A Comparison of Search Engine Technologies for a Clinical Data Warehouse

Georg Dietrich, Georg Fette and Frank Puppe
University of Wiirzburg and DZHI (Deutsches Zentrum fiir Herzinsuffizienz)
{dietrich, fette, puppe} @informatik.uni-wuerzburg.de

Abstract

A clinical data warehouse (DW) can be used to
recruit patients for clinical studies or statistical
analysis. For improved user experience, it is
crucial that the search engine technology of the
DW answers user queries quickly. In this paper,
we investigate the performance of the two most
popular technologies for regarding structured and
unstructured data query answering: a database
and a search engine. Our empiric results show
that search engines have advantages for complex
queries.

1 Introduction

A clinical data warehouse makes data available for a vari-
ety purposes, e.g., information retrieval and statistical eval-
uations. The data consists of basic data, symptoms, diag-
noses and therapies. Use-cases are the retrieval of patients
for clinical studies, which have several inclusion and ex-
clusion criteria, statistical analysis of frequencies of patient
groups, the search for risk factors for specific diseases and
statistical quality checks. For efficient usage, quick query
answering is crucial. In this direction, we compare the per-
formance of two alternative techniques in a real world ap-
plication featuring a clinical data warehouse DWH utilized
at the University of Wiirzburg.

Currently (June 2014) the data warehouse of the Univer-
sity Hospital of Wiirzburg consists of basic data, diagnoses,
laboratory findings and echocardiography data for the years
2012 and 2013. There are about 70 0000 cases with more
than 25 million facts available. To protect the privacy, all
data has been pseudonymised. The mapping of the pseudo-
ids to the patient-ids is managed by a third party, which can
approve applications to e.g. recruit patients for studies with
the data warehouse.

In order to work with the data warehouse, it must be able
to answer queries quickly. Therefore it is necessary to store
the data in an efficient way. Furthermore fast access and
intuitive usability are important.

There are several ways to design such an information re-
trieval system. A basic approach is to use a database man-
agement system. As a first step, a schema has to be de-
signed. This is a non-trivial task, because the knowledge
base consists of about 55 000 concepts like the laboratory
finding of natrium, the age of a patient or the diagnosis
heart attack. After that, indices need to be created for the ta-
bles to speed up the system. Finally, the algorithms, which
automatically create queries for the database, have to be
implemented.

Another approach is to use a Resource Description
Framework (RDF). Here, the schema has to be specified
first, too. The 25 million facts are then stored as RDF
triples, such as patient X has laboratory finding of natrium
of 140 mmol/l. In this example, patient X is the subject,
a laboratory finding of natrium is the predicate and 140
mmol/l is the object. The RDF data model can be queried
with the ”SPARQL Protocol And RDF Query Language”
[6].

The user queries contain usually about ten or more pa-
rameters. This is quite a lot and the RDF storage didn’t
scale for our challenges.

The third approach is to use a search engine. We used
Apache Solr [2], which needs a schema for the documents
and their fields. This is similar to the database schema,
being flexible to new fields and changes.

Our data warehouse query should provide the following
features:

e An intuitive usable graphical user interface to create
easily queries, whose result is displayed in a clear way.

e A search for hierarchical structures like a diagnosis-
tree.

e Span and segment queries to search medical concepts,
which consist of several words.

e The system is able to use synonyms and abbreviations
for medical query terms.

e Very fast response time for complex user queries.

2 Background
The clinical data consists of four data types:

e Numeric Values: Most Laboratory Findings are floats
with a few decimal places like haemoglobin = 16.58
g/d

e Boolean Values: Diagnoses are represented as
boolean values. When a disease is diagnosed it is
stored like hypertension = true

e Text Values: Several medical reports of findings ex-
ist as texts like discharge letters or electrocardiogram
reports.

e Enumerations: Many Attributes have a view values
like sex (female, male) or type of treatment (residen-
tial, semi-residential, ambulant)

2.1 Data Schema

At the first approach all available facts were stored in a
relational database. A simplified model of the data schema
with two basic tables is shown in Figure 1.

Catalog Info
*aterin ———+InfolID
“HName *Caseld
“ParentAttrID *AttrID

*Value

Figure 1: Simplified relational model of the database with
a triple structure in the Info-table: CaselD, AttrID, Value

All attributes, which a patient can have, are stored in the
Catalog-table, which also represents hierarchical relations.
Examples for attributes are natrium (lab data), sex (basic
data) or 150.22 Chronic systolic (congestive) heart failure
(diagnostic data). The values for the attributes are stored in
the Info-table: The CaselD represents one ’case” of a pa-
tient (including admission and discharge dates) including
all data for that patient in that time period. The CaselD, At-
trID and the Value form a triple structure: For one case and
one attribute exists one value, e.g. the patient of a case has
blood pressure of 125. It is possible that one attribute has
several values, like multiple measurements of one attribute
at different time stamps. This is mapped with several rows
in the table.

An alternative schema with one big table and a column
for every attribute was tested, but discarded, because only
ca. 1000 columns per table were allowed (just for the diag-
noses, we needed more than 16000 columns).

2.2 Hierarchical search

A special function is the hierarchical search. Our terminol-
ogy is hierarchically ordered, like the ICD-10 coded diag-
noses [1]. The international classification of diseases is a
catalog for epidemiology, health management and clinical
purposes. It is hierarchically structured as you can see in
Figure 3.

If a specific disease like 120.0 Instablile Angina petoris
is diagnosed, then the “parent”-disease (here: 120. Angina
petoris) exists, too. Usally, a very specific diagnosis like
120.0 is documented, which has a high depth in the cata-
log. But the data warehouse user may search for a more
general diagnosis like 7120. To meet this requirement, new
facts were generated by preprocessing, i.e. setting all par-
ent diagnoses of a diagnosis “true” thus propagating the
diagnosis up in the tree.

2.3 Graphical user interface

The graphical user interface consists mainly of three views.
In the catalog view (Figure 2 and 3) all attributes are hier-
archically sorted. After every attribute name the total num-
ber of occurrences in the data warehouse is shown. At-
tributes can be dragged from the catalog-view (Figure 3)
and dropped in the query view (Figure 4). Operators and
constraints can be applied to this attributes in the query
view, e.g. numeric range selection. If one attribute has
more than one value in one case, it is possible to specify
which one should be selected (first, last, min, max). More-
over the boolean operatores ”And”, OR” and ”"Not” are
available for combinations. In the result view the query
matching cases are displayed tabularly (Figure 5).

3 Evaluation: A speed-test between Solr
and a DBMS

A database server and a search platform were tested as stor-
age engine for the data warehouse application.

Suchen: Suchen | Suche loeschen | &) Hilfe |

Im Dats-warehouse befinden sich 633467 Falle, Zeitraum: 2012-2013

name ;I
= Aorta
= Wurzel
Wirzel = ekkatisch (996)
‘Wurzel Messwert mm (8)
Wiurzel = normal weit (15873)
wanddurchmesser
Fustand

Figure 2: The catalog view (in german) of the data ware-
house shows hierarchically structured all queryable at-
tributes and their number of occurrences.

|

OEEE R

Krarkheiten des Kreislaufsystems (71355)
100-102 : Akutes rheunatisches Fieber (42)
105-109 : Chronische rheumatische Herzkrankheiten (754)
110-115 : Hyperkonie (46983)
120-125 : Ischamische Herzkrankheiten (14545)
[=] 120 : Angina pectoris (2782)
120.0 : Instabile Angina pectoris (7273
120.1 : Angina pectoris mit nachgewiesenem Koronarspasmus (23}
120,58 : Sonstige Farmen der Angina pectaris (2063)
120,29 : Anagina pectotis, nicht naher bezeichnet (48)
121 1 Akuter Myokardinfarkk {17700
122 1 Rezidivierender Myokardinfarkk (2)
123 1 Bestimmte akute Komplikationen nach akutem Myokardinfa (14)
124 1 Sonstige akute ischamische Herzkr ankheit (45)
125 ; Chronische ischamische Herzkrankheit {13391)
126-128 : Pulmonale Herzkrankheit und Krankheiten des Lungen {1759)

HEHHEBE

Figure 3: An example of the hierarical structure of the ICD-
10 catalog is in the catalog view.

Mame |Oparator | ‘et | Oder | Bezug |
Alter (499675)
Ao-root Werk imm) (17103) v 40 ¥ ersher Wert

Geschlecht=M (240859)
Geschlecht=\y (Z59010) v
171 : Aortenaneurysma und -dissektion (1429) +

‘Wwurzel = ekkatisch [996) # wvorhanden

Figure 4: In the query view of the data warehouse proper-
ties of the attributes can be set.

Es wurden 681 Falle gefunden. {In der Yorschau sind mazx. 100 Falle)

Alterl ﬁo-rootl Wurzel = ektatischl 171 ; Aortenaneur: smal Geschlecht=M
65 41 % %
76 42 *

34 42 ¥ 4
=] 41 by o
38 41 % ®
&1 42 ks k4
76 L ® 4 4
45 43 % %
a0 44 % ®
a8 41 ks k4

Figure 5: In the result view of the data warehouse are query
hits shown in a tabular style.

Catalog Info
*aterip - ¥InfoIp
°Name *Caseld
*FParentAttrID *AttrID

*Value
“ValueDec
°First

°Last
“Min
SMax

Figure 6: The relational model of the database with the
triple structure in the Info-table and additional flags for the
first, last, min or max value of one attribute for one case.

3.1 Setting

For this test, various queries have been made to the systems
and the response time was measured. The database system
is a Microsoft SQL Server [5] and the search platform is
Apache Solr 4.8 [2]. The database schema is shown in fig-
ure 6. It has been extended to the first example 1 with the
columns ValueDec, which is a decimal(8,2) column, and
the four columns (first, last, min and max), which can have
the values 17 or null. Because some attributes can have
more than one value in a case, these four columns mark, if
the current is e.g. the first occurence in the case. Strings
values are stored in the normal value-field and numbers are
stored in the decimal-field for a quicker access. The Info-
table has in the first runs, shown in Table 1, a small index on
the two columns CaselD and AttrID. In the last test-runs,
shown in Table 2, the index is extended to the columns Ca-
selD, AttrID, ValueDec and First, Last, Min, Max. In our
test, the database did not use caching.

Solr has a document centered approach, so all facts of
one case are pooled into one document and these docu-
ments are then indexed. The Solr-schema consists of dy-
namic fields for every attribute, which means, that every
attribute has got its own index.

In our application, the first 100 hits and the total count
of hits are displayed. For these two information are two
requests necessary in the database, a top-100-query and a
count(*)-query, Solr provides these two information in one
query response.

14 settings were tested, three with boolean attributes,
eight with numeric attributes and three with a text field.
For every setting five queries have been send to the server
and the response time has been measured. In Table 1, the
average values of every five queries are shown in millisec-
onds.

Several diagnoses-attributes were used for the queries
with the boolean-values. The average occurrence of a at-
tribute was about 30 000 times, but some attributes had a
occurrence of a few thousand, others had up to 100 000 oc-
currences. For the numeric tests, laboratory findings, which
had about 100 000 occurrences, were queried. If a condi-
tion was applied to a numeric value, it was always a range
query with a lower- and a upper-bound. 25 000 texts were
used for the word-queries, which were realized with the
like-operator. In the first word-test a single word was re-
quested, in the second a word with the wildcard * and in
the third test three AND-connected words were tested.

3.2 Results

Overall, it has been found, that a full indexed database is
faster Solr, except the DB must join tables, than Solr is
faster. If the db isn’t full indexed, Solr is always faster. As
it is show in Table 1 and 2 the database is only faster, if

db top 100 | db count | dbsum | Solr
1 Bool 40 32 73 | 115
3 Bool And 2267 140 2407 48
3 Bool OR 6465 143 6608 | 235
1 Word 18 3280 3248 | 218
1 Word * 2332 2399 4731 | 155
3 Words 39 6579 6645 | 445

Table 1: Response time in milliseconds for various queries.
A comparison between a MS SQL DB and Apache Solr
for querying boolean values or words in text fields. The
boolean attributes were ORed and ANDed.

one attribute was queried and the index covered all used
columns. The query for one boolean attribute is on the
DB fast, because for a diagnosis query the value column
does not need to be checked, because only positive records
are stored in the database. So the query can be answered
by only using the columns AttrID and CaselD, witch are
contained in the small index of the table and this is very
effective.

But this does not work for the numeric queries, because
it must be checked for every record if the value was in the
selected range or if the flag was set in the First, Last, Min,
Max flied. In Table 2 the response times are shown for
the small and the extended index for the DB. In the small
index not all columns are included, which are required to
answer the query. In contrast, the extended index contains
all relevant columns. As you can see in Table 2, there is
a big difference in the respond time, if the DB can use an
index or it can’t. Solr can use its index on the numeric field
to answer quickly, too.

If more than one attribute is queried, the database must
join the Info-table with itself, because the facts are stored
in a triple structure in the database. This is quite expensive
and it explains, why Solr is faster, when more than one
attribute is queried. Even the index of the DB doesn’t help,
which can be seen in the tests with three boolean or numeric
attributes.

The database is quite fast with fetching the first 100 re-
sults for a single or a multiple word-query, but it is quite
slow for a word-*-expression. The DB does not have to join
tables to answer the 3-word-query, but the respond time is
twice as long. Solr is much faster for text queries, because
the texts are indexed here and in the DB they are not in-
dexed.

It can be also observed, that the database is much slower,
when the attributes are ORed and not ANDed.

But the main finding is, that Solr is on average drastically
faster than the database system. It looks like, Solr doesn’t
take significant longer, if more attributes were queried.

If the tests are considered, where all necessary data was
indexed, Solr is a bit slower, if one attribute was requested
only, but if three attributes were queried, Solr is nearly ten
times faster than the DB.

4 Additional Features of the Search Engine

By using the search engine, some new text query features
are now possible.

Segment and span search

Text fields can be efficiently searched. It is not only possi-
ble to search by multiple terms, it is also possible to make
span queries. A span query can be used to find multiple

DB with small index DB with extended index | Solr

top 100 | count sum | top 100 | count | sum
1 Num. 692 | 3423 4115 4 50 54 | 167
1 Num. with cond. 403 966 1369 5 184 189 | 242
3 Num. with cond. AND 590 | 1904 2494 52 253 305 | 136
3 Num. with cond. OR 10438 | 5086 | 15524 7207 378 758 | 234

Table 2: Response time comparison between a MS SQL DB and Apache Solr for querying numeric values with and without
conditions. The attributes were ORed and ANDed. All results are in milliseconds. The small DB-index does not contain

all required columns, the extended index contains all.

terms near each other, without requiring the terms to ap-
pear in a specified order. This can be a powerful tool for
searching concepts, which consist of several words, like
heart failure. Consider following sentence:

(1) Heart: left ventricular failure.

It is possible to set the maximum distance, the two terms
may be away from each other. The words heart and failure
have a distance of three words, so this technique works well
here. But it won’t work in the next tow examples:

(2) Kidney: renal failure. Heart: normal after trans-
plantation.

(3) Heart: sinus rhythm, normal large left ventricle,
aortic root normal width, right ventricular failure.

In example 2, the context of failure is kidney not heart.
While this can be covered in the tool by determining an
order for the terms, the span query approach is not suitable
for the third example. The distance of the two terms is too
far and the context can not be safely resolved.

Therefore, another approach was implemented: The seg-
ment search. Many text documents are structured like the
examples above. One text consists of an enumeration of
concepts like heart or kidney. Every concept is followed
by a colon and list of findings. Therefore, it make sense to
split these texts in segments, like in example 1 and 3. Ex-
ample 2 would be split in two segments. This procedure is
a preprocessing step, which makes it possible to search in
these segments quickly. A query searches only in individ-
ual segments and doesn’t mix them up. So, if you query
example 2 with the terms heart and failure, you will get no
hit.

Synonym search

Another feature of the search engine implementation is,
that queries are complemented with synonyms. Every term
of a query is analyzed if it is a medical term, which has syn-
onyms or abbreviations, these terms are added to the query.
With this feature, a higher recall can be achieved.

5 Related Work

An empirical study on performance comparison of Lucene
and a relational database has been made by Jing [4].
Apache Solr uses the Apache Lucene search library for
building and querying the index. Jing tests a MS SQL
Server, too, but with a full-text-index. Unfortunately, this
feature was not available to us. Furthermore they query
only one table and they don’t make any joins. But their
results also say, that Lucene is faster than an unindexed
database. Except, if combinational queries, with more than
one where-clause, which could be ORed or ANDed, were
tested, Lucene was on average quicker. Jing uses synthetic

generated data and tested only queries without join opera-
tions, we had real data with many joins.

The Léon Bérard Cancer Center in France [3] imple-
mented their information retrieval systems also with Solr,
but only as full-text search engine and not for structured
data.

6 Conclusions

In this paper, we presented a brief overview over the main
functions and the GUI of our clinical data warehouse query
tool. We described the setting for our storage engines and
our requirements. We showed and explained in several tests
the advantages and disadvantages of relational database
and Solr for query answering. It has been found, that Solr
is faster than an unindexed database. If the DB was full
indxed, then it is faster as Solr, except the DB must join
tables. In that case, Solr is faster again.

References

[1] World Health Organization (WHO) : International
Classification of Diseases (ICD). http://www.
who.int/classifications/icd/en/ (2014),
[Online; accessed 20-June-2014]

[2] Apache Software Foundation: Apache Solr. http:
//lucene.apache.org/solr/ (2014), [Online;
accessed 20-June-2014]

[3] Biron, P, Metzger, M.H., Pezet, C., Sebban, C.,
Barthuet, E., Durand, T.: An information retrieval sys-
tem for computerized patient records in the context
of a daily hospital practice: the example of the 1éon
bérard cancer center (france). Applied clinical infor-
matics 5(1), 191-205 (2014)

[4] Jing, Y., Zhang, C., Wang, X.: An empirical study
on performance comparison of lucene and relational
database. Communication Software and Networks, In-
ternational Conference on 0, 336-340 (2009)

[5] Microsoft: Microsoft SQL Server. http:
//msdn.microsoft.com/en-us/library/

bb545450.aspx (2014), [Online; accessed 20-
June-2014]
[6] W3C: W3C, SPARQL 1.1 Protocol. http:

//www.w3.0org/TR/sparglll-protocol/
(2014), [Online; accessed 20-June-2014]

