By:
Abdelrahman Elskahwy
Kareem Ismail

Enhanced Binary Floating Maha Zohdy
Point Interval Adder with Under the supervision of:
Decorations Associate Prof. Hossam A. H. Fahmy

IEEE P1788 committee member

Presented by:
Amin Maher

Contact : elskhawy.a@gmail.com

AGENDA

= Motivation

= Adder Design
Parallel Adder Design

Decorations
Interval Adder with Decorations

= Testing

Test Vectors Generation
* Results & Comparisons

= Conclusion
= What’s next ?

Binary Floating Point Interval Adder

MOTIVATION

1. The need for an enhanced adder for high speed applications.

2. Unlike conventional operations on discrete floating point numbers, operations on
floating point intervals are flagged with Decorations.

Achievements:

1. Floating point interval adder with enhanced speed and area over the 15t and only
Implementation of binary floating point interval adder.

2. 15t Implementation of Decorations in Interval Adder

Binary Floating Point Interval Adder

INTERVAL APPLICATIONS

= Solves error due to rounding

- Result obtained may be totally wrong
= Saves simulation time

- Component’s tolerance

= Computer graphics

ag
a

Polygonal Ray tracing, Ray tracing,
Approximation not guaranteed guaranteed
Inaccurate More accurate Perfect

Binary Floating Point Interval Adder

PARALLEL ADDER DESIGN

= \We adopted the tow-path design, as we were targeting the speed.

= Some floating point addition/subtraction characteristics

Binary Floating Point Interval Adder

SPECIAL CASES

= Infinities according to IEEE 754 standard.

s=0;e=2047;sig=0 (all bitsin f are zero) +INF (positive infinity)

s=1;e=2047;sig =0 (all bits in sig are zero) -INF (negative infinity)

Nan (Not A Numbery):
If any of the two operands is Nan, the result will be a canonical Nan. (Nan_sig==>13'h4000000000000)

s = X; e =2047; sig#0 (at least one bit in sig is nonzero) Nan (Not-a-Number)

Binary Floating Point Interval Adder

PARALLEL DESIGN BLOCK DIAGRAM

Exp_A Expl)_B A

|

Select result

Exp B
op

Far Path
Binary Floating Point Interval Adder

Near Path

Mantissa Result

DECORATIONS

= Decorations is used to describe a property , not of the interval it is attached to
but of the function evaluated on the i/p intervals.

= Example : If a code defines the expression f (X,y)= \/yz — x * y, then
decorated-interval gives information about definedness, continuity, etc. of the
function f (x,y) over the intervals (X,y).

= |EEE P1788’s Decorations replace the status flags (Invalid, Inexact, Overflow,
and underflow) of IEEE754 standard.

* Decoration of the o/p interval should not depend on 1/p intervals’ decorations,
but on the I/p intervals.

Binary Floating Point Interval Adder

DECORATIONS

« COM « Common SR —) * X IS a bounded, nonempty subset of Dom(f); f is
continuous at each point of x; and the computed
interval f(x) iIs bounded.

* dac » Defined & continuous . p,, - (f,x) *X is a nonempty subset of Dom(f), and the
restriction of f to x is continuous.
o def « Defined * Pger (f,%)
* X IS a nonempty subset of Dom(f).
. . - - * Py (£, %)
trv Trivial * Always true (so gives no information).
* Py (F,%)
e ill e |llI-formed * Not an Interval; formally Dom(f) =¢ .

Binary Floating Point Interval Adder

DECORATIONS

= Example: Implementation:
Decorations are implemented as
For the function f(x)= sqrt(x) applied on 3-bits attached to the interval.

Interval x as follows:

Decoration Bits | Decoration value
« [0,1], then f is decorated Dac (Logical values)

Com
 [-1,1], then fis decorated Trv Dac

Def
e (-1-x?), then f is decorated 1ll-formed -

v

Binary Floating Point Interval Adder 10

DECORATIONS

» Finally for any function ¢ that is continuous everywhere

o(xq1, X5,...., Xx), and for all inputs non empty, is Decorated :

- com ,if inputs bounded and result bounded

- dac, otherwise.

= Addition and subtraction is defined and continuous on all R, given
normal input intervals, thus they always give Com or Dac decorated
Interval.

Binary Floating Point Interval Adder 11

INTERVAL ADDER WITH DECORATIONS

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Interval A

Interval B

Pre-

processing
Unit

A ub

B ub

A lb

B_Ib

Upper Bound | Output.ub
Adder

Post-

processing
Unit

Output_Ib

Lower Bound
Adder

»
»

{ Parallel operation -> Fast speed, higher area. }

Binary Floating Point Interval Adder

Output
Interval

12

INTERVAL ADDER WITH DECORATIONS

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Interval A

Divides the interval operands into two parallel floating
Pre- point addition/subtraction operations with the appropriate

processing i .
Unit rounding mode for each operation, and extract the

‘Decorations of each Interval.

Interval B

Binary Floating Point Interval Adder 13

INTERVAL ADDER WITH DECORATIONS

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Double precision floating point
Upper Bound | 3dder built from scratch, to
Adder o : .
enhance it's speed, using Verilog
according to the aforementioned
design.

Lower Bound
Adder One for the upper bound and the

other for the lower bound.

Clk

Binary Floating Point Interval Adder 14

INTERVAL ADDER WITH DECORATIONS

Two proposed designs:

1. Parallel design using Two Path Algorithm Adder.

Output_ub .
Collects the two floating point results into
one interval result, attaches the calculated ropfesst;mg
Decoration value to the interval, then raises g Unit
a flag for ready result Output_Ib

Binary Floating Point Interval Adder

Output
Interval

15

INTERVAL ADDER WITH DECORATIONS

2. Serial design using Single Path Algorithm Adder.

A ub/lb
Interval A »
of - Output
e ' output Post : Interval
processin processin
Interval B g Unit B_ub/Ib g Unit

Clk

- The units have the same functions, but they operate serially on the upper and lower
bounds.
- Serial operation -> lower speed, and small area.

Binary Floating Point Interval Adder 16

GENERATING TEST VECTORS

4 R

A manually created algorithm
to generate Decimal Floating
Point numbers, save these
numbers in memory in the
IEE754 format, read these
numbers byte by byte in its
binary form.

C++ Algorithm

K /%gPont Interval Adder 17

4

ADVANTAGES

* Double data type Is stored in memory according to IEEE754°s
Format.

= Accurate results as the ADD/SUB operation deals with the internal
FPU of the machine’s microprocessor.

= The ability to control the rounding mode, and exceptions handling.
» The ability to read the exceptions flags from the internal FPU.

* The ability to change the value and the range of input numbers.

Binary Floating Point Interval Adder

VECTORS GENERATION USING C++ CODE

Double X;
+/-
Double Y:;

Double Z;

Binary Floating Point Interval Adder

20

VECTORS GENERATION USING C++ CODE

Double X;
+/-
Double Y:;

Visual C++
Compiler

Double Z;

Binary Floating Point Interval Adder

20

VECTORS GENERATION USING C++ CODE

Memory

Double X, 10010010100101010011100

10001101000001110001010
Compiler

11110010100100011001001

Double Z;

Binary Floating Point Interval Adder

20

VECTORS GENERATION USING C++ CODE

Memory

Double X, 10010010100101010011100

10001101000001110001010
Compiler

11110010100100011001001

Double Z;

Binary Floating Point Interval Adder

20

VECTORS GENERATION USING C++ CODE

Double X;
+/-
Double Y:;

Memory
10010010100101010011100

C++ Output File
100100101010011100.....
+100011001110001010.....
111100100011001001.....

Visual C++ 10001101000001110001010

Compiler

11110010100100011001001

Double Z;

Binary Floating Point Interval Adder 20

VECTORS GENERATION USING C++ CODE

Memory >,
10010010100101010011100 C++ Output File

100100101010011100.....
10001101000001110001010 } 100011001110001010.....

111100100011001001.....

Double X;
+/-
Double Y:;

Visual C++
Compiler

11110010100100011001001

Double Z;

Binary Floating Point Interval Adder 20

VECTORS GENERATION USING C++ CODE
Double X;

Memory
10010010100101010011100

C++ Output File

Visual C++ 10001101000001110001010

Compiler 111100100011001001.....

11110010100100011001001

Double Z;

100100101010011100....

100100101010011100.....
+100011001110001010.....

100011001110001010....

Binary Floating Point Interval Adder ’ 20

VECTORS GENERATION USING C++ CODE
Double X;

Memory
10010010100101010011100

C++ Output File
100100101010011100.....
+100011001110001010.....
111100100011001001.....

10001101000001110001010

Visual C++
Compiler
11110010100100011001001

Double Z;

100100101010011100....
Inputs to

Our Design

100011001110001010....

Binary Floating Point Interval Adder ’ 20

VECTORS GENERATION USING C++ CODE
Double X;

Memory
10010010100101010011100

C++ Output File
100100101010011100.....
+100011001110001010.....
111100100011001001.....

10001101000001110001010

Visual C++
Compiler
11110010100100011001001

Double Z;

100100101010011100....
Inputs to

Our Design

100011001110001010....

Binary Floating Point Interval Adder ’ 20

VECTORS GENERATION USING C++ CODE
Double X;

Memory
10010010100101010011100

C++ Output File
100100101010011100.....
+100011001110001010.....
111100100011001001.....

Visual C++ 10001101000001110001010

Compiler

11110010100100011001001

Double Z;

lest bench using
Verilog i

y 100100101010011100....
nputs to

Our Design

100011001110001010....

Binary Floating Point Interval Adder ’ 20

VECTORS GENERATION USING C++ CODE
Double X;

Memory
10010010100101010011100

C++ Output File
100100101010011100.....
+100011001110001010.....
111100100011001001.....

10001101000001110001010
Compiler

11110010100100011001001

Design Output File ,

10010010101001110 Test bench using||

0. Verilog i
10001100111000101

Binary Floating Point Interval Adder ’ 20

y 100100101010011100....
nputs to

Our Design

VECTORS GENERATION USING C++ CODE

C++ Output File
100100101010011100.....

100011001110001010.....
111100100011001001.....

Design Output File
10010010101001110
0

10001100111000101
0....
1 111100100011001001

Binary Floating Point Interval Adder 31

VECTORS GENERATION USING C++ CODE

C++ Output File
100100101010011100.....
100011001110001010.....
111100100011001001.....

Design Output File
10010010101001110
0....
10001100111000101
0....
1111100100011001001

Binary Floating Point Interval Adder

VECTORS GENERATION USING C++ CODE

C++ Output File
100100101010011100.....
100011001110001010.....
111100100011001001.....

Compare

Design Output File
10010010101001110
0....
10001100111000101
0....
1111100100011001001

Binary Floating Point Interval Adder

VECTORS GENERATION USING C++ CODE

C++ Output File
100100101010011100.....
100011001110001010.....
111100100011001001.....

Result Test File

Total No. of lines :

No. of Matched Lines :
Compare No. of Unmatched Lines

Design Output File
10010010101001110
0....
10001100111000101
0....
1111100100011001001

Binary Floating Point Interval Adder 31

TESTING VECTORS

= Our Testing Vectors are formed from the different combinations of the
following :

= +ve/-ve ADD/SUB +ve/-ve .

= Very Large Numbers / Very Small Numbers.

= Near Path Testing / Far Path Testing .

* Rounding Up / Rounding Down .

= Sequential Numbers / Random Numbers .

= Exceptions (NaNs , Subnormal , Denormalized ,)

= The design passed over 25 test vectors of ~100,000 Inputs each.

Binary Floating Point Interval Adder

34

Results & comparisons

Design / Frequency | Pipelining
Parameter Pipelining
No. of internal Throughput
ALUTs Reg.
Single 254 220 116.72 4 0.5
Path
Adder/Subtract
or

Note: Stratix 1l Family is used

Binary Floating Point Interval Adder 35

Results & comparisons

Area Clock
Two path Frequency | Pipelining
Depth

Design / _ (MHZ) Pipelining
Parameter TAY of internal No. of (Cycles) Throughput
ALUTSs Reg.
Proposed @ 798 4 1
Design
Ayman’s 1178 745 250 / 1

Note: Stratix 11l Family is used

Binary Floating Point Interval Adder 36

Results & comparisons

Area

MIBFP

Combinational Non-
Adder/ Area combinational
Subtractor (um) Area
(Hm)
Proposed design 35588 21249 1.126
(65nm)
Proposed design 10184
(45nm)
Ayman’s 11300 8900 1.176
(45nm)

ASIC Simulation Results

Binary Floating Point Interval Adder

A

8

Pipelining
Throughput

37

Results & comparisons

Notes on Simulation results:

* Ayman’s design is the 15t implementation of Modal interval Binary
floating point ADD/SUB.

 Our design was implemented using 65nm technology, and the
values provided in 45nm technology are approximate.

 Area of the proposed design is a little bit larger than Ayman’s one,
but the speed is higher.

Binary Floating Point Interval Adder

YA

CONCLUSION

= This Is the second hardware implementation of modal interval
floating point adder.

* The proposed implementation features faster speed, and smaller
area.

* This is the 15t implementation of the Decoration system.

Binary Floating Point Interval Adder

!

What’s next?

= More enhancement of the speed and area of the proposed design.
* Implementing Decorations on Interval Floating point multiplier.

= Basic interval functions:
= Trigonometric
= Exponential
= Logarithmic

= Multiple precision modal interval units.

Binary Floating Point Interval Adder

40

Questions ?

Binary Floating Point Interval Adder

