
Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023), pages 127–138
September 18–22, 2023. ©2023 Association for Computational Linguistics

127

Pointer Networks: A Unified Approach to Extracting German Opinions

Julia Wunderle and Jan Pfister and Andreas Hotho
Julius-Maximilians-Universität Würzburg
Computer Science Chair X: Data Science

{lastname}@informatik.uni-wuerzburg.de

Abstract

Transformer-based pointer networks currently
represent the state of the art for English aspect-
based sentiment analysis. Inspired by their per-
formance in extracting structured sentiment in-
formation from text, we aim to transfer this
success to the German language. For eval-
uation we use the GermEval shared task on
“Aspect-based Sentiment in Social Media Cus-
tomer Feedback”, as it consists of four sub-
tasks: (A) Relevance Classification, (B) Docu-
ment-level Polarity, (C) Aspect-level Polarity,
and (D) Opinion Target Extraction (Wojatzki
et al., 2017). We follow the intuition of the
English approach by training a single model
to solve all related subtasks at once. There-
fore, the subtasks are formulated as a single
unified index generation problem, enabling the
model to solve all four subtasks simultaneously.
We find that solving all four subtasks at once
only has a minimal impact on the overall perfor-
mance of our model. Consequently, we closely
match or outperform all previous approaches
despite them training subtask-specific models.

1 Introduction

Explicit customer feedback is an extremely valu-
able source for understanding the needs of cus-
tomers and improving products and services ac-
cordingly, while being available in a large amount
on the Internet in unstructured form. It is neces-
sary to be able to aggregate and analyze the feed-
back in a comprehensive way, to understand the
wide variety of opinions and sentiments expressed.
Ideally, the feedback has to be extracted in a fine-
grained but easily understandable way. The main
interests are, of course, voiced opinions and their
aspects that determine whether and why exactly,
e.g. a review is positive or negative. Consequently,
to break down a long review to its core informa-
tion, tuples of opinion terms and their associated
sentiment have to be extracted. This structured
span-based extraction process, called “Opinion Ex-

traction”, can easily be solved by pointer networks.
Specifically, BARTABSA (Yan et al., 2021) is a
sequence-to-sequence pointer model, which pre-
dicts a sequence of class tokens and pointers to
token indices of the input text. Current research de-
velopments related to pointer networks and aspect-
based sentiment analysis do include multilingual
approaches (R et al., 2022; Pfister et al., 2022) but
notably until now not German. Thus, the research
gap arises on how recent advances in structured
sentiment prediction can be leveraged for German
Opinion Extraction. Despite this gap, for German
evaluation there exists a comparably large data set
introduced by the GermEval 2017 Task that con-
tains customer feedback about “Deutsche Bahn”.
To this end, four subtasks were formulated and,
while all are related to the analysis of customer
feedback, each subtask focuses on a different level
of information classification and extraction. In or-
der of increasing complexity, the formulated tasks
are (A) Relevance Classification, (B) Documen-
t-level Polarity, (C) Aspect-level Polarity (D) Opin-
ion Target Extraction (Wojatzki et al., 2017). Thus,
to solve all tasks successfully, a model needs to
not only classify the entire document itself but
also extract and label all relevant spans correctly.
In contrast to existing approaches, we leverage a
pointer network to solve all of these subtasks with
the same model simultaneously, which we find to
sometimes even increase performance over a model
specialized on a subset of the tasks. In summary
our main contributions are: (i) Formulating all
GermEval 2017 subtasks as a single unified index
generation problem, (ii) thereby introducing doc-
ument-level classes next to sentiment spans to the
BARTABSA approach. (iii) Extensively evaluating
various German-capable transformer encoder-de-
coder basemodels on this German language task.
(iv) We show that our model outperforms or closely
matches all previously existing approaches while
solving all tasks at once.

128

Figure 1: Exemplary input sentence for aspect-based
sentiment analysis, annotated with aspects, opinions and
sentiments (Yan et al., 2021).

2 Preliminaries & Related Work

2.1 Seq2Seq-Transformers

Transformer models consisting of an encoder and
decoder are commonly referred to as Seq2Seq mod-
els, as the encoder generates an intermediate rep-
resentation of the input sequence using which the
decoder then generates the output sequence. In
our experiments, we compare different Seq2Seq
models with each other.

First, BART was pretrained as a denoising au-
toencoder (Lewis et al., 2020). Here denoising
refers to the training process, in which a noised/-
masked text sequence is given as input and the
model is trained to reproduce the original sequence
as output. The model is applicable to a wide
range of tasks such as sequence classification, to-
ken classification, sequence generation, or ma-
chine translation. We also explore a BART model
fine-tuned on the MNLI task as inspired by R et
al. (2022) and one fine-tuned on the German ML-
SUM dataset (Scialom et al., 2020). Furthermore,
we use mBART50 which was trained in translating
between 50 languages, including German (Tang
et al., 2020). Lastly, M2M-100 is a Many-to-Many
multilingual Seq2Seq model trained on sentence
pairs to translate between any pair of 100 lan-
guages, including German (Fan et al., 2020).

2.2 Aspect-Based Sentiment Analysis

The goal of Aspect-based Sentiment Analy-
sis (ABSA) is, given a sentence containing ex-
pressed opinions, to extract explicitly voiced opin-
ions, each consisting of an aspect term, its opinion
term and corresponding sentiment polarity (see Fig-
ure 1 for example). Thereby, the aspect terms are
the target to which the opinion terms refer, and thus
express the polarity of the sentiment.

This task consists of two types of subtasks:
extraction and classification. Here extraction
refers to extracting and annotating the span of
terms (a1, a2, o1, o2 in Figure 1), while classifica-
tion describes the prediction of characteristics of
this relationship, e.g. sentiment polarities (s1, s2).

2.3 BARTABSA Pointer Network

The BARTABSA pointer framework introduced
by Yan et al. (2021) proposes a unified solution
to solve various predefined ABSA subtasks. This
comes with a substantial performance gain over
comparable well-performing baselines, including
BERT-based approaches. To achieve this, they re-
formulate all subtasks as a unified generative task,
meaning that every subtask is defined as a sequence
of pointers to indices in the source sequence and
sentiment class tokens. To predict pointers to in-
dices of the source sequence, they implement a
pointer network, which uses BART as a backbone.
Unlike a regular transformer, pointer networks do
not output a probability distribution over a vocab-
ulary of fixed size, but instead a distribution over
tokens of the input sequence.

The model works by first generating an input
representation He ∈ Rn×d from its encoder. Here,
d denotes the embedding size and n the number of
tokens in the input sequence. This He is used by
the decoder to autoregressively generate the target
sequence. In every timestep, it takes He and pre-
viously generated tokens Y<t as input and returns
a vector Hd ∈ Rd. To obtain a token probability
distribution PX over the input sequence, the fol-
lowing calculations are performed: Both - the input
sequence X , and the list of class tokens C - get em-
bedded by the token embedding layer of the model,
resulting in the embedding vectors EX ∈ Rn×d

and EC ∈ Rl×d, where l denotes the number of
class tokens in the vocabulary. Next, a weighted av-
erage is calculated between the encoder output He

and the embedded input sequence EX , to obtain a
new representation H̄e ∈ Rn×d.

H̄e = αMLP(He) + (1− α)EX (1)

Before calculating this weighted average, He gets
processed by a multilayer perceptron (MLP). Fi-
nally, the pointer distribution over the input tokens
PX ∈ Rn+l is calculated, by the softmax over the
concatenation of H̄e and EC times Hd.

PX = Softmax([H̄e ∥ EC]Hd) (2)

In order to use the list of previous predictions Y<t

as autoregressive input, all pointers are replaced by
their respective token they are pointing to from the
input sequence before feeding them to the decoder.

129

2.4 GermEval 2017: Aspect-Based Sentiment
in Social Media Customer Feedback

The GermEval 2017 task is a shared task on an-
alyzing customer reviews and news related to
“Deutsche Bahn” and provides an annotated data
set of 26 209 documents for training and evalua-
tion. The shared task consists of four subtasks to
be tackled individually (Wojatzki et al., 2017).

(A) Relevance Classification: The goal of this
subtask is to classify a document as relevant (true)
or irrelevant (false) for Deutsche Bahn.

(B) Document-Level Polarity: This subtask is
about concluding whether the entire customer re-
view is overall positive, neutral, or negative.

(C) Aspect-Level Polarity: Subtask C involves
the identification of all categories mentioned in the
document and their associated polarity.

(D) Opinion Target Extraction: The goal of sub-
task D is to identify the exact term(s) in the doc-
ument matching the categories and their polarity
from subtask C. Each term is predicted as a span in
the document, and a single span can be associated
to multiple categories.

2.5 Data Set

The provided data was collected using web scrap-
ing with a list of query terms, from May 2015
to June 2016, thus covering various seasonal and
everyday problems such as holidays or strikes (Wo-
jatzki et al., 2017).

In the following, we take a close look at the
training data and list common properties that we
found. In general, the data is divided into two main
categories: irrelevant and relevant to the topic of
“Deutsche Bahn”. Irrelevant documents do not con-
tain annotated opinions and the sentiment is always
set to “neutral”. Relevant data can be further split
into two subcategories: Some documents contain
clearly expressed opinions, which are annotated
accordingly, while others are topically relevant but
do not contain any concrete opinions. In the latter
case, the opinion term, represented by a span in
the source document, is set to “NULL”. Thus the
data can be divided into the following three types:
1. irrelevant 2. relevant without annotated opinion
spans 3. relevant with annotated opinion spans.

The GermEval subtasks C and D require classi-
fying the opinion terms according to suitable cat-
egories. In total, there are 20 main categories and

r relevance s sentiment
negativetrue

„Re: KEIN Stuttgart 21 Ein echter Witz! Die Bahn behauptet damit, daß sie
gar nicht wisse, dass die Aufzüge kaputt seien. Das ist unglaublich dreist“

o1
opinion

o2,3
opinion

Informationen
negative

p2 polarity p3 polarity
c2 category c3 category Komfort und Ausstattung

negative

Barrierefreiheit

neutral

Subtask B: [s]Subtask A: [r]

Subtask C: p!c! , p"c" , (p#c#)
Subtask D: o!$o!% c! , o"$o"% c" , (o#$o#% c#)

𝑜!,#$ 𝑜!,#%

𝑜&$ 𝑜&%

p1 polarity
c1 category

Figure 2: Example document containing labels for all
four subtasks and our sequential encoding for each.

up to 54 subcategories used to categorize the opin-
ion terms. For the purpose of the shared task, it is
sufficient to predict the correct main categories, as
the subcategories are not taken into account. No-
tably, a single opinion term can be associated with
multiple categories (opinions 2 and 3 in Figure 2).

3 Methodology

Inspired by the performance of pointer networks in
English aspect-based sentiment, we adapt and ex-
tend the BARTABSA framework (2021) aiming to
solve the four subtasks introduced previously (Sec-
tion 2.4) - at once and in German.

3.1 Formulating the Subtasks as a Single
Sequence-to-Sequence Task

In order to predict all subtasks at once, the output
sequence of our model needs to take into account
all spans and labels required to extract the four sub-
tasks. If we are able to model all four subtasks as a
single sequence, we can consequently train a model
to predict this sequence. This sequential represen-
tation has to be unambiguous, so that the output
of the model is always correctly interpretable. In
the following, we define our prediction targets as
a sequence consisting of index pointers and class
tokens, as shown in Figure 2 and Table 1.

Document-Level Classification
The first two subtasks are document-level classi-
fication tasks, which are represented by the first
two rows in Table 1. The output for both tasks
can be modeled by only a single special token,
each specifying the class the document belongs
to. For subtask A we define r ∈ {true, false}
as the relevance class token, indicating whether
the document is relevant to the topic of “Deutsche
Bahn” or not, while for subtask B we define s ∈
{positive, negative, neutral} as the sentiment class
token, indicating the overall sentiment of the entire
input document.

130

Table 1: Representation of the target sequences required
to solve all four GermEval subtasks first individually
and then together. Here i represents the ith category and
opinion span present and | depicts the separator token.

Task Target Sequence Representation

A [r]
B [s]
C [c1, p1| . . . |ci, pi| . . .]
D [os

1, o
e
1, c1| . . . |os

i , o
e
i , ci| . . .]

Comb. [r, s|os
1, o

e
1, c1, p1| . . . |os

i , o
e
i , ci, pi| . . .]

Category & Span Prediction

For subtask C a combination of two classes
has to be predicted: a category implicitly
or explicitly rated in the input document
and additionally the expressed sentiment for
each category. Therefore, we define c ∈
{Allgemein,Zugfahrt,Ticketkauf, . . . } as the cat-
egory and p ∈ {positive, negative, neutral} as the
class token associated with the category. A docu-
ment can contain several different opinions, conse-
quently a category-polarity pair has to be predicted
for each mentioned category. We enumerate and
predict these pairs in the order they occur in the
text input, which is why we introduce i represent-
ing the ith pair, associated to the ith mentioned
category. For subtask D, in addition to the cate-
gory c and polarity p the matching opinion term o
has to be predicted, where applicable. Therefore,
we introduce pointer indices corresponding to the
start and end index of the target opinion term in
the source sequence, which we indicate with o us-
ing superscript to mark the starts and ende index
token. Again, i represents the ith term, and again
we encode the opinion terms in the order in which
they appear in the text. It is important to note that a
single opinion span can be associated with multiple
categories and polarities (see Figure 2).

Finally, to solve all four subtasks at once, we
string together the four target sequences into one by
concatenating subtasks A and B, while interleaving
the matching parts of subtasks C and D (Table 1).
In doing so, we must carefully consider the data
types we identified in Section 2.5. We distinguish
between these three mentioned kinds of data types
in the process, to achieve a natural encoding for all
data points. In the following, we lay out the three
encodings for the different data types ordered by
increasing complexity.

Document irrelevant to “Deutsche Bahn”
{"text": "RT @DLR_next: Ach ja: Sie dürfen jetzt
das Alu-Hütchen wieder absetzen. Zu unserer eige-
nen Überraschung hatten wir die Asteroiden-Bahn
korr", "relevance": "false", "sentiment": "neutral"}

Data points labeled as not relevant for the topic
of “Deutsche Bahn” are characterized by their tar-
get for subtask A being “not relevant” and senti-
ment for subtask B being “neutral”. Furthermore,
these data points do not contain annotated cate-
gories, polarities, or opinion terms for tasks C and
D. Consequently, the target sequence contains the
following information: relevance and sentiment,
which gets encoded as two tokens: [BOS, false,
neutral, SEP, EOS].

Document relevant but without Opinion Terms
{"text": "@DB_Bahn Gibts denn ne Ersatzfahrt
oder so?!", "relevance": "true", "sentiment": "neu-
tral", "opinions": [{"category": "Allgemein", "po-
larity": "neutral"}]}

Next we address data points which are relevant
and thus have categories and polarities annotated
but do not contain opinion terms. We extend our
existing encoding scheme by appending a list of
categories and polarity tuples to the target sequence:
[BOS, true, neutral, SEP, Allgemein, neutral, SEP,
EOS]. The sequence now contains the information:
relevance, sentiment, category and polarity.

Document relevant and contains Opinion Terms
{"text": "Juhu Weichen Störung! Ich liebe die
Bahn. . . Nicht -.-", "relevance": "true", "sentiment":
"negative", "opinions": [{ "category": "Allgemein",
"polarity": "negative"}, {"category": "Unregelmäs-
sigkeiten", "polarity": "negative", "from": 1,
"to": 2, "term": ["Weichen", "Störung"]}]}

Finally, we add the ability to encode the spans
that represent opinion terms in our target sequence.
As indicated in Table 1, one document can be an-
notated with multiple categories or opinion terms
(spans). These spans are associated with the cate-
gory we implemented above, and consequently we
concatenate these to their respective category. The
sequence thus has to contain the document’s rele-
vance and sentiment as well as a list of opinionstart,
opinionend, category and polarity. For above ex-
ample we define this target sequence: [BOS, true,
negative, SEP, Allgemein, negative, SEP, 1, 2, Un-
regelmässigkeiten, negative, SEP, EOS]. Following
the BARTABSA encoding, we first predict the span
and the associated category afterwards.

131

3.2 Pointer Network

Architecturally we keep the model introduced in
BARTABSA (Section 2.3) unchanged. To enable it
to predict our previously defined target sequence,
we need to extend the special token vocabulary of
our model, as the task at hand includes document-
level classes as well as 20 categories, all of which
need to be predicted by our model. The vocabu-
lary has to contain the following special tokens:
(i) BOS, EOS, PAD, SEP (ii) two tokens for doc-
ument relevance: true, false (iii) three tokens for
sentiment and category polarity: positive, negative,
neutral (iv) 20 tokens for the categories (Allgemein,
Zugfahrt, Ticketkauf, etc.). At every decoding step,
the pointer network either predicts a pointer to a
token index of the source sequence, or a class spe-
cial token. Conceptionally, these special tokens are
assigned to the lowest available ids, so the first 29
tokens (4+2+3+20) are special tokens. Predictions
larger than this offset are interpreted as pointers
to indices of tokens in the source sequence. The
target sequence is created by converting all tokens
to ids and then adding this constant offset of 29 to
all index pointers to the source sequence. Thus our
previous example of [BOS, true, negative, SEP, All-
gemein, negative, SEP, 1, 2, Unregelmässigkeiten,
negative, SEP, EOS] becomes [0, 4, 7, 3, 9, 7, 3,
30, 31, 14, 7, 3, 2]. The model is then trained to
predict this sequence of special tokens and indices
for each input document. Of course, before con-
verting the predicted index pointers back to spans,
this constant offset is subtracted again.

3.3 Handling Encoding Issues

Inputs longer than the model’s context size are
truncated such that during evaluation twenty data
points of the synchronic test set and eleven of the di-
achronic test set could not be encoded in its entirety.
During evaluation we set fallback defaults of rel-
evance=true for subtask A and sentiment=neutral
for subtask B for data points, where the model fails
to predict either of these tasks. Both values are the
respective majority classes in the training set. This
is necessary to evaluate our results, as the original
evaluation binary provided by the task hosts cannot
handle missing values. For subtasks C and D, no
fallback predictions are required or set.

4 Experiments

4.1 Data Set

To assess the robustness of the participating sys-
tems, two test sets were introduced. In addition to
the “synchronic test set” (Testsyn), a “diachronic
test set” (Testdia) is provided, consisting of docu-
ments from a different time frame: November 2016
to January 2017 (Wojatzki et al., 2017). In total, the
data set consists of 26 209 German messages across
all splits (Train: 19 432 (of which 3231 irrelevant
for “Deutsche Bahn”), Dev: 2369, Testsyn: 2566,
Testdia: 1842), annotated with the document id, rel-
evance, and sentiment, as well as the opinion terms
including exact spans, its sentiment, and category.

4.2 Evaluation & Metric

For evaluation, we use the original GermEval eval-
uation script, which compares the predicted results
considering the micro-averaged F1-score (Wojatzki
et al., 2017). For subtasks A and B the F1-score
is reported, while for subtask C, the task hosts
distinguish two types of metrics: (C1) Only the
category has to match the ground truth. (C2) In
addition to the category, the polarity must be pre-
dicted correctly. Furthermore, for subtask D also
two types of results are differentiated: (D1) Exact
result: The “from” and “to” tags have to exactly
match the ground truth. (D2) Overlap result: The
“from” and “to” tags can deviate from the ground
truth by +/- 1 at the word level. We report our
performance for all task metrics.

4.3 Hyperparameter Search

In order to improve the performance of our model,
we perform an extensive training hyperparameter
search. This includes exploring various ways to
encode our targets, hoping to gain a better under-
standing of how the models performance is influ-
enced by the different parameters. To gain a better
understanding of how well each base model works
for this German task, we perform a grid search,
examining the hyperparameters listed in Table 8,
resulting in 300 combinations of parameters. This
enables us to find the best working model for Ger-
man by comparing the performance of all available
models against each other, while also finding the
best hyperparameter combination for each of them.
For batch size, epochs, and learning rate, we decide
to search and analyze parameters close to the values
proposed by Yan et al. (2021) and keep AdamW.

132

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 D
ex

ac
t

✱✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

E
va

lu
at

io
n:

 D
ex

ac
t

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 D
ex

ac
t

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 D
ex

ac
t

✱

✱

✱

✱

✱

✱

Figure 3: Results for subtask D1, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

5 Evaluation and Results

First we evaluate the findings of our hyperparame-
ter search, before we analyze the impact of differ-
ent prediction orders. Afterwards, we compare our
performance against previous approaches.

5.1 Hyperparameter Study

We systematically evaluate the impact of each hy-
perparameter on the overall performance of our
approach. To identify statistically significant dif-
ferences between hyperparameter combinations,
we performed the Kruskal-Wallis test (Corder and
Foreman, 2014) and corrected for multiple com-
parisons using post hoc Dunn’s test (Dunn, 1964).
Large learning rates can result in training insta-
bilities for some hyperparameter combinations, so
the exploration of the largest learning rate (5e-4)
was canceled early after no valid run could be con-
ducted. Thus, we do not have paired data points for
all learning rates.

To this end, we consider p < 0.05 as a statisti-
cally significant difference and mark it with an ∗
in Figure 3 and Appendix A. We use a black line
to represent the average values. In Figure 3 we
representatively plot the performance on the vali-
dation set for subtask D1. The results for the other
subtasks are similar, and their plots can be found in
Appendix A. To prevent overfitting and ensure that

the test set remains independent for unbiased model
evaluation, the hyperparameter study is performed
using the validation split.

Hyperparameter: Base Model Figure 3 il-
lustrates that the choice of the base model can
have a significant impact on the overall perfor-
mance. Here, we refer to the evaluated base
models by their HuggingFace identifier. We
find that “facebook/bart-large-mnli” performs best,
achieving significantly better results than “face-
book/m2m100_418M” and “Shahm/bart-german”.
The difference between “facebook/bart-large-mnli”
and “facebook/mbart-large-50” is minimal.

Hyperparameter: Batch Size Noticeably, the
batch size has a smaller effect on the performance
of the model and does not show significant differ-
ences between the different configurations.

Hyperparameter: Epochs Inspecting the num-
ber of epochs shows that training just one epoch
is, as expected, statistically worse than training for
three, four, or five epochs. Nevertheless, increasing
the number of epochs to more than two does result
in slight but not significant improvements.

Hyperparameter: Learning Rate Regarding
the learning rate a clear performance deterioration
can be observed starting from a learning rate of
7.75e-5 and becomes significantly worse when the
learning rate increases further. The learning rate
suggested by Yan et al. (2021) of 5e-5 also achieves
statistically significant better results than 5e-6. We
consequently identify a learning rate of 5e-5 to be
the best option over all tasks.

Selected Hyperparameters After conducting
this hyperparameter search, we select the config-
uration that ranks best across the most subtasks
on the validation split. In doing so, we identify
“facebook/mbart-large-50” as the best model with
a learning rate of 5e-5, when training for 5 epochs
with a batch size of 8. As listed in Table 9 we find
that this configuration is among the top-3 combina-
tions for subtasks C and D for both metrics each.
Therefore this configuration will be used for all
following analyses.

5.2 Performance on Subtasks C and D
In order to train the model to solve all subtasks
at once, we have to consider all data points in the
training set. In particular, this includes training on
a large number of data points that are irrelevant

133

Table 2: Comparison of results achieved when predict-
ing all subtasks, versus only subtasks C and D. Further-
more different permutations for subtasks C and D are
evaluated. First column matches Section 3.

O
rd

er
in

g

r,
s,
os
,o

e
,c
,p

os
,o

e
,c
,p

os
,o

e
,p
,c

c,
p
,o

s
,o

e

p
,c
,o

s
,o

e

C1 .657 .676 .688 .695 .693
C2 .543 .559 .556 .569 .581
D1 .476 .489 .468 .494 .500
D2 .500 .512 .490 .519 .523

Table 3: Comparison of results on the validation set for
all subtasks using the best hyperparameter combination
and only changing the order of the target sequence

O
rd

er
in

g

r,
s,
os
,o

e
,c
,p

s,
r,
os
,o

e
,c
,p

s,
r,
p
,c
,o

s
,o

e

r,
s,
p
,c
,o

s
,o

e

p
,c
,o

s
,o

e
,s
,r

p
,c
,o

s
,o

e
,r
,s

A .958 .954 .959 .959 .955 .957
B .813 .823 .827 .822 .824 .823

C1 .657 .662 .677 .677 .673 .684
C2 .543 .554 .560 .563 .559 .562
D1 .476 .487 .486 .490 .498 .497
D2 .500 .507 .510 .509 .518 .522

for subtasks B, C and D, as these data points are
only required for subtask A (Section 4.1). As all
previous approaches train separate models for each
subtask, this leads us to investigate how the per-
formance of our model changes, when dropping
all irrelevant data points from the training set and
training only on the two closely related and most
complex tasks: subtasks C and D. Table 2 lists the
results achieved, while training our model only on
subtasks C and D in the first section. Comparing
the first two columns, it is noticeable that leaving
out subtasks A and B slightly improves the perfor-
mance on subtasks C and D, although the impact on
subtask C seems to be slightly larger. We deduce
that additionally predicting subtasks A and B, and
thus even training on a significant amount of off-
topic data, does not impact performance strongly.

Table 4: Comparison of existing approaches for sub-
task A. Best in bold, second underlined.

Team Subtask A Testsyn Testdia

Wojatzki et al. 0.852 0.868
Sayyed et al. 0.903 0.906
Hövelmann and Friedrich 0.899 0.897
Aßenmacher et al. 0.957 0.948

Our (A,B,C&D) 0.953 0.943

5.3 Order of Prediction

In preliminary experiments, we found slight differ-
ences in performance when changing the order of
the target sequence introduced in Section 3. There-
fore, we systematically evaluate the impact of this
order and list the results for different prediction
orders of subtasks C and D in Table 2. We find
that our proposed order in Section 3 overall, scores
rather low among all possible permutations and
that moving the predictions for subtask C in front
of subtask D slightly improves the results.

Consequently, in Table 3 we take the best pre-
diction order for subtasks C and D and analyze
it in combination with different permutations of
subtasks A and B. We find that the overall differ-
ences are small, but predicting subtasks A and B
last (p, c, os, oe, r, s) achieves the best results con-
sidering the mean over all subtasks. Thus, this is
the prediction order we fix for further evaluation.

5.4 Results on the Test Set

Previous analyses were conducted on the valida-
tion split, while the following comparisons against
existing approaches are carried out on the test set.
We also examined the impact of different seeds on
the performance, to get insights into robustness and
reproducibility (Table 10). Notably, in Section 5.1
we selected a combination that performs better on
subtasks C and D than on A and B.

(A) Relevance Classification:
For subtask A (Table 4), our approach outperforms
all original participants and the system provided
by the organizers (Sayyed et al., 2017; Hövelmann
and Friedrich, 2017; Wojatzki et al., 2017). With
the recent approach by Aßenmacher et al. (2021)
achieving the best results, our model comes second.
Our model predicts all four subtasks at once while
remaining competitive with Aßenmacher et al. who
trained a separate model for each subtask.

134

Table 5: Comparison of existing approaches for sub-
task B. Best in bold, second best underlined.

Team Subtask B Testsyn Testdia

Wojatzki et al. 0.667 0.694
Naderalvojoud et al. 0.749 0.736
Hövelmann and Friedrich 0.748 0.742
Aßenmacher et al. 0.807 0.800

Our (A,B,C&D) 0.815 0.811

Table 6: Comparison of existing approaches for sub-
task C. Best in bold, second best underlined.

Team Subtask C C1syn C2syn C1dia C2dia

Wojatzki et al. 0.481 0.322 0.495 0.389
Lee et al. 0.482 0.354 - -
Mishra et al. 0.421 0.349 0.460 0.401
Aßenmacher et al. 0.761 0.655 0.791 0.689

reevaluated 0.614 0.475 0.649 0.493

Our (C&D) 0.624 0.514 0.657 0.553
Our (A,B,C&D) 0.632 0.510 0.634 0.535

(B) Document-Level Polarity:
For subtask B (Table 5) our model not only out-
performs all original participants (Wojatzki et al.,
2017; Naderalvojoud et al., 2017; Hövelmann and
Friedrich, 2017) but also the newer approach by
Aßenmacher et al. (2021) while solving all subtasks
at once. Again, the newer LLM-based approaches
clearly perform better than previous models.

(C) Aspect-Level Polarity:
For subtask C (Table 6), our approach again out-
performs all original participants (Wojatzki et al.,
2017; Lee et al., 2017; Mishra et al., 2017). While
Aßenmacher et al. (2021) report better results for
subtask C, it should be noted that their scores are
calculated using a custom reimplementation of the
evaluation metric. Consequently, we reevaluated
their outputs using the original GermEval metric
and achieved different results for subtask C, as we
detail in Appendix C.1. We assume that this dis-
crepancy results from different calculations of the
average (micro vs. macro). Nevertheless, we list
both values in Table 6, the result of their custom
metric in gray, and the result we calculated using
the original metric in black. We report the results
achieved by the best model trained from each: Ta-
ble 2 and 3. Our model trained only on subtasks C
and D outperforms all other previous approaches

Table 7: Comparison of existing approaches subtask D.
Best in bold, second best underlined.

Team Subtask D D1syn D2syn D1dia D2dia

Wojatzki et al. 0.170 0.237 0.216 0.271
Mishra et al. 0.220 0.221 0.281 0.282
Lee et al. 0.203 0.348 - -
Aßenmacher et al. 0.515 0.523 0.518 0.533

Our (C&D) 0.404 0.430 0.442 0.471
Our (A,B,C&D) 0.415 0.440 0.448 0.479

for all reported results, including our model trained
on all subtasks in three out of four cases. Neverthe-
less, we find that our model trained on all subtasks
is able to outperform our model, which specializes
in subtasks C and D once, and even outperforms
all previous approaches in three out of four cases.

(D) Opinion Target Extraction:
For subtask D (Table 7), our approach again com-
fortably outperforms all previous approaches (Wo-
jatzki et al., 2017; Lee et al., 2017; Mishra et al.,
2017). Despite close contact with the authors of
Aßenmacher et al. (2021), we were unable to gen-
erate reportable results for their approach using the
original evaluation script, as we assume that their
approach suffers from a preprocessing bug (C.2).
Interestingly, again we find that our model trained
on all subtasks is able to outperform our model
trained only on subtasks C and D, verifying our in-
tuition of training a single model for all subtasks.

6 Conclusion

In this work, we proposed the first approach that
is able to solve all four subtasks of the GermEval
2017 shared task simultaneously. To achieve this
goal, we used a pointer network to sequentially pre-
dict a single, unified target sequence that encodes
all subtasks. We conducted an extensive hyperpa-
rameter search and thoroughly evaluated different
configurations and orders of prediction. In doing
so, we find that predicting all subtasks at once does
not negatively impact the overall performance of
our model and on the test set can even result in
a performance increase, verifying our strategy of
unifying all subtasks. Consequently, although our
model solves all subtasks at once, it outperforms
or closely matches all previous approaches on both
test sets. For all subtasks we find that our results on
the synchronic and dedicated diachronic test sets
are very similar, indicating robustness.

135

7 Limitations

Certain limitations of our approach should be con-
sidered. Our approach to a large degree assumes
that not only multilingual base models, but even
English-only base models are effectively applica-
ble to the German language. This may not translate
well to more niche, specialized, or low-resource
languages or domains. Nevertheless, the assump-
tion only comes into play as to our knowledge there
is no specifically German trained BART model
available. Unifying various subtasks on a data set
might not always improve performance, but inves-
tigating transferability of this paradigm to other
similar (German) tasks consisting of related sub-
tasks seems worthwhile and promising.

8 Ethical Considerations

We acknowledge the potential concern about large-
scale analysis of user content posted online. We
argue that this issue applies only to a lesser extent
to our approach, since the source of the content
is mainly social networks, microblogs, news sites,
and QA sites, which are explicitly written to be pub-
lic. Furthermore, the only metadata available are
the URLs such that the identities of the participants
are not disclosed, as no personally identifiable data
are collected. The data set utilized had previously
already been collected, analyzed, and published.

Acknowledgements

This work is partially supported by the MOTIV
research project funded by the Bavarian Research
Institute for Digital Transformation (bidt), an in-
stitute of the Bavarian Academy of Sciences and
Humanities. The authors are responsible for the
content of this publication.

References
Matthias Aßenmacher, Alessandra Corvonato, and

Christian Heumann. 2021. Re-evaluating germeval17
using german pre-trained language models. CoRR,
abs/2102.12330.

Gregory W. Corder and Dale I. Foreman. 2014. Non-
parametric statistics: a step-by-step approach, sec-
ond edition edition. Wiley, Hoboken, New Jersey.

Olive Jean Dunn. 1964. Multiple Comparisons Using
Rank Sums. Technometrics, 6(3):241–252.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,

Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Beyond
English-Centric Multilingual Machine Translation.
ArXiv:2010.11125 [cs].

Leonard Hövelmann and Christoph M. Friedrich. 2017.
Fasttext and Gradient Boosted Trees at GermEval-
2017 on Relevance Classification and Document-
level Polarity. In Proceedings of the GermEval 2017
– Shared Task on Aspect-based Sentiment in Social
Media Customer Feedback, pages 30–35, Berlin, Ger-
many.

Ji-Ung Lee, Steffen Eger, Johannes Daxenberger, and
Iryna Gurevych. 2017. UKP TU-DA at GermEval
2017: Deep learning for Aspect Based Sentiment
Detection. In Proceedings of the GermEval 2017
– Shared Task on Aspect-based Sentiment in Social
Media Customer Feedback, pages 22–29, Berlin, Ger-
many.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Pruthwik Mishra, Vandan Mujadia, and Soujanya Lanka.
2017. GermEval 2017 : Sequence based Models for
Customer Feedback Analysis. In Proceedings of
the GermEval 2017 – Shared Task on Aspect-based
Sentiment in Social Media Customer Feedback, pages
36–42, Berlin, Germany.

Behzad Naderalvojoud, Behrang Qasemizadeh, and
Laura Kallmeyer. 2017. HU-HHU at GermEval-2017
Sub-task B: Lexicon-Based Deep Learning for Con-
textual Sentiment Analysis. In Proceedings of the
GermEval 2017 – Shared Task on Aspect-based Sen-
timent in Social Media Customer Feedback, pages
18–21, Berlin, Germany.

Jan Pfister, Sebastian Wankerl, and Andreas Hotho.
2022. SenPoi at SemEval-2022 task 10: Point me
to your opinion, SenPoi. In Proceedings of the
16th International Workshop on Semantic Evaluation
(SemEval-2022), pages 1313–1323, Seattle, United
States. Association for Computational Linguistics.

Raghav R, Adarsh Vemali, and Rajdeep Mukherjee.
2022. ETMS@IITKGP at SemEval-2022 task 10:
Structured sentiment analysis using a generative ap-
proach. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022),
pages 1373–1381, Seattle, United States. Association
for Computational Linguistics.

Zeeshan Ali Sayyed, Daniel Dakota, and Sandra Kübler.
2017. IDS IUCL: Investigating Feature Selection and
Oversampling for GermEval2017. In Proceedings of

http://arxiv.org/abs/2102.12330
http://arxiv.org/abs/2102.12330
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1080/00401706.1964.10490181
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.semeval-1.183
https://doi.org/10.18653/v1/2022.semeval-1.183
https://doi.org/10.18653/v1/2022.semeval-1.191
https://doi.org/10.18653/v1/2022.semeval-1.191
https://doi.org/10.18653/v1/2022.semeval-1.191

136

Table 8: Configuration search space for our hyperpa-
rameter optimization conducted.

Parameter Values

Model facebook/bart-large-mnli,
facebook/mbart-large-50,
Shahm/bart-german,
facebook/m2m100_418M

Batch Size 4, 8, 16
Epochs 1, 2, 3, 4, 5
Learning
Rate

5e-6, 2.75e-5, 5e-5, 7.75e-05,
2.75e-04, 5e-4

the GermEval 2017 – Shared Task on Aspect-based
Sentiment in Social Media Customer Feedback, pages
43–48, Berlin, Germany.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020.
MLSUM: The multilingual summarization corpus.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8051–8067, Online. Association for Computa-
tional Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with extensi-
ble multilingual pretraining and finetuning.

Michael Wojatzki, Eugen Ruppert, Sarah Holschneider,
Torsten Zesch, and Chris Biemann. 2017. GermEval
2017: Shared Task on Aspect-based Sentiment in
Social Media Customer Feedback. In Proceedings of
the GermEval 2017 – Shared Task on Aspect-based
Sentiment in Social Media Customer Feedback, pages
1–12, Berlin, Germany.

Hang Yan, Junqi Dai, Tuo Ji, Xipeng Qiu, and Zheng
Zhang. 2021. A unified generative framework for
aspect-based sentiment analysis. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2416–2429, Online.
Association for Computational Linguistics.

A Hyperparameter Analysis

A.1 Parameter Range

In Table 8 we depict the range of explored hyperpa-
rameters, as described in Section 5.1. Since train-
ing runs for the largest learning rate (5e-4) resulted
in training instabilities, the exploration of this learn-
ing rate was canceled early after no valid run could
be conducted.

Table 9: Ranking of the selected hyperparameter combi-
nation across all subtasks.

A B C1 C2 D1 D2

Rank 34 22 3 3 1 1

A.2 Ranking across Subtasks
As described in Section 5.1 we select the combina-
tion “facebook/mbart-large-50” as the best model
with a learning rate of 5e-5, when training for 5
epochs and a batch size of 8. Table 9 lists the rank-
ing of this selected hyperparameter configuration
across all subtasks relative to all combinations of
hyperparameters explored.

A.3 Results per Subtask
In the following we show the hyperparameter
search results for subtasks A, B, C1, C2 and D2 on
the validation set (Figures 4 to 8). As before, we
consider p < 0.05 as statistically significant differ-
ence and mark it with an ∗. Black lines are again
used to represent the average values. Overall, we
find very similar results to subtask D1 (Section 5.1
and figure 3).

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 A

✱

✱

✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

E
va

lu
at

io
n:

 A

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 A

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 A

✱ ✱

✱✱

✱

✱

Figure 4: Results for subtask A, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

https://doi.org/10.18653/v1/2020.emnlp-main.647
http://arxiv.org/abs/2008.00401 [cs]
http://arxiv.org/abs/2008.00401 [cs]
https://doi.org/10.18653/v1/2021.acl-long.188
https://doi.org/10.18653/v1/2021.acl-long.188

137

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 B

✱

✱

✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

E
va

lu
at

io
n:

 B

✱

✱

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 B

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 B

✱ ✱

✱ ✱

✱

Figure 5: Results for subtask B, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 C
ca

te
go

ry

✱

✱

✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

E
va

lu
at

io
n:

 C
ca

te
go

ry

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 C
ca

te
go

ry

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 C
ca

te
go

ry

✱

✱

✱

✱

✱

✱

Figure 6: Results for subtask C1, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 C
ca

te
go

ry
&

po
la

rit
y

✱

✱

✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch
E

va
lu

at
io

n:
 C

ca
te

go
ry

&
po

la
rit

y

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 C
ca

te
go

ry
&

po
la

rit
y

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 C
ca

te
go

ry
&

po
la

rit
y

✱ ✱

✱ ✱

✱

✱

Figure 7: Results for subtask C2, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

fa
ce

book/m
bar

t-l
ar

ge-
50

fa
ce

book/m
2m

10
0_

41
8M

fa
ce

book/b
ar

t-l
ar

ge-
m

nli

Shah
m

/b
ar

t-g
er

m
an

0.0

0.2

0.4

0.6

0.8

1.0

Model

E
va

lu
at

io
n:

 D
ov

er
la

p

✱✱

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Epoch

E
va

lu
at

io
n:

 D
ov

er
la

p

✱

✱

✱

4 8 16
0.0

0.2

0.4

0.6

0.8

1.0

Batch size

E
va

lu
at

io
n:

 D
ov

er
la

p

5e
-6

2.7
5e

-5
5e

-5

7.7
5e

-5

2.7
5e

-4
0.0

0.2

0.4

0.6

0.8

1.0

Learning rate

E
va

lu
at

io
n:

 D
ov

er
la

p

✱ ✱

✱ ✱

✱

✱

Figure 8: Results for subtask D2, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

138

Table 10: Achieved results on the Testsyn set using dif-
ferent seeds. x denotes the average and σ the standard
deviation. Both are computed per subtask.

Seed A B C1 C2 D1 D2

1 0.940 0.807 0.594 0.485 0.371 0.388
2 0.954 0.832 0.635 0.525 0.419 0.443
3 0.951 0.829 0.633 0.527 0.418 0.444
4 0.942 0.816 0.618 0.507 0.407 0.430
5 0.948 0.821 0.633 0.516 0.413 0.436

42 0.953 0.815 0.632 0.510 0.415 0.440

x 0.948 0.820 0.624 0.512 0.407 0.430
σ 0.006 0.009 0.016 0.015 0.018 0.021

B Seeds

When conducting the hyperparameter optimization
we used the seed 42 for all runs. To illustrate how
robust our results are to changes in random initial-
ization, we additionally examined five more seeds
in Table 10. It should be mentioned that, overall,
the results are stable across different seeds. In our
experiment, only seed value 1 can be viewed as an
outlier, as it performs comparably poor.

C Analyzing Aßenmacher et al. (2021)

During the reevaluation of Aßenmacher et
al. (2021), we found two performance differ-
ences when comparing their custom reimplementa-
tion of the metric with the original metric. All
analyzes are based on the results generated us-
ing their repository: https://github.com/
ac74/reevaluating_germeval2017. In
the following we detail our analysis.

C.1 Subtask C

We reran subtask C and recorded the outputs ob-
tained. During this run, according to the costum
metric, the model achieved a performance close to
their reported results. However, when we converted
these results to the challenge XML format and eval-
uated it using the original GermEval binaries for
easier comparison, we obtained the results, which
we report in Table 6. We suspect different usages
of micro vs. macro averaging to be the issue, but
did not further investigate any possible differences
between the metrics.

C.2 Subtask D

When inspecting the results obtained for subtask
D, we observed that some spans in the input doc-
ument are duplicated. This makes it hard to con-

vert these predicted word-level span annotations
to the original XML format, as the input string
to be predicted gets changed during preprocess-
ing. We show this using a truncated example: “AZ
Muenchen : Technischer Defekt: Störung am Isar-
tor: S- Bahn-Stammstrecke dicht: Ein technischer
Defekt[. . .]”, which is annotated in the ground-
truth with the opinion terms “Technischer Defekt”
twice, as well as the terms “Störung” and “Bahn-
Stammstrecke”. During preprocessing this sample
is transformed to the following input document:

“az muenchen : technischer defekt technischer defekt
: storung am isartor : s - bahn - stammstrecke :
storung am isartor : s - bahn - stammstrecke dicht
: ein technischer defekt[. . .]”, duplicating “tech-
nischer defekt” as well as “storung am isator: s-
bahn-stammstrecke” in the process. Notably, these
duplications seem to be connected to the ground-
truth opinion spans. Thus, the annotations for the
ground-truth label seem to leak into the model in-
put, as spans that have to be annotated multiple
times seem to be fed in multiple times. Due to
this presumed bug in the data preprocessing, we
are unable to reliably convert the model outputs to
processable inputs for the original metric.

https://github.com/ac74/reevaluating_germeval2017
https://github.com/ac74/reevaluating_germeval2017

