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Given: [A] = ([a]ij) ∈ IRn×n regular, [b] = ([b]i) ∈ IRn

Interval linear system: [A]x = [b].

Solution set: Σ := {x ∈ Rn | Ax = b, A ∈ [A], b ∈ [b] }

Symmetric solution set:

Σsym := {x ∈ Rn | Ax = b, A = AT ∈ [A] = [A]T , b ∈ [b] }
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Given: [A] = [A]T = ([a]ij) ∈ IRn×n regular, [b] = ([b]i) ∈ IRn

Interval linear system: [A]x = [b]

Solution set: Σ := {x ∈ Rn | Ax = b, A ∈ [A], b ∈ [b] }

Symmetric solution set:

Σsym := {x ∈ Rn | Ax = b, A= AT ∈ [A]= [A]T , b ∈ [b] }
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Thus the hull inverse is not adapted to the

optimal treatment of symmetric matrices.

However, at present, no special methods

have been devised for this case, and we

shall content ourselves with the unsymmetric

treatment of symmetric matrices.

Neumaier, Interval Methods for Systems of

Equations, 1990, p. 95.

Unless you are able to handle dependent data,

you will never get interest of the engineers.

Babuška, conversation with J. Rohn, 1992.
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Publications on Σsym

Neumaier 1985, Dec. 23, letter to Rohn
1990

Rohn 1986 (talk 1990; published 2004)
Jansson 1990 (talk; published 1991)
Alefeld / M. 1995 (2–dim.)
Alefeld / Kreinovich / M. 1996, 1997, 1998, 2003
M. 2001, 2012
Hlad́ık 2008
Popova 2002, 2004, 2007

(list incomplete)
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Example 1

[A] =

(
1 [0,1]

[0,1] [−4,−1]

)
, [b] =

(
[0,2]
[0,2]

)
.
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Example 2

[A] =

(
1 [−1,1]

[− 1,1] −1

)
, [b] =

(
2
2

)
.

[A] contains two sing. matrices but no sing. symmetric matrix.

- x1
−1 1 2
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[−1,1] [−1 + ε,1− ε] : Arbitrarily large overestimation!
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2. Various descriptions of Σ

x ∈ Σ ⇔ [A]x ∩ [b] 6= ∅ (Beeck 1972)

⇔ |̌b− Ǎx| ≤ rad([A])|x|+ rad([b])

(Oettli/Prager 1964)

⇔

 bi −
∑n
j=1 a

+
ijxj ≤ 0

−bi +
∑n
j=1 a

−
ijxj ≤ 0

 , i = 1, . . . , n,

where [a]ij =:

 [a−ij, a
+
ij ] if xj ≥ 0

[a+
ij , a

−
ij] if xj < 0

(Hartfiel 1980)

10



3. Fourier–Motzkin elimination

Start:

x ∈ Σsym ∩O1 (O1 first orthant)

⇔ x ∈ O1 ∧ ∃A = AT ∈ [A] = [A]T , b ∈ [b] : Ax = b

⇔ x ∈ O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n :aij = aji ∧


bi ≤

n∑
j=1

aijxj ≤ bi

aij ≤ aij ≤ aij




⇔ x ∈ Σ ∩O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n :aij = aji ∧


bixi ≤

n∑
j=1

aijxixj ≤ bixi

aijxixj ≤ aijxixj ≤ aijxixj



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Step 1: Isolation of a12

x ∈ Σsym ∩O1

⇔ x ∈ Σ ∩O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n :

aij = aji ∧



{b1 −
n∑
j=1
j 6=2

a1jxj}x1 ≤ a12x1x2 ≤ {b1 −
n∑
j=1
j 6=2

a1jxj}x1

{b2 −
n∑

j=2

a2jxj}x2 ≤ a12x1x2 ≤ {b2 −
n∑

j=2

a2jxj}x2

a12x1x2 ≤ a12x1x2 ≤ a12x1x2

(1)

remaining a12–free inequalities


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Step 2: Elimination of a12

x ∈ Σsym ∩O1

⇔ x ∈ Σ ∩O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n, (i, j) 6∈ {(1,2), (2,1)} :

aij = aji ∧

 max {lhs (1)} ≤ min {rhs (1)}

remaining a12–free inequalities



⇔ x ∈ Σ ∩O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n, (i, j) 6∈ {(1,2), (2,1)} :

aij = aji ∧

 each lhs (1) ≤ each rhs (1)

remaining a12–free inequalities


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⇔ x ∈ Σ ∩O1 ∧ ∃ aij ∈ R for i, j = 1, . . . , n, (i, j) 6∈ {(1,2), (2,1)} :

aij = aji ∧



{b1 −
n∑
j=1
j 6=2

a1jxj}x1 ≤ a12x1x2

{b2 −
n∑

j=2

a2jxj}x2 ≤ a12x1x2

{b1 −
n∑
j=1
j 6=2

a1jxj}x1 ≤ {b2 −
n∑

j=2

a2jxj}x2

a12x1x2 ≤ {b1 −
n∑
j=1
j 6=2

a1jxj}x1

a12x1x2 ≤ {b2 −
n∑

j=2

a2jxj}x2

{b2 −
n∑

j=2

a2jxj}x2 ≤ {b1 −
n∑
j=1
j 6=2

a1jxj}x1

remaining a12–free inequalities


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4. Various descriptions of Σsym

– Dependency outside the diagonal at exactly two index pairs

– Fourier–Motzkin elimination applied to inequalities

– Fourier–Motzkin elimination applied to sets

– Oettli–Prager–like access
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Theorem 1 (Hlad́ık 2008)

Let [A] = [A]T ∈ IRn×n, [b] ∈ IRn, x ∈ Rn, r = b̌− Ǎx.

Then x ∈ Σsym if and only if

rad([A]) |x|+ rad([b]) ≥ |r| (Oettli–Prager)

n∑
i,j=1

rad([a]ij) |xixj(pi − qj)|+
n∑
i=1

rad([b]i) |xi(pi+ qi)|

≥
∣∣∣∣∣ n∑
i=1

rixi(pi − qi)
∣∣∣∣∣

for all (4n − 3n − 2n+1 + 3)/2 vectors p, q ∈ {0,1}n\{0, e} with

p ≺lex q and ( p = e− q ∨ ∃ i : pi = qi = 0 ).
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Theorem 2 (Thm. 1 modified and reproved; M. 2012)

Let [A] = [A]T ∈ IRn×n, [b] ∈ IRn, x ∈ Rn, r = b̌− Ǎx.

Then x ∈ Σsym if and only if

rad([A]) |x|+ rad([b]) ≥ |r| (1)

(Oettli–Prager)

|x|T · |Dp rad([A])− rad([A])Dq| · |x| + |x|T |Dp−Dq|rad([b])

≥ |xT (Dp −Dq)r|
(2)

for all (3n − 2n+1 + 1)/2 vectors p, q ∈ {0,1}n\{0, e} with

p ≺lex q and pT q = 0, (3)

where Dp = diag(p), Dq = diag(q).

17



Outline of a proof for a short description of Σsym

”
⇒“

x ∈ Σsym

⇒ ∃ Ã = Ǎ+ ∆ = ÃT ∈ [A], b̃ = b̌+ δ ∈ [b] : Ãx = b̃

⇒ xTDp∆x− xTDq∆Tx− xT (Dp −Dq)δ = xT (Dp −Dq)(̌b− Ǎx)

| · | and triangular inequality results in (2) without (3) .

”
⇐“

Let (1) – (3) hold for some x ∈ Rn.

Idea: Construct Ã = ÃT ∈ [A], b̃ ∈ [b] s.th. Ãx = b̃.
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Step 1: Get rid of | · | !

a) W.l.o.g. let x ∈ O1. (⇒ |x| = x)

b) (3) ⇒ |Dp −Dq| = Dp +Dq

c) |Dprad([A])−rad([A])Dq| = Dp rad([A])Dq+Dp rad([A])Dq,

where p = e− p, q = e− q

d) Show (2) ⇔ L
q
p ≤ Lpq and L

p
q ≤ Lqp,

where L
q
p = xTDp(b−ADq x), L

q
p = xTDp(b−ADq x)
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Step 2: Apply a reverse Fourier–Motzkin elimination !

Successively for each (i, j) with i < j and xixj > 0 replace
[a]ij = [a]ji in [A] by some point interval a′ij = a′ji ∈ [a]ij such
that (1) – (3) hold for the resulting matrix.

Let [A]final = ([A]final)T ⊆ [A] be the final matrix.

Step 3: Construct Ã = ÃT ∈ [A], b̃ ∈ [b] s.th. Ãx = b̃ !

(1) ⇒ ∃A′ = (a′ij) ∈ [A]final, b̃ ∈ [b] : A′x = b̃

Define ãij :=



a′ij if xixj > 0

a′ij if xi = 0, xj 6= 0

a′ji if xi 6= 0, xj = 0

a′ij if xi = xj = 0 and i ≤ j
a′ji if xi = xj = 0 and i > j
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