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Abstract. A basic task of rescue robot systems is mapping of the envi-
ronment. Localizing injured persons, guiding rescue workers and excava-
tion equipment requires a precise 3D map of the environment. This paper
presents a new 3D laser range finder and novel scan matching method for
the robot Kurt3D [9]. Compared to previous machinery [12], the apex an-
gle is enlarged to 360◦. The matching is based on semantic information.
Surface attributes are extracted and incorporated in a forest of search
trees in order to associate the data, i.e., to establish correspondences.
The new approach results in advances in speed and reliability.

1 Introduction

Rescue robotic systems are designed to assist rescue workers in earthquake, fire,
flooded, explosive and chemical disaster areas. Currently, many robots are ma-
nufactured, but most of them lack a reliable mapping method. Nevertheless, a
fundamental task of rescue is to localize injured persons and to map the envi-
ronment. To solve these tasks satisfactorily, the generated map of the disaster
environment has to be three-dimensional. Solving the problem of simultaneous
localization and mapping (SLAM) for 3D maps turns the localization into a
problem with six degrees of freedom. The x, y and z positions and the roll, yaw
and pitch orientations of the robot have to be considered. We are calling the
resulting SLAM variant 6D SLAM [10].

This paper addresses the problem of creating a consistent 3D scene in a
common coordinate system from multiple views. The proposed algorithms allow
to digitize large environments fast and reliably without any intervention and
solve the 6D SLAM problem. A 360◦ 3D laser scanner acquires data of the
environment and interprets the 3D points online. A fast variant of the iterative
closest points (ICP) algorithm [3] registers the 3D scans in a common coordinate
system and relocalizes the robot. The registration uses a forest of approximate



kd-trees. The resulting approach is highly reliable and fast, such that it can be
applied online to exploration and mapping in RoboCup Rescue.

The paper is organized as follows: The remainder of this section describes the
state of the art in automatic 3D mapping and presents the autonomous mobile
robot and the used 3D scanner. Section 2 describes briefly the online extraction
of semantic knowledge of the environment, followed by a discussion of the scan
matching using forests of trees (section 3). Section 4 presents experiments and
results and concludes.

1.1 3D Mapping – State of the Art

A few groups use 3D laser scanners [1,5,11,14,15]. The RESOLV project aimed
to model interiors for virtual reality and tele presence [11]. They used a RIEGL
laser range finder on robots and the ICP algorithm for scan matching [3]. The
AVENUE project develops a robot for modeling urban environments [1], using
an expensive CYRAX laser scanner and a feature-based scan matching approach
for registration of the 3D scans in a common coordinate system. Nevertheless, in
their recent work they do not use data of the laser scanner in the robot control
architecture for localization [5]. Triebel et al uses a SICK scanner on a 4 DOF
robotic arm mounted on a B21r platform to explore the environment [14].

Instead of using 3D scanners, which yield consistent 3D scans in the first
place, some groups have attempted to build 3D volumetric representations of
environments with 2D laser range finders [7, 8, 13, 15]. Thrun et al. [7, 13] use
two 2D laser range finder for acquiring 3D data. One laser scanner is mounted
horizontally, the other vertically. The latter one grabs a vertical scan line which
is transformed into 3D points based on the current robot pose. The horizontal
scanner is used to compute the robot pose. The precision of 3D data points
depends on that pose and on the precision of the scanner. Howard et al. uses
the restriction of flat ground and structured environments [8]. Wulf et al. let
the scanner rotate around the vertical axis. They acquire 3D data while moving,
thus the quality of the resulting map crucial depends on the pose estimate that
is given by inertial sensors, i.e., gyros [15]. In this paper we let rotate the scanner
continuously around its vertical axis, but accomplish the 3D mapping in a stop-
scan-go fashion, therefore acquiring consistent 3D scans as well.

Other approaches use information of CCD-cameras that provide a view of the
robot’s environment. Some groups try to solve 3D modeling by using a planar
SLAM methods and cameras, e.g., in [4].

1.2 Automatic 3D Sensing

The Robot Platform Kurt3D. Kurt3D (Fig. 1) is a mobile robot platform
with a size of 45 cm (length) × 33 cm (width) × 26 cm (height) and a weight of
15.6 kg, both indoor as well as outdoor models exist. Two 90 W motors (short-
term 200 W) are used to power the 6 wheels. Compared to the original Kurt3D
robot platform, the outdoor version has larger wheels, where the middle ones
are shifted outwards. Front and rear wheels have no tread pattern to enhance



rotating. Kurt3D operates for about 4 hours with one battery charge (28 NiMH
cells, capacity: 4500 mAh) charge. The core of the robot is a laptop computer
running a Linux operating system. An embedded 16-Bit CMOS microcontroller
is used to process commands to the motor. A CAN interface connects the laptop
with the microcontroller.

Fig. 1. The mobile robot platform Kurt3D offroad (left) and the 3D laser scanner
(right) The scanner rotates around the vertical axis. It’s technical basis is a SICK 2D
laser range finder (LMS-200).

The 3D Laser Scanner. As there is no commercial 3D laser range finder
available that could be used for mobile robots, it is common practice to assemble
3D sensors out of a standard 2D scanner and an additional servo drive [6, 12].
The scanner that is used for this experiment is based on a SICK LMS 291 in
combination with the RTS/ScanDrive developed at the University of Hannover.
Different orientations of the 2D scanner in combination with different turning
axes result in a number of possible scanning patterns. The scanning pattern that
is most suitable for this rescue application is the yawing scan with a vertical 2D
raw scan and rotation around the upright axis (see Fig. 1). The yawing scan
pattern results in the maximal possible field of view (360◦ horizontal and 180◦

vertical) and an uniform distribution of scan points.
As 3D laser scanner for autonomous search and rescue applications needs

fast and accurate data acquisition in combination with low power consumption,
the RTS/ScanDrive incorporates a number of improvements. One mechanical
improvement is the ability to turn continuously, which is implemented by using
slip rings for power and data connection to the 2D scanner. This leads to a
homogeneous distribution of scan points and saves the energy and time that is
needed for acceleration and deceleration of panning scanners. Another improve-
ment that becomes more important with short scanning times of a few seconds
is the compensation of systematic measurement errors. In this case the compen-
sation is done by sensor analysis and hard real-time synchronization, using a



Linux/RTAI operation system. These optimizations lead to scan times as short
as 3.2s for a yawing scan with 1.5◦ horizontal and 1◦ vertical resolution (240x181
points). For details on the RTS/ScanDrive see [17].

2 Extracting Semantic Information

The basic idea of labelling 3D points with semantic information is to use the
gradient between neighbouring points to differ between three categories, i.e.,
floor-, object- and ceiling-points. A 3D point cloud that is scanned in a yawing
scan configuration, can be described as a set of points pi,j = (φi, ri,j , zi,j)

T given
in a cylindrical coordinate system, with i the index of a vertical raw scan and j

the point index within one vertical raw scan counting bottom up. The gradient
αi,j is calculated by the following equation:

tan αi,j =
zi,j − zi,j−1

ri,j − ri,j−1

with −
1

2
π ≤ αi,j <

3

2
π.

The classification of point pi,j is directly derived from the gradient αi,j :

1. floor-points: αi,j < τ

2. object-points: τ ≤ αi,j ≤ π − τ

3. ceiling-points: π − τ < αi,j

with a constant τ that depends on the maximal ascent being accessible by the
robot (here: τ = 20◦).

Applied to real data, this simple definition causes two problems. As can be
seen in Fig. 2(a) noisy range data can lead to wrong classifications of floor- and
ceiling-points. Changing the differential quotient as follows solves this problem:

tan αi,j =
zi,j − zi,j−k

ri,j − ri,j−k

with k ∈
�

, k ≥ 1 the smallest number so that

√

(ri,j − ri,j−k)2 + (zi,j − zi,j−k)2 > dmin

for a constant dmin depending on the scanner’s depth accuracy σ (here: σ =
30 mm, dmin = 2σ).

The second difficulty is the correct computation of the gradient across jump-
ing edges (see Fig. 2(b)). This problem is solved with a prior segmentation [16],
as the gradient αi,j is only calculated correctly if both points pi,j and pi,j−k

belong to the same segment. The correct classification result can be seen in Fig.
2(c). Fig. 3 shows a 3D scan with the semantic labels.



(a)

(b) (c)

Fig. 2. Extracting semantic information using a slice of a 3D scan. (a) Problems with
simple gradiant definition, marked with circles. (b) Problems with jump edges. (c)
Correct semantic classification.

Fig. 3. Semantically labeled 3D point cloud from a single 360◦ 3D scan. Red points
mark the ceiling, yellow points objects, blue points the floor and green points corre-
spond to artefacts from scanning the RTS/ScanDrive and the robot.

3 Scan Registration and Robot Relocalization

Multiple 3D scans are necessary to digitalize environments without occlusions.
To create a correct and consistent model, the scans have to be merged into
one coordinate system. This process is called registration. If the localization
of the robot with the 3D scanner were precise, the registration could be done
directly based on the robot pose. However, due to the unprecise robot sensors,
self localization is erroneous, so the geometric structure of overlapping 3D scans
has to be considered for registration. Furthermore, Robot motion on natural
surfaces has to cope with yaw, pitch and roll angles, turning pose estimation into
a problem in six mathematical dimensions. A fast variant of the ICP algorithm
registers the 3D scans in a common coordinate system and relocalizes the robot.
The basic algorithm was invented in 1992 and can be found, e.g., in [3].



Given two independently acquired sets of 3D points, M (model set, |M | =
Nm) and D (data set, |D| = Nd) which correspond to a single shape, we aim
to find the transformation consisting of a rotation R and a translation t which
minimizes the following cost function:

E(R, t) =

Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||
2
. (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the
j-th point of D. Otherwise wi,j is 0. Two things have to be calculated: First,
the corresponding points, and second, the transformation (R, t) that minimize
E(R, t) on the base of the corresponding points. The ICP algorithm calculates
iteratively the point correspondences. In each iteration step, the algorithm selects
the closest points as correspondences and calculates the transformation (R, t)
for minimizing equation (1). The assumption is that in the last iteration step the
point correspondences are correct. Besl et al. prove that the method terminates
in a minimum [3]. However, this theorem does not hold in our case, since we
use a maximum tolerable distance dmax for associating the scan data. Here dmax

is set to 15 cm for the first 15 iterations and then this threshold is lowered to
5 cm. Fig. 4 (left) shows two 3D scans aligned only according to the error-prone
odometry-based pose estimation. The point pairs are marked by a line.

Fig. 4. Point pairs for the ICP scan matching algorithm. The left image show parts of
two 3D scans and the closest point pairs as black lines. The right images show the point
pairs in case of semantically based matching (top) whereas the bottom part shows the
distribution with closest points without taking the semantic point type into account.



3.1 Computing the Optimal Rotation and Translation in 6D

In every iteration the optimal transformation (R, t) has to be computed. Eq.
(1) can be reduced to

E(R, t) ∝
1

N

N∑

i=1

||mi − (Rdi + t)||
2
, (2)

with N =
∑Nm

i=1

∑Nd

j=1
wi,j , since the correspondence matrix can be represented

by a vector containing the point pairs.
In earlier work [10] we used a quaternion based method [3], but the following

one, based on singular value decomposition (SVD), is robust and easy to imple-
ment, thus we give a brief overview of the SVD based algorithms. It was first
published by Arun, Huang and Blostein [2]. The difficulty of this minimization
problem is to enforce the orthonormality of matrix R. The first step of the com-
putation is to decouple the calculation of the rotation R from the translation t

using the centroids of the points belonging to the matching, i.e.,

cm =
1

N

N∑

i=1

mi, cd =
1

N

N∑

i=1

dj (3)

and

M ′ = {m′

i = mi − cm}1,...,N , (4)

D′ = {d′

i = di − cd}1,...,N . (5)

After replacing (3), (4) and (5) in the error function, E(R, t) eq. (2) becomes:

E(R, t) ∝
1

N

N∑

i=1

||m′

i −Rd′

i − (t− cm + Rcd)
︸ ︷︷ ︸

=t̃

||
2

=
1

N

N∑

i=1

||m′

i −Rd′

i||
2

(6a)

−
2

N
t̃ ·

N∑

i=1

(m′

i −Rd′

i) (6b)

+
1

N

N∑

i=1

∣
∣
∣
∣t̃

∣
∣
∣
∣
2

. (6c)

In order to minimize the sum above, all terms have to be minimized. The second
sum (6b) is zero, since all values refer to centroid. The third part (6c) has its
minimum for t̃ = 0 or

t = cm −Rcd. (7)



Therefore the algorithm has to minimize only the first term, and the error func-
tion is expressed in terms of the rotation only:

E(R, t) ∝

N∑

i=1

||m′

i −Rd′

i||
2
.

Theorem: The optimal rotation is calculated by R = VUT . Herby the matrices
V and U are derived by the singular value decomposition H = UΛVT of a
correlation matrix H. This 3 × 3 matrix H is given by

H =

N∑

i=1

m′T
i d′

i =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 ,

with Sxx =
∑N

i=1
m′

ixd′ix, Sxy =
∑N

i=1
m′

ixd′iy, . . . . The analogous algorithm
is derived directly from this theorem.

Proof: See [2] or [9].

Finally, the optimal translation is calculated using eq. 7) (see also (6c)).

3.2 Computing Point Correspondences

As mentioned earlier, the strategy of ICP is to always use closest points. To
speed up computation, kd-trees have been proposed [3]. kD-trees are a general-
ization of binary search trees. Every node represents a partition of a point set
to the two successor nodes. For searching points we use optimized, approximate
kd-tree. The idea behind this is to return as an approximate nearest neighbor
the closest point in the bucket region where the query point lies. This value is
determined from the depth-first search, thus expensive ball-within-bounds tests
and backtracking are not used. Here, optimization means to choose the split axis
during construction perpendicular to the longest axis to minimize the amount
of backtracking.

A forest of kd-trees is used to search the point correspondences. For every
color, i.e., semantic label, a separate search kd-tree is created. The algorithm
computes point correspondences according to the color. E.g., points belonging
to the wall are paired with wall points of previous 3D scans. Fig. 4 shows the
point correspondences in case of semantic based matching (top) in comparison
with normal closest point matching (bottom). The points at the change of colors
are paired differently. Fig. 5 shows extracted slices of the kd-trees for the colors
red and yellow.

Using semantic information helps to identify the correct correspondences,
thus the number of ICP iterations for reaching a minimum is reduced. In addi-
tion, maximizing the number of correct point pairs guides the ICP algorithm to
the correct (local) minimum leading to a more robost algorithm.



Fig. 5. A forest of kd-trees based on the semantic interpretation is used to compute
the point correspondence. Left: Vertical slices through the trees (top: Ceiling points.
Bottom: Wall points). Right: Horizontal slice using ceiling points.

4 Results and Conclusion

The proposed methods have been tested on a data set acquired at RTS, Han-
nover. Fig. 3 shows a single 3D scan with semantic labeling. Fig. 6 presents
the final map, consisting of five 3D scans, each containing 43440 points. Table
1 shows the computing time for matching of two 3D scans. Using semantically
labeled points results in a speedup of up to 30% with no loss of quality.

Table 1. Computing time and number of ICP iterations to align all 32 3D scans
(Pentium-IV-3200). In addition, the computing time for scan matching using reduced
points are given. Point reduction follows the algorithm given in [10].

used points search method computing time number of iterations

all points kd-trees 17151.00 ms 49
reduced points kd-trees 2811.21 ms 38
all points forest of kd-trees 12151.50 ms 39
reduced points forest of kd-trees 2417.19 ms 35

Fig. 7 shows a detailed view of the ceiling. 3D points belonging to the lamp at
the ceiling are also colored yellow. The correct match will be in no way affected
by this fact. In fact, the semantic meaning is that data points of the lamp will
be matched correctly with their correspondents.

Contrary to previous works, every single 3D scan is a full 360◦ scan. They
are acquired in a stop-scan-go fashion to ensure consistency within the single
3D scans. In RoboCup Rescue the operator drives the robot and acquires 3D
scans. In the 2004 competition we encountered that the overlap between two
consecutive scans was sometimes too low, so that the operator had to intervene in



Fig. 6. The final 3D map of an office corridor / laboratory environment. The map
consists of 5 3D scans and contains 217200 3D points. Left: Front view. Right: Top
view.

Fig. 7. Left: scanned 3D points of the ceiling including a lamp. Some 3D points of the
lamp are marked yellow. The fingerprint like structure is the result of the scanning
process. On plane surfaces the laser beam describes a circle. Right: Photo of the scene.

the matching process. The new scanner will reduce this problem, since it provides
backward vision. Fig. 8 shows the analogous map of Fig. 6 without backwards
vision, i.e., the algorithm uses only points that lie in front of the robot. The
3D scans can no longer be matched precisely, the map shows inaccuracies for
example at the lab door. In fact, doors and passages are a general problem of
mapping algorithms, due to the small overlap. Fig. 9 shows the final map of an
additional experiment with 9 3D scans and 434400 data points.

This paper presented a robotic 3D mapping system consisting of a robot
platform and a 3D laser scanner. The laser scanner provides a 360◦ vision; the
scan matching software, based on the well-known ICP algorithm, uses semantic
labels to establish correspondences. Both approaches improve previous work,
e.g., [9, 10], in terms of computational speed and stability.



The aim of future work is to combine the mapping algorithms with mecha-
tronic robotic systems, i.e., building a robot system that can actually go into the
third dimension and can cope with the red arena in RoboCup Rescue. Further-
more, we plan to include semi-autonomous planning tools for the acquisition of
3D scans in this years software.

Fig. 8. Resulting 3D map (top view) if the scan matching algorithm uses only 3D
points in front of the robot, i.e., the 3D scan is restricted to 180◦.

Fig. 9. Results of a second experiment. Left: 3D point cloud (top view). Middle: Some
view of the points. Right: A floor plan extracted from the 3D model, i.e., only points
with a height of 125 cm ± 15 cm are drawn.
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