
NOTE:

To change the

image on this

slide, select

the picture and

delete it. Then

click the

Pictures icon in

the placeholder

to insert your

own image.

Enhanced Binary Floating
Point Interval Adder with

Decorations

By:
Abdelrahman Elskahwy

Kareem Ismail
Maha Zohdy

Under the supervision of:

Associate Prof. Hossam A. H. Fahmy
 IEEE P1788 committee member

Presented by:

Amin Maher
Contact : elskhawy.a@gmail.com

Agenda

 Motivation

 Adder Design

 Parallel Adder Design

 Decorations
 Interval Adder with Decorations

 Testing
 Test Vectors Generation

 Results & Comparisons

 Conclusion

 What’s next ?

Binary Floating Point Interval Adder 2

Motivation

1. The need for an enhanced adder for high speed applications.

2. Unlike conventional operations on discrete floating point numbers, operations on
floating point intervals are flagged with Decorations.

Achievements:

1. Floating point interval adder with enhanced speed and area over the 1st and only
implementation of binary floating point interval adder.

2. 1st Implementation of Decorations in Interval Adder

Binary Floating Point Interval Adder 3

Interval Applications

 Solves error due to rounding

 - Result obtained may be totally wrong

 Saves simulation time

 - Component’s tolerance

 Computer graphics

Inaccurate More accurate Perfect
Binary Floating Point Interval Adder

4

Parallel Adder design

 We adopted the tow-path design, as we were targeting the speed.

 Some floating point addition/subtraction characteristics

Binary Floating Point Interval Adder 5

Full length alignment & normalization shift.

Rounding & conversion addition.

Special cases

 Infinities according to IEEE 754 standard.

Binary Floating Point Interval Adder
6

Double-Format Bit Pattern Value

s = 0; e = 2047; sig = 0 (all bits in f are zero) +INF (positive infinity)

s = 1; e = 2047; sig = 0 (all bits in sig are zero) -INF (negative infinity)

 Nan (Not A Number):

 If any of the two operands is Nan, the result will be a canonical Nan. (Nan_sig==>13'h4000000000000)

Single-Format Bit Pattern Value

s = x; e =2047; sig≠0 (at least one bit in sig is nonzero) Nan (Not-a-Number)

Exponent
Difference 0 1

MUX

0 1

MUX

Full-length Right

Shift
1-bit Right Shift

Compound Adder

Compound Adder

LZC

1-bit Right

Shifter Normalization

0 1

MUX

Exp_A Exp_B A B B A

Difference Value Difference Sign

Mantissa Result
Far Path Near Path

Special Cases

Handling

A B

Select result

Parallel design Block diagram

Binary Floating Point Interval Adder 7

Select Logic

Exp_A

Exp_B

op

Decorations

 Decorations is used to describe a property , not of the interval it is attached to
but of the function evaluated on the i/p intervals.

 Example : If a code defines the expression f (x,y)= 𝑦2 − 𝑥 ∗ 𝑦, then
decorated-interval gives information about definedness, continuity, etc. of the
function f (x,y) over the intervals (x,y).

 IEEE P1788’s Decorations replace the status flags (Invalid, Inexact, Overflow,
and underflow) of IEEE754 standard.

 Decoration of the o/p interval should not depend on i/p intervals’ decorations,
but on the i/p intervals.

Binary Floating Point Interval Adder 8

Decorations

Value Short description Property Definition

• com

• dac

• def

• trv

• ill

• Common

• Defined & continuous

• Defined

• Trivial

• Ill-formed

• 𝑃𝑐𝑜𝑚 (f, x)

• 𝑃𝑑𝑎𝑐 (f, x)

• 𝑃𝑑𝑒𝑓 (f, x)

• 𝑃𝑡𝑟𝑣 (f, x)

• 𝑃𝑖𝑙𝑙 (f, x)

• x is a bounded, nonempty subset of Dom(f); f is

continuous at each point of x; and the computed

interval f(x) is bounded.

•x is a nonempty subset of Dom(f), and the

restriction of f to x is continuous.

• x is a nonempty subset of Dom(f).

• Always true (so gives no information).

• Not an Interval; formally Dom(f) =φ .

Binary Floating Point Interval Adder
9

Decorations

 Example:

For the function f(x)= sqrt(x) applied on
interval x as follows:

• [0,1], then f is decorated Dac

• [-1,1], then f is decorated Trv

• (-1-𝑥2), then f is decorated Ill-formed

Binary Floating Point Interval Adder 10

Decoration Bits

(Logical values)

Decoration value

000 Com

001 Dac

010 Def

011 Trv

100 Ill

Implementation:
Decorations are implemented as
3-bits attached to the interval.

Decorations

 Finally for any function φ that is continuous everywhere

 φ(𝑥1, 𝑥2,…., 𝑥𝑘), and for all inputs non empty, is Decorated :

 - com ,if inputs bounded and result bounded

 - dac, otherwise.

 Addition and subtraction is defined and continuous on all R , given
normal input intervals, thus they always give Com or Dac decorated
interval.

Binary Floating Point Interval Adder 11

Interval Adder with Decorations

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Binary Floating Point Interval Adder 12

Pre-
processing

Unit

Lower Bound
Adder

Upper Bound
Adder

Interval A

Interval B

A_ub

B_ub

A_lb

B_lb

Post-
processing

Unit

Output

Interval

Output_ub

Output_lb

Clk

Parallel operation -> Fast speed, higher area.

Interval Adder with Decorations

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Binary Floating Point Interval Adder 13

Pre-
processing

Unit

Interval A

Interval B

Divides the interval operands into two parallel floating

point addition/subtraction operations with the appropriate

rounding mode for each operation, and extract the

Decorations of each interval.

Interval Adder with Decorations

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Binary Floating Point Interval Adder 14

Lower Bound
Adder

Upper Bound
Adder

A_ub

B_ub

A_lb

B_lb

Clk

Double precision floating point
adder built from scratch, to
enhance it’s speed, using Verilog
according to the aforementioned
design.

One for the upper bound and the
other for the lower bound.

Interval Adder with Decorations

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Binary Floating Point Interval Adder 15

Post-
processing

Unit

Output

Interval

Output_ub

Output_lb

Collects the two floating point results into
one interval result, attaches the calculated
Decoration value to the interval, then raises

a flag for ready result

Interval Adder with Decorations

2. Serial design using Single Path Algorithm Adder.

Binary Floating Point Interval Adder 16

Pre-
processin
g Unit

Upper
Bound
Adder

Interval A

Interval B

A_ub/lb

B_ub/lb

Post-
processin
g Unit

Output

Interval

Adder

output

Clk

- The units have the same functions, but they operate serially on the upper and lower
bounds.

- Serial operation -> lower speed, and small area.

Generating Test vectors

Binary Floating Point Interval Adder 17

C++ Algorithm

A manually created algorithm

to generate Decimal Floating

Point numbers, save these

numbers in memory in the

IEE754 format, read these

numbers byte by byte in its

binary form.

Advantages

 Double data type is stored in memory according to IEEE754’s
Format.

 Accurate results as the ADD/SUB operation deals with the internal
FPU of the machine’s microprocessor.

 The ability to control the rounding mode, and exceptions handling.

 The ability to read the exceptions flags from the internal FPU.

 The ability to change the value and the range of input numbers.

Binary Floating Point Interval Adder 18

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Visual C++
Compiler

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

IN
P
U
T
S

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

100100101010011100….
.

100011001110001010….
.

IN
P
U
T
S

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

100100101010011100….
.

100011001110001010….
.

IN
P
U
T
S

Inputs to
Our Design

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design
Under
Test

100100101010011100….
.

100011001110001010….
.

IN
P
U
T
S

Inputs to
Our Design

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..
.

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design
Under
Test

Test bench using
Verilog

100100101010011100….
.

100011001110001010….
.

IN
P
U
T
S

Inputs to
Our Design

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 20

Double X;
+/-
Double Y;
=
Double Z;

Memory
10010010100101010011100

…..
10001101000001110001010

…..
11110010100100011001001

…..

Visual C++
Compiler

C++ Code
byte-by-
byte

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design
Under
Test

Test bench using
Verilog

100100101010011100….
.

100011001110001010….
.

IN
P
U
T
S

Inputs to
Our Design

Design Output File
10010010101001110

0…..
10001100111000101

0…..
111100100011001001

…..

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 31

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design Output File
10010010101001110

0…..
10001100111000101

0…..
111100100011001001

…..

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 31

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design Output File
10010010101001110

0…..
10001100111000101

0…..
111100100011001001

…..

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 31

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design Output File
10010010101001110

0…..
10001100111000101

0…..
111100100011001001

…..

Compare

Vectors Generation Using C++ Code

Binary Floating Point Interval Adder 31

C++ Output File
100100101010011100…..
100011001110001010…..
111100100011001001…..

Design Output File
10010010101001110

0…..
10001100111000101

0…..
111100100011001001

…..

Compare

Result Test File

Total No. of lines :
No. of Matched Lines :
No. of Unmatched Lines

:

Testing Vectors

 Our Testing Vectors are formed from the different combinations of the
following :

 +ve/-ve ADD/SUB +ve/-ve .

 Very Large Numbers / Very Small Numbers.

 Near Path Testing / Far Path Testing .

 Rounding Up / Rounding Down .

 Sequential Numbers / Random Numbers .

 Exceptions (NaNs , Subnormal , Denormalized , ….)

 The design passed over 25 test vectors of ~100,000 Inputs each.

Binary Floating Point Interval Adder 34

Results & comparisons

Design /

Parameter

Area Clock

Frequency

(MHZ)

Pipelining

Depth

 (Cycles)

Pipelining

Throughput

No. of internal

ALUTs

No. of

Reg.

Single

Path

Adder/Subtract

or

254

220

116.72

4

0.5

Note: Stratix III Family is used

Binary Floating Point Interval Adder 35

Results & comparisons

Two path

Design /

Parameter

Area Clock

Frequency

(MHZ)

Pipelining

Depth

 (Cycles)

Pipelining

Throughput

No. of internal

ALUTs

No. of

Reg.

Proposed

Design

1125

798

283.05

4

1

Ayman’s

1178

745

250

7

1

Note: Stratix III Family is used

Binary Floating Point Interval Adder 36

Results & comparisons

MIBFP

Adder/

Subtractor

Area Clock

Frequency

(GHZ)

Pipelining

Depth

 (Cycles)

Pipelining

Throughput

Combinational

Area

 (µm)

Non-

combinational

Area

 (µm)

Proposed design

(65nm)

35588 21249 1.126 4 1

Proposed design

(45nm)

17056 10184 1.624 4 1

Ayman’s

(45nm)

11300

8900

1.176

8

1

ASIC Simulation Results
Binary Floating Point Interval Adder 37

Results & comparisons

Notes on Simulation results:

• Ayman’s design is the 1st implementation of Modal interval Binary
floating point ADD/SUB.

• Our design was implemented using 65nm technology, and the
values provided in 45nm technology are approximate.

• Area of the proposed design is a little bit larger than Ayman’s one,
but the speed is higher.

Binary Floating Point Interval Adder 38

Conclusion

 This is the second hardware implementation of modal interval
floating point adder.

 The proposed implementation features faster speed, and smaller
area.

 This is the 1st implementation of the Decoration system.

Binary Floating Point Interval Adder 39

What’s next?

 More enhancement of the speed and area of the proposed design.

 Implementing Decorations on Interval Floating point multiplier.

 Basic interval functions:

 Trigonometric

 Exponential

 Logarithmic

 Multiple precision modal interval units.

Binary Floating Point Interval Adder 40

Questions ?

Binary Floating Point Interval Adder 41

Thank you

Binary Floating Point Interval Adder 42

