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Given: [A] = ([a];;) € IR™*™ regular, [b] = ([b];) € IR"
Interval linear system: [A]xz = [b].
Solution set: X :={xeR"| Az =0b, A€ [A], be [b]}

Symmetric solution set:

Ssym = {zeR?| Az =b, A=A € [A] = [A]", be [b]}



Given: [A] = [A]l = ([a];;) € IR™™ regular, [b] = ([b];) € IR™
Interval linear system: [A]lz = [b]
Solution set: X :={xeR"| Az =0b, A€ [A], be [b]}

Symmetric solution set:

Ssym = {z € R"| Az =b, A= Al e [A]=[A]", be [b]}
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1. Introduction
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Thus the hull inverse is not adapted to the
optimal treatment of symmetric matrices.

However, at present, no special methods
have been devised for this case, and we
shall content ourselves with the unsymmetric
treatment of symmetric matrices.

Neumaier, Interval Methods for Systems of
Equations, 1990, p. 95.

Unless you are able to handle dependent data,
you Wwill never get interest of the engineers.

Babuska, conversation with J. Rohn, 1992.
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Popova
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1990
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Example 1

(1 [01] (o
Al = ( 0,1] [-4,—1] ) Bl = (

N




Example 2

[A]:<[—11,1] [_—1’11]> ’ [b]:@)

[A] contains two sing. matrices but no sing. symmetric matrix.

[-1,1] ~ [-1 4,1 — €] : Arbitrarily large overestimation!
9



. VVarious descriptions of >

reX & [Alzn[b] =0 (Beeck 1972)

b — Az| < rad([A])|=| + rad([5])
(Oettli/Prager 1964)

| oz,
@{ bi = 2j=1 57 SO},i:l,...

—b;+X"_qja;z; < O

where [a];; =: { i@
i7 > Qi if z; <O

(Hartfiel 1980)

[a
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3. Fourier—Motzkin elimination

Start:

x € ZsymNO1 (Oq first orthant)

& €01 AN 3A= AT ¢

&S e 01 A EIaZJERforzg—l

a;; = aj; N A

\

S xe2N017 A HaijERfOI’i,j:].,...,n

p

A;j = Qj; N

Z_Zawa}]<b
1=1

Aijg < Ay g < az-j

n
biz; < Y ajjriw; < b

j=1

[A] = [A]", be[b] :

/

| QijTiTj S QigTiT5 S QijTiTs |

Ax = b
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Step 1: Isolation of a1»

T & Zsym ﬂO]_

Sre2nN001 A HaijERfOl”l:,j:].,...,n:

( n n )
{b1 — > arjzitry < arpzrize < {by — > ai1;x;}x1
2 j#2
n _ n
_ {bo — > agjzitey < ajprizn < {bo— > apjzj}wo
Ajj = Qi 1\ =2 =2
j= j=
12212 < a12T1T2 X G12T1T2
(1)
\ remaining aj>—free inequalities
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Step 2: Elimination of aqo

T & Zsym ﬂOl

& 2€XN0; A JaeRforij=1,...,n, (i,5) €{(1,2),(2,1)}:

/\{ max{lhs (1)} < min {rhs (1)} }
aij — CLj'L’

remaining ajo—free inequalities

& 2€XN0; A JaeRforij=1,...,n, (i,5) €{(1,2),(2,1)}:

each Ihs (1) < each rhs (1) }

ajj = aji N . . "
remaining ajo—free inequalities
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& zEXNO0; A JaeRforij=1,....n, (i,5) € {(1,2),(2,1)}:

( )

mn
{b1 — > ayjzj}ry <ajowieo
j=1
72
n
{bo — > agjrjlas < ajorqao
j=2

n n
{b1 — > arjwjter < {bo— > ajzj}ao
j=1 J=2
j#2
_ mn
aipzizo < {b1 — > aijztry
j=1
j#2
_ mn
arpz120 < {bo — > anjr;tao
J=2
n _ n
{bo — > agjwjtwo < {b1 — Y aijzj}as
]:2 Jj=1
j#2
remaining ajo—free inequalities

a;; = aj; N A




4. Various descriptions of > sym

— Dependency outside the diagonal at exactly two index pairs
— Fourier—Motzkin elimination applied to inequalities
—  Fourier—Motzkin elimination applied to sets

— Qettli—Prager—like access

15



Theorem 1 (Hladik 2008)

Let [A] = [A]T e IR™¥", [b] € IR", z € R", r = b — Ax.
Then z € 2sym Iif and only if

rad([A]) |z| + rad([b]) > |r] (Oettli—Prager)

> rad(lalyy) i (pi — )| + X rad () [ziCoi + )]

1,J=1
n
> | X rizi(pi — qi)

=1

for all (47 — 37 — 271 4 3)/2 vectors p,q € {0,1}™\{0, e} with

p<lexq and (p=e—q VvV Ji: pi=g¢q; =0).
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Theorem 2 (Thm. 1 modified and reproved; M. 2012)

Let [A] = [A]L € IR™*" [b] € IR, z € R", r = b — Ax.
Then z € >sym If and only if

rad([A]) |z| 4+ rad([b])) > |r| (1)
(Oettli—Prager)

2|7 - |Dprad([A]) — rad([A]) Dyl - |2| + |«|T|Dy— Dglrad([8])

> [&! (Dp — Dg)r|
(2)
for all (37 — 27+l 1 1)/2 vectors p,q € {0,1}™\{0, e} with
p<jex g and p'q=0, (3)
where D, = diag(p), D, = diag(q).

17



Outline of a proof for a short description of >gym

77j

T € 2sym

= JA=A4+A=ATc[A], b=0b4+65c[b]: Az =D
= o' DpAx — ' DATx — 2T (Dp — Dy)s = 2! (Dp — Dg) (b — Ax)

| - | and triangular inequality results in (2) without (3) .

77¢

Let (1) — (3) hold for some x € R".

Idea: Construct A = AT ¢ [A], be [b] s.th. Az =1D.
18



Step 1: Get rid of |- |!
a) W.l.og. letx€0O1. (= |zx|=x)
b) (3) = [Dp — Dq| = Dp + Dy

c) |Dprad([A]) —rad([A])Dy| = D, rad([A]) D;+ Dy rad([A]) Dy,

where p—e—p, q—=—e—¢q

d) Show (2) & Lj<L; and Ly <L},

where L} = 2" Dp(b— ADgzx), fg = 2! Dp(b - ADgx)
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Step 2: Apply a reverse Fourier—MotzKkin elimination!
Successively for each (i,j) with ¢ < j and z;z; > O replace

l[a];; = [a];; in [A] by some point interval a, = a;-i € [a];; such
that (1) — (3) hold for the resulting matrix.

]
Let [A]fnal = ([A]T"aT C [A] be the final matrix.
Step 3: Construct A= AL ¢ [A], b€ [b] s.th. Az =b!

(1) = 3A = (d! )e[A]f'na' beb]: Az=05b

( a;j if x;x; >0
CL,II;J- if :z:z-—O aﬁj#o
Define a;j =1 aj; ifz;7#0, z; =0
a{ij if x; =x;=0and i<
\a;-i if x;, =x; =0 and i >j
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