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Abstract: Heat and air conditioning losses in buildings and factories lead to a large amount
of wasted energy. The Action Plan for Energy Efficiency of the Commission of the European
Communities (2008) estimates that the largest cost-effective energy savings potential lies in
residential (=~ 27%) and commercial (=~ 30%) buildings. Imagine a technology that creates a
precise digital 3D model of heat distribution and heat flow enabling one to detect all sources of
wasted energy and to modify buildings to reach these savings. This paper presents our overall
approach to map indoor environments with thermal data in 3D.
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1. INTRODUCTION

Recently a lot of work has been done to capture and
reconstruct the world around us. Thermal imaging is state
of the art in recording energy related issues of buildings.
However the acquired images tell the user the precise
temperature without the dimensions of the heat or air
leak. Reliable solutions to 3D reconstruction based on
images have not been presented, yet. Terrestrial laser
scanning has been used for years to create 3D models.
Registration algorithms from the geodesy and robotics
community combine laser scan data acquired at different
positions into complete models of the environment. Think
of a technology that enables one to gage the environmental
structure in 3D and thermal information at the same
time. The availability of precise thermal 3D models will
enable architects and construction engineers to inspect
the model, to run simulations of heat and air flow and
to use the gained information to modify existing buildings
to reach the estimated energy savings. The goal of the
project is to develop a fully automated system for thermal
3D mapping by a mobile robot. This paper presents our
approach towards this goal.

Developing a fully automated system for thermal 3D map-
ping by a mobile robot is divided into three main parts:
(i) advanced mutual calibration between the 3D sensor
and the thermal camera, (ii) sensor placement planning,
and (iii) 3D thermal surface modeling. Section 2 reviews
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the related work in the related research topics. Section
3 explains advanced mutual calibration between the 3D
sensor and the thermal camera. Section 4 presents the
sensor placement planning algorithm. Section 5 introduces
our approach for 3D thermal surface model building. Ex-
perimental results are shown in section 6, and section 7
concludes the paper.

2. BACKGROUND AND STATE OF THE ART

To assess the energy efficiency of houses thermal cameras
are commonly used. These cameras measure temperatures
precisely, but return only 2D images of the environment
and therefore the loss of energy can only be roughly quan-
tified. Images are projections to 2D. From a sequence of
images it is in principle possible to perform a 3D recon-
struction. These approaches are called bundle adjustment
or structure from motion (SFM), if the focus lies on solving
simultaneous localization and mapping (SLAM), i.e., on
recovering the 3D structure of the environment and the
sensors poses (position and orientation). Since reliable
solutions to image based 3D reconstruction for thermal
images have not been presented yet, we use the emerging
technology of terrestrial laser scanning. Laser scanning
methods are well established in the surveying community
and in robotics. Terrestrial 3D laser scanning systems yield
precise 3D point clouds. Scanning from different poses
enables one to digitize a complete indoor environment
and to resolve occlusions. Registration algorithms from the
geodesy and robotics community are available to automat-
ically align scan views from different poses.



Related work in inspection robotics includes work in
human detection in thermal cameras using temperature
signatures Markov and Birk (2007). Hoégner and Stilla
(2007) present a modified van as surveying vehicle for
acquiring thermal images in urban environments. However,
in the focus are outdoor environments and image-based
techniques like SFM. Prakash et al. (2006) present stereo
imaging using thermal cameras, but focus on small scale
applications. Iwaszczuk et al. (2011) suggest an approach
to map terrrestrial and airborne infrared images onto exist-
ing building models. The model is textured by extracting
polygonal parts from the image and mapping those onto
the model using standardized masked correlation. Only
a little work has been done for combining 3D scanners
and thermal cameras. Cabrelles et al. (2009) present a
methodology to exhaustively record data related to a
World Heritage Monument using terrestrial laser scanning,
close range photogrammetry and thermal imagery. They
use four different sensors for data acquisition: a reflector-
less total station, a terrestrial laser range scanning sensor,
a digital photo camera and a thermal camera and use
a total of eight natural control points with the help of
the total station to relate the geometry between different
sensors . Pelagottia et al. (2009) present a first automatic
approach for multispectral texture mapping. Their method
is based on the extraction of a depth map in the form of an
image from the model geometry whose pixels maintain an
exact correspondence with the vertices of the 3D model.
Afterwards the registration with the chosen texture is done
which is based on maximization of mutual information. 3D
environment mapping using 3D scanners on mobile robots
are subject of research Surmann et al. (2003); Niichter
(2009). Up to our knowledge modeling using 3D scanning
and thermal imaging has not been done yet.

Sensor placement planning is needed for goal directed
acquisition of 3D data. The task of the sensor placement
planning algorithm is to find a set of sensor configura-
tions needed for obtaining a detailed environment model.
Since a typical 3D laser scan takes about 3 minutes for
one position, depending on resolution, it is desirable to
minimize the number of scanning positions. This leads to
an optimization problem similar to the Art Gallery Prob-
lem (AGP) (where to place guards such that the entire
gallery is guarded). The AGP problem is NP hard and is
usually solved by heuristics that perform well in practice
Gonzélez-Banios and Latombe (2001). These methods are
chategorized as model-based sensor placement planning (a
priori model of the environment is known) and non-model-
based methods. The latter are applied for exploration tasks
in which the robotic system has to autonomously navigate
in an unknown environment and to build its model. The
planner must determine the next-best-view (NBV) based
on the information collected from previous scans. Most
exploration strategies push the robot onto the border
between explored and unexplored regions Ekman et al.
(1997); Tovar et al. (2007). The majority of exploration
algorithms is not reliable when applied under real condi-
tions due to sensitivity to uncertainty of measurements,
localization, and map building. A small divergence in lo-
calizing at the precomputed NBV point can lead to many
unnecessary movements. Moorehead et al. (2001) include
the uncertainty of the robot’s pose into the exploration
strategies. Recently, a number of sensor placement plan-

ning algorithms have been developed for 3D environment
model reconstruction. Most methods take 3D scans based
on a 2D exploration strategy Surmann et al. (2003). Blaer
and Allen (2007) propose a 3D NBV method which plans
additional viewing locations based on a voxel-based oc-
cupancy procedure for detecting holes in the model. Low
and Lastra (2007) present a full non-model-based 3D NBV
method based on exhaustive hierarchical 3D view metric
evaluation. However, the computational complexity is still
the major challenge to a practical NBV solution.

Another challenging task in building a 3D thermal model
of an indoor environment is the reconstruction of the 3D
mesh with added temperature scalar field to it. Wardlaw
et al. (2010) evaluate the impact of 3D models onto the
user’s ability to interpret thermal information with the
conclusion that a good representation of a 3D model can
help the user, e.g., to locate heat sources or to detect
thermal bridges. The point cloud representation is not the
best way to present a virtual model of the environment.
For visual perception, the best representation consists of
a filled structure without holes, i.e., surfaces or meshes
(Yan et al., 2008). As laser scanners are used in this paper,
the gathered information is available as point clouds with
added temperature information from the thermal imaging
camera. The process of generating a surface from the set
of points is called surface reconstruction. There are several
methods to reconstruct the 3D surface from the point
cloud. They can be divided into two distinct groups:

e Face-based reconstruction (triangulation)
e Iso-surface reconstruction (meshing)

The most common triangulation based algorithms are the
Voronoi-based triangulation as presented by Amenta et al.
(1998) and the triangulation-based Delaunay 3D algorithm
as presented by Berg et al. (2008). Su and Drysdale (1996)
present several implementations of the latter algorithm an-
alyzing the performance. These algorithms require closed
and organized geometry. This means the algorithms tend
to close the structure of the model which is very good
for digitization of cultural heritage sites as presented by
Chrysanthou et al. (2011) and Altantsetseg et al. (2011).
Iso-surface reconstruction, unlike the triangulation which
reconstructs part-by-part, generates iso-surface, meaning
that the model is generated by connecting the points with
constant values, i.e., distance, pressure, temperature, etc. ).
Often used for iso-surface reconstruction is the Marching
Cubes Algorithm (MCA) developed by Lorensen and Cline
(1987). This algorithm starts with the space (containing
the 3D scalar field or voxels) divided into cubes. After
selecting a random cube and its eight neighbours, the
algorithm determines the polygonal part of the iso-surface
passing through the cube. There are modifications to the
standard MCA presented by Chernyaev (1995) and Niel-
son and Hamann (1991) which deal with "ripples" caused
by topological inconsistencies of the model (or point cloud
acquisition). Since the space is divided equally it is very
good for the purpose of 3D thermal model reconstruction
of indoor environments as it allows for thermal inspection
of the space segments. In order to create iso-surfaces re-
alistically, it is important to precisely calculate iso-values.
Several methods are presented: ball pivoting by Bernardini
et al. (1999), Poisson surface reconstruction by Kazhdan
et al. (2006) and butterfly subdivision of surfaces by Mo-



Fig. 1. Laser scan with reflectance (left) and thermal
(middle) information. The robot Irma3D (right).

hamad and Bade (2009). These methods require very high
resolution point clouds resulting in large data sets (millions
of points) or small scale models, and are generally very
slow. The problem of reconstruction of 3D model with
added thermal field information will be addressed in detail
in section 5.

3. ADVANCED MUTUAL CALIBRATION BETWEEN
THE 3D SENSOR AND THE THERMAL CAMERA

3.1 Ezperimental Setup and Data Acquisition

The setup for simultaneous acquisition of 3D laser scan
data and thermal images is the robot Irma3D (see Fig. 1).
Irma3D is built of a Volksbot RT-3 chassis. Its main
sensor is a Riegl VZ-400 laser scanner from terrestrial
laser scanning. A thermal camera is mounted on top of the
scanner. The optris PI160 thermal camera has an image
resolution of 160 x 120 pixels and a thermal resolution
of 0.1°C. It acquires images at a frame rate of 120 Hz
and with an accuracy of 2°C with a field of view of
approximately 40° x 64°. The laser scanner acquires data
with a field of view of 100° x 360°. To achieve the full
horizontal field of view the scanner head rotates around
the vertical scanner axis when acquiring the datscanninga.
We take advantage of this feature when acquiring image
data. Since the camera is mounted on top of the scanner,
it is also rotated. We acquire 9 thermal images during
one scanning process to cover the full 360°. For obstacle
avoidance a SICK LMS100 2D laser scanner is installed at
the front of the robot.

3.2 Data Processing Procedure

After acquiring the 3D data it has to be fused with the
thermal information. This processing consists of five steps
that will be explained in this section.

Intrinsic Calibration of Thermal Camera. FEach sensor
perceives the world in its own local coordinate system.
To join the perceived information we need the specific
parameters of these coordinate systems. A camera has
unique parameters that define how a point (X,Y,Z) in
world coordinates is projected onto the image plane. Given
the focal length (f;, f,) of the camera and the camera
center (cg, ¢,) image coordinates (x,y) are calculated as:
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Given the radial distortion coefficients k1, ko, k3 and the
tangential distortion coefficients pi,ps and r = /22 + 2
the corrected image points (., y.) are calculated as
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To determine the parameters of optical cameras chess-
board patterns are commonly used because the corners
are reliably detectable in the images. A number of images
showing a chessboard pattern with known number and
size of squares are recorded. In each image the internal
corners of the pattern are detected and the known distance
between those in world coordinates allows to formulate
equations (1) and (2) as a linear least squares problem
and solve for the calibration parameters.

For low resolution thermal cameras a chessboard pattern
is more error-prone even after heating it with an infrared
lamp. Instead a pattern with clearly defined heat sources
such as tiny lightbulbs is suggested as it shows up nicely
in thermal images thus enabling us to perform intrinsic
calibration in the same way as for optical cameras. To
detect the light bulbs in the thermal image a thresholding
procedure is applied to create a binary image showing
regions of high temperature. A further thresholding step
discards effectively all regions that are two big or too
small. If the remaining number of regions is equal to the
number of lightbulbs in the pattern the regions are sorted
according to the pattern to allow for easy determination
of correspondences.

Extrinsic Calibration — Thermal Camera and Laser Scan-
ner.  After calculating the internal parameters of the
camera we need to align the camera images with the
scanner coordinate system, i.e., extrinsic calibration. The
three rotation and three translation parameters are known
as the extrinsic camera parameters and they are unique to
every camera view. Once all the points are in the camera
coordinate system the projection to the image can be
defined up to an factor s using equation (3) Bradski and
Kaehler (2008):
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Suppose there are n images of the calibration pattern and
m planar points on the pattern considering the distortions
as independent and identically distributed noise than
the maximum likelihood estimate of the transformation

between the scanner and camera coordinate system is
obtained by minimizing

n m
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where A is the intrinsic matrix, R; the rotation matrix, t;
the translation vector, and D the distortion parameters.
p(A,D,R;,t;,P;) defines the projection of point P; in
image 4, according to equation (3) and (2). This approach
assumes that we have a number of points that are identifi-
able in both the laser scan and the image. For this purpose
we attach the calibration pattern onto a board, i.e., light
bulbs arranged in a regular grid pattern as shown in the
background of Fig. 1 (right). The position of the points on
this patterns are known. Algorithm 1 detects the points in
a laser scan.

3D to 2D Projection and Color Mapping. During the
data acquisition phase laser scans and images are acquired



Algorithm 1 Calibration pattern detection in a laser

scan.

Require: point cloud, specification of calibration pattern
1: discard points out51de the area of the expected board
2: find the most prominent plane using RANSAC
3: project a generated plane model into the center of the

detected plane
4: use ICP to fit the plane model to the data points
5: return lightbulb positions according to ICP result

simultaneously. After determining the relations between
scanner and camera in the calibration step this relation is
used directly to assign temperature values to the points.

Projection/Occlusion/Resolution Errors. Due to the dif-
ferent fields of view the sensors see different parts of the
world. An area that is visible for one sensor might be
occluded for the other sensor. When mapping the thermal
information to the point cloud this causes wrong cor-
respondences and therefore faulty assigned values. This
impact is fortified by the low resolution of the thermal
camera. With only 120 by 160 pixels per image each
pixel corresponds to many 3D points seen by the laser
scanner leading to errors at jump edges. Consequently
small calibration inaccuracies have a large impact on the
results. To solve this problem we take advantage of the
fact that if a point belongs to an object there will be
more points on that object. We take all points that are
projected onto one pixel and its neighboring pixels. The
points are clustered depending on their distance to the
scanner. A heuristic based on distance to the 3D scanner
and size of the cluster determines effectively which points
are considered and enhanced with thermal information.
This removes also some correct thermal information but
the improvement prevails.

Scan Registration. Laser scans acquired at different po-
sitions are registered into one common coordinate system
using 6D SLAM from The 3D Toolkit (3DTK) Andreas
Niichter et al. (2011). It estimates high-precisely the scan-
ner pose with 6 degrees of freedom.

4. SENSOR PLACEMENT PLANNING

The sensor placement planning algorithm is based on our
previous approach presented in Dakulovié et al. (2011).
The inputs are range values in n = 720 uniformly dis-
tributed directions from the 360° field of view extracted
from the 3D laser scanner such that all range data lie in
the plane parallel to the floor plane. It is assumed that the
environment model is unknown and is incrementally built
at each scanning position. The model is represented at
three abstraction levels. At the lowest level the occupancy
grid map is used for storing static and dynamic obstacle
information needed for path planning and obstacle avoid-
ance. The next abstraction level contains the polygonal
representation of the environment which stores real envi-
ronment edges extracted from the range data and jump
edges — edges that separate explored and unexplored re-
gions of the environment. The most abstract level contains
scanning position candidates which are searched to find
the best goal position for the path planning module. We
assume a setup with a resolved robot localization problem

(the GMAPPING module under ROS?! is used). While
exploring, the robot has to navigate between scanning
positions in an unknown environment. We use a motion
planning algorithm based on the D* algorithm and the
Dynamic Window obstacle avoidance method described
in Seder and Petrovi¢ (2007). The sensor placement al-
gorithm is composed of three steps which are executed at
each scanning position: (1) vectorization — extracting lines
from range data, (2) creation of the exploration polygon
— building the most recent model of the environment, and
(3) selection of the next sensor position — searching the
next goal for the path planning module. These three steps
are explained in the following.

Vectorization. The main goal of vectorization is group-
ing of the range data R = {ry | k = 1,...,n} into
M subsets, where M is not known a priori. Each sub-
set contains almost collinear points within some error
limit. For each subset the line segment is obtained by a
least squares method. First, the Progressive Probabilistic
Hough Transform PPHT (from the OpenCYV library Matas
et al. (1998)) is carried out over the range data. PPHT cal-
culates initial estimations of line segments which are then
used to group all range data around the calculated line
segments according to their distances dpg from the lines.

. . . T
Lines are represented in polar coordinates L = [p «]
where p defines the normal distance to the origin and «
defines the angle between normal and positive z-axis. For
every measurement point the distance dpy is obtained as

6pk = |di cos(a — O) — pl, (5)

where r, = [di @k]T refers to k-th laser point in polar
coordinates. If the distance dpi is below some treshold
value Ap the point belongs to set R, for the corresponding
line segment L.

The next step calculates more precise line parameters
by a least squares line fitting algorithm which solves the
following minimization problem

N

L = argmin Z Sz, (6)

P k=1
where N is the number of points in each subset of range
data. Line segments are deterimined by trimming the given
line at extreme endpoints from the subset of range data.
At the end of the vectorization process real environment
edges (walls, obstacles) are represented by line segments.

Creation of FExploration Polygon. For selecting the next
sensor position, for gridmap creation, and path planning
a polygonal representation of the environment is used. At
each scanning position p; two polygons are calculated: the
measurement polygon P; created from the vectorization
of the newest range data, and the exploration polygon
EP; created from the exploration polygon from the previ-
ous scanning position EP;_; and the new measurement
polygon P;. Initially the exploration polygon is empty,
EP, = . Both polygons are composed of real edges and
so-called jump edges. The real edges are detected in the

1 Robot Operating System, http://www.ros.org



vectorization step and present line segments which are
found in the environment, e.g., walls, obstacles, while the
jump edges are connections between two real edges and
are used as separation between explored and unexplored
regions.

Calculated line segments from the vectorization step create
the measurement polygon as follows. The line segments are
sorted such that their ending points have increasing angles
when transformed into the polar coordinate system from
[-7, 7). Connecting the ending points si,...,s, defines
the polygon P; at scanning position p;. Now, the polygon
P; is composed of real line segments and artificial edges,
i.e., jump edges, between them. However, some jump edges
from the new scan might fall into the already explored
area from previous scans. To discard those jump edges
we use the union of the new polygon P; (from the last
scan) and the old polygon EP,_; (from previous scans)
as a representation of the currently explored area and we
discard jump edges within the union of the polygons (from
GPC library Vatti (1992)). In each step, EP; is updated
as EP; = EP;|J P;. The union of two polygons maintains
only those edges most distant from the robot’s point of
view in the polygon from both polygons, and thus ensures
that new jump edges are not created within previously
explored regions. This property makes the planner also
robust to small localization errors. Jump edges that are
larger than the preset value Ar are considered for the
selection of the next sensor position. The minimal length
of the jump edge Ar is chosen in accordance to the robot
dimensions and enables discarding too small jump edges
(i.e., robot cannot pass through too narrow passages). If
the nonempty extended exploration polygon F P; contains
no jump edges, then it is considered as the reliable polyg-
onal description.

Selection of the Next Sensor Position. We use a simple
heuristic criterion for selecting the next sensor position
similar to Ekman et al. (1997). By taking a scan in
front of the jump edge it is easy to imagine that we will
gain greater amount of the new information than when
scanning further from the jump edge inside of the explored
area. Therefore, each jump edge is assigned one candidate
scanning position. It is an obstacle free position near the
mid point of the jump edge at distance d from the jump
edge. d is chosen to be equal to the robot’s dimensions
to ensure safety in case the jump edge is close to an
obstacle that has not yet been detected. Additionally, d
must be larger than the minimal sensor range. The next
sensor position is chosen according to the maximization
of a criterion that estimates the amount of unexplored
regions seen from each potential position.

The measure for the amount of unexplored region possibly
seen from a candidate position (denoted by pg) is defined
by the angle in the triangle that is defined by the k-th jump
edge and the k-th candidate position (Fig. 2). Other angles
need to be taken into account because it is possible to see
other jump edges from one scan position. The criterion
used is as follows:

N
1
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Fig. 2. Selection criterion based on angles of visibility.

where d; is the length of the shortest path from the
path planning module between the current robot position
and the j-th candidate position, N is the number of
candidate positions and a;; is the angle in the triangle
defined by the j-th candidate position and the i-th jump
edge. Two parameters k; and ko are used as weighting
parameters of angle and distance estimations, respectively.
The parameters are set in order to treat both terms in
(7) equally. Numerous experiments in simulation and with
the real robot showed good performance with k; set to the
maximal range distance and ko set to 1/~ which averages
over all angles. The whole sensor placement algorithm is
summarized in Algorithm 2.

Algorithm 2 Sensor placement planning

Require: 2D range data, exploration polygon from pre-
vious scans
1: vectorization
2: sort detected lines by angle and create measurement
polygon
: find jump edges connecting adjacent real edges
4: discard jump edges smaller than minimal passage
width
5: obtain union of measurement polygon and exploration
polygon from previous scans
6: discard jump edges within exploration polygon
7: calculate potential measurement positions in front of
jump edges
8: choose the best position according to criterion
9: return the next sensor position

w

5. 3D THERMAL SURFACE MODEL BUILDING

The complete model of the environment can be inspected
in the viewer from 3DTK enhanced with either reflectance
values or thermal data (see Fig. 1). Switching between the
different views enables the user to detect sources of wasted
energy and to locate them clearly in the 3D view. All
3D points have a guaranteed accuracy of 1-5 centimetres.
However, the point cloud representation is not the best
way to present the virtual model of an environment. For
human eyes, the best representation consists of a filled
structure without holes, i.e., surfaces, meshes (Yan et al.,
2008). As presented in previous sections, the gathered
information are represented as point clouds with added
temperature information from a thermal imaging camera.
The process of generating surfaces from the set of points
is called surface reconstruction. In this section surface
reconstruction with added temperature field information is
addressed. Through the next subsections the problematics
of the MCA based approach is discussed. This includes
the estimation of iso-values, which is a very important



step before the actual MCA-based iso-surface reconstruc-
tion and mesh generation. Finally, the temperature field
mapping onto the newly reconstructed model of the indoor
environment is presented.

5.1 Estimation of iso-values.

To generate the iso-surface more quickly (although not
very precisely) a method different to the beforementioned
ones is used. One of the best estimation mechanism is
a Gaussian filter. This is a probabilistic method that
attempts to estimate the iso-value of each point in the
data set by injecting the input point into stuctured ge-
ometry Schroeder et al. (2006)). This is accomplished by
assigning a Gaussian distribution to every input point, and
then aggregating the final iso-surface by applying some
aggregation operator, i.e., minumum, maximum, or sum.

Given the point p, the Gaussian distribution function F(p)
is calculated as:
r

Fw)=s-e |- (5)] ®)

where:

p - current voxel or sample point (x,y, z),

s - scale factor, can be multiplied by scalar value,

f - decay factor,

r - distance |p, — p| where p, is a voxel in the neighbour-
hood of p,

R - radius of influence.

By changing the listed parameters of the Gaussian dis-
tribution function it is possible to change the width
of the bell, decaying the influence on the neighbouring
points/voxels. This method can improve the results if
normals in every point are provided.

5.2 Applying the Marching Cubes Algorithm.

The next procedure presented here is iso-surface recon-
struction by using MCA, a well-known algorithm for cal-
culating the surface from iso-values estimated by the pro-
cedure described in 5.1. It is commonly used in medical
volumetric data representation of MRI and CT images
Cline et al. (1991); Motiur et al. (2010). The idea of the
algorithm is explained in Algorithm 3 using the 2D variant,
i.e., Marching Squares.

This is easily extended to the 3D case by replacing lines
with surfaces, and squares with cells (voxels), respectively.

5.8 Temperature Scalar Field Mapping

Gaussian estimation of iso-values and subsequent MCA
reconstruction do not deal with scalar values of temper-
ature acquired by the thermal imaging camera. These
values have to be mapped onto the reconstructed surface.
One problem that emerges is that it is not possible to
establish one-to-one correspondences between the point
cloud and the reconstructed model, i.e., a point in the
point cloud is not the same point in the reconstructed
model. To overcome this problem, foremost, the k-D tree
of the model is constructed, so every point is organized into

Algorithm 3 Marching Squares pseudo-code.

Require: Structured data set with calculated iso-values
1: for every point in the grid do
2:  set the status of the point to inside or outside the

iso-line

3: end for

for every square in the grid do

5.  for every line segment that has a point outside and

a point inside the figure do
6: Add a point in the list t placed in the middle
between the two points

7. end for

end for

9: Draw sequential lines between the points found in the

list t.

>

jod

a tree. This enables fast searching through the model, e.g.,
range searches and nearest neighbour searches. Now, it is
possible to find corresponding point in the reconstructed
model to every point in the point cloud. After finding such
a point, it gets the scalar value from its corresponding
point in the point cloud, since MCA produces the model
that is as close as possible to the original point cloud. The
pseudo code for this procedure is given in Algorithm 4.

Algorithm 4 Scalar Field Mapping pseudo code.

Require: Reconstructed iso-surface and point cloud with
scalars, original point cloud
1: Build a k-D tree for the reconstructed iso-surface
model
2: for every point p in the point cloud do

3:  Find the nearest point p,, in the model to point p

4:  Assign the scalar value of the point p in the point
cloud to point p,, from the model

5: end for

6. RESULTS

Experiments were carried out in a research building at
Jacobs University Bremen, Germany. Fig. 3 shows the
trajectory of the robot while exploring the unknown en-
vironment together with the generated polygonal model
of the environment. The 18 scanning positions are marked
with circles. The sequence of snapshots for the first five

y [m]

—5F

Fig. 3. Robot trajectory and scan positions while exploring
the environment with obtained polygonal model.
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Fig. 4. A sequence of snapshots for the first five scanning positions for the

Fig. 5. Reconstruction from scanned indoor environment

scanning positions are shown in Fig. 4. Jump edges are
colored red, the exploration polygon is colored blue, can-
didate scanning positions are noted by asterisks, while
the chosen next position is marked by a red circle. Range
readings from the 3D laser scanner are noted by black dots,
range readings from the 2D laser scanner which are used
for obstacle avoidance between two scanning positions are
noted by green dots, respectively.

We also present first results of the reconstruction of the
3D thermal model. Fig. 5 shows the reconstruction of one
part of the scanned indoor environment, a scan taken in
a laboratory. The model contains close to 300,000 points
for a volume of less than 20m?. Compared to the data
sets presented in the papers by Bernardini et al. (1999),
Kazhdan et al. (2006) and Mohamad and Bade (2009)
this data set is rather small. Therefore, the precision of
the reconstruction leaves room for improvement. It is clear
that geometry is preserved, although the precision when it
comes to reconstructing furniture, computer monitors, and
people is not sufficient. To increase precision, larger space
subdivision or point cloud density is needed. This comes
at the expense of larger computing power and memory
requirements to store the model.

To evaluate the obtained model visual perception of an
expert is necessary. The presented methodology attempts
to minimize the local error of the reconstruction and
does not deal with overall precision. To further assess the
precision the generated mesh can be directly compared to
the original point cloud by discretizing it back into a point
cloud. In Fig. 6 the precision can be evaluated visually. Up
to our knowledge there exists no method for computational
evaluation of the precision for the reconstructed model.
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Fig. 6. Comparison of the original point cloud (red) and
the point cloud of the reconstructed mesh (blue)

7. CONCLUSIONS

This paper presents a complete system for autonomous ex-
ploration and thermal mapping of an indoor environment.
To improve the usability of the robotic system further
steps are necessary. We plan to detect points of interest
in the thermal model, i.e., heat leaks by analyzing the
gradient of temperature values in the model. Furthermore,
an additional optical camera will be included into the
setup. With the added information a human expert can
easily evaluate the points of interest and possibly identify
the heat sources immediately, which will be further used
for automation using machine learning. Future work will
extend the exploration algorithm described above with full
3D information collected from the 3D scan. We are devel-
oping a model based algorithm with voxel representation of
the environment. To reduce the computational complexity
caused by the huge number of voxels needed to model the
whole environment we are developing a room extraction
algorithm which will enable voxel representation and 3D
sensor placement planning to be applied sequentially room
by room.

When a room is extracted and all voxels inside it are cap-
tured or marked as non-capturable, the sensor placement
planning switches back to 2D exploration until the next
room is detected. Therefore, our future work focuses on
room extraction and voxel based sensor placement plan-
ning in 3D.
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