 0.68 0.09 41 563 4991 3 All 0.02 1.00 0.03 60 4409 1033 0

M. I. 0.00 0.00 NA 0 1532 5185 0 M. I. 0.00 0.00 NA 0 303 6414 0

Elliptic Envelope Jel. 0.5 0.97 0.66 35 35 766 1 Jel. 0.17 1.00 0.29 36 174 627 0

Wü. 0.00 0.00 NA 0 51 4702 8 B. S. 0.01 0.88 0.01 21 3772 869 3

All 0.07 0.15 0.10 35 86 5468 9 All 0.03 0.89 0.05 57 3946 1496 3

M. I. 0.00 0.00 NA 0 58 6659 0 M. I. 0.00 0.00 NA 0 17 6700 0

Isolation Forest Jel. 0.33 0.75 0.45 27 56 745 9 Jel. 0.21 0.89 0.34 32 121 680 4

Wü. 0.00 0.50 0.00 4 2443 2310 4 B. S. 0.00 0.50 0.00 4 2443 2310 4

All 0.05 0.54 0.07 31 2499 3055 13 All 0.03 0.56 0.05 36 2564 2990 8

M. I. 0.00 0.00 NA 0 5226 1491 0 M. I. 0.00 0.00 NA 0 4056 2661 0

One-Class SVM Jel. 0.59 0.83 0.69 30 21 780 6 Jel. 0.30 0.89 0.45 32 75 726 4

Wü. 0.00 0.00 NA 0 298 4455 8 B. S. 0.01 0.88 0.01 21 2255 2386 3

All 0.09 0.12 0.10 30 319 5235 14 All 0.05 0.88 0.08 53 2330 3112 7

M. I. 0.00 0.00 NA 0 1363 5354 0 M. I. 0.0 0.0 NA 0 204 6513 0

AE Jel. 0.57 1.0 0.73 37 28 772 0 Jel. 0.50 1.00 0.67 36 36 765 0

Wü. 0.01 0.50 0.02 4 506 4247 4 B. S. 0.01 0.88 0.02 21 2329 2312 3

All 0.09 0.57 0.12 40 535 5019 4 All 0.08 0.89 0.12 57 2365 3077 3

M. I. 0.00 0.00 NA 0 251 6466 0 M. I. 0.00 0.00 NA 0 1934 4783 0

RBA Jel. 1.00 0.50 0.67 18 0 801 18 Jel. 1.00 0.50 0.67 18 0 801 18

Wü. 0.07 0.25 0.11 2 27 4726 6 B. S. 0.57 0.33 0.42 8 6 4635 16

All 0.21 0.29 0.19 20 27 5527 24 All 0.64 0.36 0.46 26 6 5436 34

M. I. 0.00 0.00 NA 0 4 6713 0 M. I. 0.00 0.00 NA 0 4 6713 0

F1 : [.13, .45]) for all detectors except the AE (Bad Schwartau: F1 : .73, Würzburg:
F1 : .69).

In both cases, the AE is the best swarm detector within the machine learning algo-
rithms (highlighted in bold). It also seems to be more robust regarding the origin of
data, since the F1 score (0.12) is the same for both training scenarios.

RBA is the best swarm detector regarding the metrics. It does however miss more
swarming events (4 vs. 24), some due to the windowing technique used, since in relies
on the base temperature 30 min pre-swarming. The major contributing factor for the
better metrics performance is the very low false positive rate. This is to be expected,
since it is only built for swarm detection and isn’t drawn away towards other anoma-
lies and thus inherently has a lower false positive rate. For example, any temperature
deviation below 34.5 ◦C is completely ignored, but may in fact be an anomaly.
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6.2 Multivariate

Table 2 lists the classification metrics in the multivariate sensor setting for tempera-
ture sensors T6, T7, T8 for the hives Bad Schwartau and Würzburg. Calculation of the
metrics is done in the same manner as in the univariate setting. The table lists only the
multivariate datasets. The classification metrics of Würzburg are reported when training
on Bad Schwartau and vice versa. Furthermore the lines with Markt IndersdorfX show
the reports when training on hive X and predicting Markt Indersdorf.

Table 2. Overview of classification metrics and results in the multivariate setting. Results are
only calculated by the true positives of swarms! The estimators are trained on Bad Schwartau
predicting Würzburg (and vice versa) and sensor T6, T7, T8. Precision (P), Recall (R), and F1 are
reported, and set to 0 for no correct classification and F1 set as NA. Corresponding true positives
(TP), false positives (FP), false negatives (FN), and true negatives (TN) values are also reported.
The overall metrics are calculated from the sum of the number of classifications.

Classifier Beehive P[%] R[%] F1[%] TP FP TN FN

Local Outlier Factor Würzburg 0 0 NA 0 55 4698 8

Bad Schwartau 0.005 0.875 0.010 21 4086 222 3

Overall 0.005 0.656 0.010 21 4141 4920 11

Markt IndersdorfW 0 0 NA 0 5132 1585 0

Markt IndersdorfS 0 0 NA 0 1055 6552 0

Elliptic Envelope Würzburg 0 0 NA 0 177 4576 8

Bad Schwartau 0.006 0.875 0.011 21 4063 578 3

Overall 0.005 0.656 0.010 21 4240 5154 11

Markt IndersdorfW 0 0 NA 0 3955 3762 0

Markt IndersdorfS 0 0 NA 0 2842 3875 0

Isolation Forest Würzburg 0.001 0.500 0.002 4 3206 1547 4

Bad Schwartau 0.005 0.875 0.011 21 3841 800 3

Overall 0.004 0.781 0.007 25 7047 2347 7

Markt IndersdorfW 0 0 NA 0 6694 23 0

Markt IndersdorfS 0 0 NA 0 6387 330 0

One-Class SVM Würzburg 0.001 0.500 0.002 4 3206 1547 4

Bad Schwartau 0.005 0.875 0.011 21 3841 800 3

Overall 0.004 0.781 0.007 25 7047 2347 7

Markt IndersdorfW 0 0 NA 0 6694 23 0

Markt IndersdorfS 0 0 NA 0 6387 330 0

AE Würzburg 0.001 0.125 0.002 1 1292 3461 7

Bad Schwartau 0.007 0.875 0.015 21 2841 1800 3

Overall 0.005 0.688 0.011 22 4133 5261 10

Markt IndersdorfW 0 0 NA 0 6683 43 0

Markt IndersdorfS 0 0 NA 0 5534 1183 0
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Discussion. In the multivariate setting, the AE is also the best option for detecting
anomalies. Still Table 2 shows, that all metrics drop in contrast to the univariate, single
temperature sensor setting. The reason for that is the much higher false positive rate,
which means, that more non-swarms are confused with swarms. This means the addi-
tional measurements introduce more noise as would be necessary for predicting swarms.
As shown in Fig. 8, adjacent sensors correlate strongly within the normal data, thus they
bear no additional information during training, but weaker so within the anomaly set.
Only including new sources of information (like the scale) would help in the multivari-
ate sensor setting, as shown in Figs. 6a and 6b.

6.3 Methodology

In Sect. 3 we described our empirically founded, but manual approach of splitting data
into anomalous behavior and normal sensor data. However, this data splitting method
is ambiguous and highly susceptible to missing days in the corresponding dataset, i.e.
missing anomalies and therefore mislabeling specific days. A general, rule-based app-
roach of splitting anomalous and normal data, i.e. all windows with sensor values drift-
ing for more than two standard deviations, doesn’t work, since it removes most swarm-
ing events from the test set. A clearer split of training and testing data can only be
ensured by very thorough labeling of the sensor values, which has to be done on differ-
ent sensors independently.

In this work we evaluated predictions in an automated manner by using a ran-
dom search for the best parameter settings (Table 4) using only labelled information
of swarming events. In previous work [6] we selected the parameter α for the AE for
detecting anomalies manually. This is a first step towards the automation of the anomaly
detectors, but still has the problem of only being optimized for one anomaly class and
still results in false positives for swarming events, but true positives for other anomalies.

Summarizing the results, the AE is the best all purpose swarm detector within the
machine learning algorithms. It is out-performed to RBA for swarming detection, but it
is also capable of predicting other anomalies without the knowledge of special rules.

7 Analysis

In this section we analyze the found anomalies and will outline different types of
anomalies reported by the AE. We used this model exemplary to show interesting obser-
vations from the predictions, not only focussing on swarms, but also the aforementioned
false positives, as well as true positives for other anomalies, hidden from the above dis-
cussion.
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Swarming Events. All swarming events predicted with temperature sensors T6 and
Tm by the AE and RBA can be found in Table 3. Events observed by apiarists on site
are marked with �. This table lists all swarm like events detected by RBA, as well as
additionally missed swarming events. In other words, we used RBA to verify the results
of the AE and vice versa, as described in [6]. Figure 5 shows a sensor data plot for
a prototypical swarm for the hive in Bad Schwartau. Swarming events can be found
within the table as location (S), whereas other anomalies are denoted with location (O).
A more detailed view of the findings regarding swarming events is given in [6].

Table 3. Detected Anomalies. The first column shows the shortened name of the used test
(anomaly) set (B. S. is Bad Schwartau, Wü. is Würzburg, Jel. is Jelgava, M. I. is Markt Inders-
dorf). (S) signifies that the set contains swarms while (O) stands for other anomalies. The next
column displays the date of the event, and—where suitable—a reference to figures in the text.
The last two columns indicate whether RBA or our method (AE) detected the anomaly. Predic-
tions on HOBOS-hives are based on sensor T6, on Tm for we4bee. We used the Bad Schwartau
trained model to predict the swarms in any other beehive, except for Bad Schwartau itself [6].

Dataset Timestamp
Detected

RBA AE

B. S. (S)

2016-05-11 11:055 � �
2016-05-22 07:30 � �
2017-06-06 15:02 � �
2019-05-13 09:30� � �
2019-05-21 09:15� � �
2019-05-25 12:00� � �

B. S. (O) 2016-08-03 17:24 � �

Wü. (S)
2019-05-01 09:156a �
2019-05-10 11:156b � �

Wü. (O) 2019-04-17 16:226c � �

Dataset Timestamp
Detected

RBA AE

Jel. (S)

2015-05-06 18:02� � �
2016-06-02 13:48� � �
2016-05-30 10:03� � �
2016-06-16 15:50� � �
2016-06-01 13:20� � �
2016-06-03 09:11� � �
2016-06-13 03:30 � �
2016-06-16 10:52� � �
2016-06-13 13:32� � �

M. I. (O)
2019-07-26 08:10 � �
2019-08-31 17:087b �
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Other Anomalies. Figure 6 depicts anomalies easily confused with swarms in at least
one sensor. Figure 7 on the other hand, show anomalies categorized as external inter-
ference. They all display the same sensors, two temperature sensors (HOBOS: T6, T8;
we4bee: Tr, Tm) and the weight on the scale. An exemplary plot of a training sample
can be seen in Fig. 3. Sensors in Fig. 5 show the expected behavior for a swarming
event, as already stated in Sect. 5.

Detecting swarms only in traces of temperature data, also has its drawbacks, as
Fig. 6c shows, since the values of the weight sensors tend to describe normal behavior,
whereas the temperature sensors follow the expected inverted parabola.

Similar implications can be seen in Fig. 6b, as a slice of the window actually con-
tains a swarm, shown by all three sensors, whereas a later slice only indicates a swarm
temperature-wise.

Figure 6a shows a swarming event, which RBA only detects in T8, but not T6, since
it is not covered by the defined rules for swarms. The AE on the other hand is capable
of detecting this swarm in both temperature sensors.

Figure 7a depicts the sensor traces of an opened apiary, which becomes obvious in
the fast and strong drop in weight, and with varying delay in time, in the temperature
sensors. This is due to the influx of ambient air, cooling the temperature within the
beehive. As soon as the hive is closed the expected values, the same as before opening,
are reported again.

Fig. 5. (Prototypical) Swarm as indicated by T6 and T8, detected by RBA and AE [6].
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Fig. 6. Special cases of swarming events. (a) shows a swarm only detected with one temperature
sensor, but not the other (RBA). (b) shows a swarming event followed by subsequent swam-like
temperature curves in T8. (c) shows a swarm-like anomaly in the temperature sensors, but not in
the scale.

The beehive must sometimes be opened for treatment purposes. An example of a
varroa treatment with a substance (i.e. formic acid) is displayed in Fig. 7b. The resulting
additional weight after closing the hive in visible in the weight sensor. RBA confuses
this as a swarm in both temperature sensors, whereas the AE only reports a swarm for
Tr. Tm only fluctuates within one standard deviation of training data, which can be
captured by the feature space of the AE.

Aforementioned anomalies are only a subset of reported anomalies, since the AE
detects a lot more. Some of them are not as easily classified, but normally are tempera-
ture values far lower than 30 ◦C. Even sensor anomalies are detected by AE, as can be
seen in Fig. 7c.
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Fig. 7. External interference anomalies. (a) shows an opened hive with no modifications, whereas
(b) is opened for treatment with a substance added. (c) shows missing sensor values.

8 Conclusion/Future Work

In this work we evaluated the use of machine learning models for anomaly detection in
beehives. We compared the models Elliptic Envelope, Isolation Forests, Local Outlier
Factor, One-Class SVMs, and recurrent autoencoders quantitatively for swarm detec-
tion. The results show that the AE is the best multi-purpose anomaly detector in com-
parison. It is able to detect swarms with high accuracy even by only optimizing the deci-
sion threshold with very sparse swarm instances. Within the multivariate temperature
sensor setting we found, that combining three sensors incurs more noise than informa-
tion, and still needs further experiments and evaluation. Especially combining different
sensor types, i.e. temperature and weight, seems to be more promising. Multiple aspects
of anomaly detection in beehives require more work in the future:

Evaluation of Deep GenerativeModels. Other types of deep neural networks will have
to be explored in future work. For example, generative models like variational autoen-
coders or generative adversarial networks show particular promise, since they have
two advantages: A) anomalies may exist within the training set, and B) they allow for
probability-based classification instead of relying solely on the reconstruction error [1].



18 P. Davidson et al.

Dataset Generation. Machine learning models require data to correctly learn their task.
The amount of beehive data available is limited, especially when considering data with
labeled anomalies like swarming. To this end, we hope to improve data availability
in the project we4bee, where sensor-equipped apiaries are distributed mostly across
Germany, allowing us to collect a large dataset of beehive data. Any events or anomalies
can be marked by apiarists participating in we4bee, providing us with more valuable
labeled data. Predictive alert-systems can be implemented to warn beekeepers in case
of anomalies. The beekeepers may provide feedback for the warnings, which allows
further improvements in prediction quality.

Winter Period. During winter, bees enter a passive state where their behavior changes
significantly in comparison to summer time [24]. To learn normal behavior of bees for
their active summer time, we excluded data from October through March for all datasets
(cf. Sect. 3). Detecting anomalies during winter can also be of interest but this remains
future work.

Acknowledgements. This research was conducted in the we4bee project sponsored by the Audi
Environmental Foundation.

Appendix

Sensor Correlations
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Fig. 8. Sensor correlations. All figures display the Pearson correlation between temperature sen-
sors within a given beehive. (N) stands for the dataset containing normal behavior and (A) for the
dataset with anomalous behavior [6].
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Hyperparameters

Table 4. Optimized parameters and their ranges for the anomaly detectors within the random
search. Ux describes an uniform distribution with [0, x), whereas Ia,b represents a random integer
distribution with [a, b]. LUa,b is a log uniform distribution with parameters a, b.

Classifier Hyperparameter Range

Local Outlier Factor n neighbors I1,100

algorithm ball tree, kd tree

leaf size I1,150

contamination U0.5

metric chebyshev, cityblock, euclidean, infinity, l1, l2, manhattan, minkowski

Elliptic Envelope assume centered True, False

support fraction U1

contamination U0.5

Isolation Forest n estimators I10,100

max samples auto

contamination U0.5

max features U1

bootstrap True, False

One- Class SVM kernel linear, poly(degree=3), rbf(coef0=0), sigmoid

shrinking True, False

γ LU0.0001,1

ν LU0.0001,1

AE hidden size I2,64

layers I1,4
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