
Query Translation between openEHR and

i2b2

Georg FETTEa,b,1, Mathias KASPARb, Leon LIMANa, Georg DIETRICHa,

Maximilian ERTLb, Jonathan KREBSa, Stefan STÖRKb, Frank PUPPEa
a University of Würzburg, Chair of Computer Science 6

b
 University Hospital of Würzburg, Comprehensive Heart Failure Center

Abstract. Secondary use of electronic health records using data warehouses (DW)
has become an attractive approach to support clinical research. In order to increase

the volume of underlying patient data DWs at different institutions can be connected
to research networks. Two obstacles to connect a DW to such a network are the

syntactical differences between the involved DW technologies and differences in

the data models of the connected DWs. The current work presents an approach to

tackle both problems by translating queries from the DW system openEHR into

queries from the DW system i2b2 and vice versa. For the subset of queries

expressible in the query languages of both systems, the presented approach is well
feasible.

Keywords. Clinical data warehouse, query, i2b2, openEHR

1. Introduction

The secondary use of electronic health records (EHR) has become an important field in

medical informatics. Routine clinical data is reused for various scientific purposes, like

prospective estimation of study cohort sizes or support of study cohort acquisition. In

order to support access to the EHRs, data warehouses (DW) have been developed.

Routine data, which is often scattered in various data sinks in various heterogeneous data

formats, is aggregated in a DW in a homogeneous form in a centralized data sink, which

is accessible via a standardized query interface. Two popular architectures that can serve

as such a DW are i2b2 (https://www.i2b2.org) and openEHR (https://www.openehr.org).

In order to increase the volume of underlying patient data for more expressive query

results, DW installations at different institutions can be connected to distributed DW

networks. Systems like SHRINE [1] for i2b2 or SNOW [2] for openEHR allow queries

to be distributed to connected DW instances and to aggregate the returned results. Each

network system, however, only allows DWs having the same query interface to be part

of the network. If a DW with a different query interface has to be integrated into a

network, the data from that DW has to be transferred (like in [3]) into a new dedicated

DW installation fitting the networks query interface. However, parallel support of

multiple DW systems at the same institution containing the same redundant data creates

an overhead in support and hardware.

1 Corresponding author: Georg Fette, University and University Hospital Würzburg, CHFC, Am

Schwarzenberg 15, 97078 Würzburg, Germany; E-Mail: georg.fette@uni-wuerzburg.de

An alternative approach is to translate the queries of an incompatible DW system

into the query language of the required DW system. The current work follows this

approach by translating (when possible) i2b2 queries into openEHR queries (expressed

in the query language AQL) and vice versa.

2. Methods

OpenEHR’s query language AQL (Archetype Query Language) is SQL-inspired and like

SQL a functional language. It consists of three parts: The FROM part defines which

structural elements are queried, the WHERE part constrains those elements and the

SELECT part defines which elements have to be returned in the results. OpenEHR’s data

model allows elements to be nested, so that an element with the same identifier can

appear multiple times in the model. Therefore, in order to unambiguously identify

elements in queries they have to be identified by their paths, which are concatenations of

the identifiers of the nested elements (e.g. Ehr/Observation[LabResult]/Value). Nesting

in openEHR can have arbitrary depth.

i2b2’s query language is formulated in XML and is as well a functional language.

i2b2 uses an Entity-Attribute-Value schema [4], which naturally only allows one single

layer of attributes to be nested in a patient record layer. In i2b2, however, facts can

additionally be nested in encounter and/or instance object layers. The nesting topology

in i2b2 is controlled by so-called panel_timing rules. As in i2b2 all data model elements

are unique they can be referenced in queries solely by their identifiers.

To translate a query, it is first parsed and transformed into a graph. For parsing AQL

queries, the parser from the AQL-processor of the EtherCIS project (http://ethercis.org)

was taken and combined with a graph builder written by the authors. The parser and

graph builder for i2b2 were written by the authors. The graphs retain the data model

structure, the constraints on data element values, and which data elements have to be

contained in the returned results.

Before the translation into the target language, a graph can undergo several

transformations. Currently there exist three types of transformations: TBox-ABox-

Transformations, Path-Transformations and Concept-Code-Mappings (see Figure 1).

Figure 1. Current types of transformations applicable on query graphs.

TBox-ABox-Transformations are necessary because in i2b2 many data model

elements (e.g. laboratory measurements) are modeled as explicit concepts, whereas in

openEHR they are modeled using the same abstract concept, containing a field to

parametrize the instances using terminology codes in order to represent specific

measurement types. The transformation identifies a core node A containing a selector

node B being equal to a specific selector equality value C. The core node A gets renamed

to the selector equality value C and the attached selector node B is removed. The

transformation can also be applied in the reverse direction: a node identified by a selector

equality value C gets added an additional subgraph consisting of a selector node B and a

selector equality node C identified by the primarily matched selector node. The identifier

of the primarily matched node is replaced with the core identifier A.

Path-Transformations enable the possibly deeply nested data model elements of

openEHR to be mapped to i2b2’s rather flat data model. Long paths can be reduced to

short ones by removing intermediate nodes. The reverse operation inserts nodes in

between short paths.

Concept-Code-Mappings map identifiers of the source data model to identifiers of

the target data model.

Query graphs are translated into the target language via respective graph writers.

When i2b2 is the target language, the nodes identified by Patient, Encounter and Instance

are treated as special cases: Patient is mandatory and assumed to be the query graph root.

The other two cases control the query’s panel timings.

The proposed method was tested on manually designed AQL queries, on AQL

queries contained in the AQL documentation [5] and on queries described in i2b2’s query

specification [6]. A query was translated into its respective counterpart and afterwards

retranslated into its original language. After being retranslated into the original query

language the retranslated query had to be identical (besides formatting differences) to the

original query.

3. Results

Figure 2 pictures an example of an AQL query being transformed into an i2b2 query.

The example contains a query for patients having two constrained measurements

contained in different reports, which are contained in the same encounter. The AQL parse

tree is translated into a graph by instantiating all archetypes as well as all archetype

elements as nodes. Table 1 shows the transformation configurations used in the example.

The TBox-ABox-Transformations exchange the two branches representing the Calcium

and LVEF measurements by the required structures from the i2b2 data model. The Path-

Transformations shorten the paths, so that the query matches the data model nesting

capabilities of i2b2. The Concept-Code-Mappings exchange all openEHR identifiers

with data model identifiers used in i2b2. Finally, the query graph is translated to an i2b2

query.

Table 1. Transformation configurations used in the example depicted in Figure 2. The characters in brackets

behind the column headings indicate the transformation nodes in Figure 1.

TBox-ABox-Transformations

CoreIdentifier (A) SelectorIdentifier (B) SelectorEquality (C)

Observation [LabResult] Code Calcium

Observation [EchoResult] Code LVEF

Path-Transformations

SourceIdentifier (Q) IntermediatePaths (B) TargetIdentifier (R)

Composition[Encounter] Composition[LabReport] Calcium

Composition[Encounter] Composition[EchoReport] LVEF

Concept-Code-Mappings

SourceIdentifier (Q) TargetIdentifier (R)

Calcium \\i2b2_Labs\CA

LVEF \\i2b2_Echo\LVEF

Composition[Encounter] Encounter

EHR Patient

Figure 1. Translation of an AQL query into an i2b2 query. Underlined nodes denote data elements that have

to be included in the query result. c-relations denote nesting.

The translation experiments with queries contained in the language specifications of

the respective systems succeeded only on a limited subset. The translation works only

for queries containing exclusively operators, which are available in AQL as well as in

i2b2. The intersection of both systems’ operator sets are comparators on single values

{>, >=, <, <=, =} and Boolean operators {and, or, not}. In i2b2 nesting of Boolean

operators is not arbitrarily possible because queries have to be presented in conjunctive

normal form (CNF). Furthermore, in i2b2 queries may contain at most one Encounter

node which has multiple concepts attached, as Same_Encounter timings always hold for

all concepts in the whole query. The same is the case for Same_Instance timings. The

common intersection of potential return value types of both query languages is {Patient,

Encounter}. AQL supports the return of arbitrary concept types and combinations of

those, which is not possible in i2b2. i2b2, on the other hand, supports additional return

types incorporating aggregation operators (e.g. PatientCount), which are not supported

by AQL. Furthermore, i2b2 supports some rather specific return values like PatientRace

or PatientAge which could be expressed in AQL but which are not treated here because

of their high specificity.

4. Discussion

We presented an approach to translate openEHR/AQL queries into i2b2 queries and vice

versa and illustrated the approach in an example.

Queries expressible in both languages can be automatically translated, which allows

instances of the two query systems to be transparently included in research networks of

the other type. This possibility enables the fusion of formerly separated research

networks of i2b2 and openEHR to much larger networks having larger pools of

incorporated patient data. This would facilitate statistical evaluations of routine patient

data a give results from these evaluations a much larger impact.

As i2b2 and AQL do not comprise the same sets of query operations and differ in

model expressiveness, the translation capability of the presented approach is restricted

to the subgroup of queries that are expressible in both languages. ‘Expressible in a

language’ means that all involved operators exist in that language and that the data model

supports the nesting structure of all data elements contained in the query.

To extend the translation capabilities of the proposed approach the set of graph

transformations could be enriched by transformations that make unavailable operators

be expressed by semantically equivalent combinations of other operators (e.g. i

matches(|10..20|) could be substituted by i >= 10 and i <= 20). The restriction of i2b2

being limited to nested Boolean clauses in CNF could be mended with graph

transformations that transform arbitrary Boolean clauses into a CNF.

An aspect not yet tackled is how query results are returned by the respective systems,

as each system has its own syntax and control flow for delivering results. For that topic,

proper adapters would have to be developed as well.

An implementation of the presented approach in Java is available at

https://gitlab2.informatik.uni-wuerzburg.de/gef18bg/cdw_querymapper.

This research was funded by grant of German Federal Ministry of Education and

Research (Comprehensive Heart Failure Center Würzburg, grants #01EO1004 and

#01EO1504).

References

[1] Weber GM, Murphy SN, McMurry AJ, et al. The Shared Health Research Information Network (SHRINE):
a prototype federated query tool for clinical data repositories. J Am Med Inf Assoc. 2009;16(5):624-30.

[2] Hailemichael MA, Marco-ruiz L, Bellika JG. Privacy-preserving Statistical Query and Processing on

Distributed OpenEHR Data. Stud Health Technol Inform. 2015;210:766-70.
[3] Haarbrandt B, Tute E, Marschollek M. Automated population of an i2b2 clinical data warehouse from an

openEHR-based data repository. J Biomed Inform. 2016;63:277-294.

[4] Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-value modeling for biomedical

databases. Int J Med Inform 2007;76(11-12):769-79.

[5] AQL language specification, https://www.openehr.org/releases/QUERY/latest/docs/AQL/AQL.html,

accessed 10.10.2018
[6] i2b2 CRC messaging guide, https://www.i2b2.org/software/files/PDF/current/CRC_Messaging.pdf,

accessed 10.10.2018

