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Motivation 

1. The need for an enhanced adder for high speed applications.    

2. Unlike conventional operations on discrete floating point numbers, operations on     
floating point intervals are flagged with Decorations.  

Achievements:  

1. Floating point interval adder with enhanced speed and area over the 1st and only 
implementation of binary floating point interval adder.  

2. 1st Implementation of  Decorations in Interval Adder    
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Interval Applications 

 Solves error due to rounding 

 -  Result obtained may be totally wrong 

 Saves simulation time  

 - Component’s tolerance  

 Computer graphics 

 

Inaccurate  More accurate  Perfect 
Binary Floating Point Interval Adder  

4 



Parallel Adder design  

 We adopted the tow-path design, as we were targeting the speed.  

 Some floating point addition/subtraction characteristics 
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Full length alignment & normalization shift. 

Rounding & conversion addition. 



Special cases 

 Infinities according to IEEE 754 standard. 
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Double-Format Bit Pattern Value 

s = 0; e = 2047; sig = 0  (all bits in f are zero)  +INF (positive infinity)  

s = 1; e = 2047; sig = 0  (all bits in sig are zero)  -INF (negative infinity)  

 Nan (Not A Number): 

 If any of the two operands is Nan, the result will be a canonical Nan.  (Nan_sig==>13'h4000000000000) 

 

  

 

Single-Format Bit Pattern Value 

s = x; e =2047; sig≠0 (at least one bit in sig is nonzero)  Nan (Not-a-Number)  
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Decorations 

 Decorations is used to describe a property , not of the interval it is attached to 
but of the function evaluated on the i/p intervals. 

 Example : If a code defines the expression f (x,y)= 𝑦2  − 𝑥 ∗ 𝑦, then 
decorated-interval gives information about definedness, continuity, etc. of the 
function f (x,y) over the intervals (x,y).  

 

 IEEE P1788’s Decorations replace the status flags (Invalid, Inexact, Overflow, 
and underflow) of IEEE754 standard. 

 Decoration of the o/p interval should not depend on i/p intervals’ decorations, 
but on the i/p intervals. 
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Decorations 

Value Short description  Property  Definition 

•  com 

 

 

 

•  dac 

 

 

•  def 

 

•  trv  

 

•  ill  

•  Common 

 

 

 

•  Defined & continuous 

  

 

•  Defined 

 

•  Trivial 

 

•  Ill-formed 

•  𝑃𝑐𝑜𝑚 (f, x) 

 

 

 

 

•   𝑃𝑑𝑎𝑐  (f, x) 

 

 

•  𝑃𝑑𝑒𝑓 (f, x) 

 

•  𝑃𝑡𝑟𝑣  (f, x) 

 

•  𝑃𝑖𝑙𝑙 (f, x) 

• x is a bounded, nonempty subset of Dom(f); f is 

continuous at each point of  x; and the computed  

interval f(x) is bounded. 

  

 

•x is a nonempty subset of Dom(f), and the 

restriction of f to x is continuous. 

 

 

• x is a nonempty subset of Dom(f). 

 

• Always true (so gives no information). 

 

• Not an Interval; formally Dom(f) =φ . 
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Decorations 

 Example: 

For the function f(x)= sqrt(x) applied on 
interval x as follows: 

 

• [0,1], then f  is decorated Dac 

 

• [-1,1], then  f is decorated Trv 

 

• (-1-𝑥2 ), then f is decorated  Ill-formed 
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Decoration Bits 

(Logical values) 

Decoration value 

000  Com 

001 Dac 

010 Def 

011 Trv 

100 Ill 

Implementation:  
Decorations are implemented as 
3-bits attached to the interval. 



Decorations 

 Finally for any function φ that is continuous everywhere  

    φ(𝑥1, 𝑥2,…., 𝑥𝑘), and for all inputs non empty, is Decorated : 

 -  com ,if inputs bounded and result bounded  

   -  dac, otherwise.  

 

 Addition and subtraction is defined and continuous on all R , given 
normal input intervals, thus they always give Com or Dac decorated 
interval. 
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Interval Adder with Decorations 

Two proposed designs: 

1. Parallel design using Two Path Algorithm Adder. 
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Parallel operation -> Fast speed, higher area.  



Interval Adder with Decorations 

Two proposed designs: 

1. Parallel design using Two Path Algorithm Adder. 
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Pre-
processing 

Unit 

Interval A 

Interval B 

Divides the interval operands into two parallel floating 

point addition/subtraction operations with the appropriate 

rounding mode for each operation, and extract the 

Decorations of each interval. 



Interval Adder with Decorations 

Two proposed designs: 

1. Parallel design using Two Path Algorithm Adder. 
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Lower Bound 
Adder 

Upper Bound 
Adder 

A_ub 

B_ub 

A_lb 

B_lb 

Clk 

Double precision floating point 
adder built from scratch, to 
enhance it’s speed, using Verilog  
according to the aforementioned 
design. 
 
One for the upper bound and the 
other for the lower bound.  



Interval Adder with Decorations 

Two proposed designs: 

1. Parallel design using Two Path Algorithm Adder. 
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Post-
processing 

Unit 

Output 

Interval 

Output_ub 

Output_lb 

Collects the two floating point results into 
one interval result, attaches the calculated 
Decoration value to the interval, then raises 

a flag for ready result  



Interval Adder with Decorations 

2. Serial design using Single Path Algorithm Adder. 
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Pre-
processin
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Upper 
Bound 
Adder 

Interval A 

Interval B 

A_ub/lb 

B_ub/lb 

Post-
processin
g Unit 

Output 

Interval 

Adder 

output 

Clk 

- The units have the same functions, but they operate serially on the upper and lower    
bounds.  

- Serial operation -> lower speed, and small area.  
 



Generating Test vectors  

Binary Floating Point Interval Adder  17 

C++ Algorithm 

A manually created algorithm 

to generate Decimal Floating 

Point numbers, save these 

numbers in memory in the 

IEE754 format, read these 

numbers byte by byte in its 

binary form.  



Advantages 

 Double data type is stored in memory according to IEEE754’s 
Format.  

 Accurate results as the ADD/SUB operation deals with the internal 
FPU of the machine’s microprocessor.  

  The ability to control the rounding mode, and exceptions handling.  

 The ability to read the exceptions flags from the internal FPU.  

 The ability to change the value and the range of input numbers.  
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Vectors Generation Using C++ Code 
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Double X; 
+/- 
Double Y; 
= 
Double Z; 
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Total No. of lines :  
No. of Matched Lines : 
No. of Unmatched Lines 

: 



Testing Vectors 

 Our Testing Vectors are formed from the different combinations of the 
following : 

 +ve/-ve  ADD/SUB  +ve/-ve . 

 Very Large Numbers / Very Small Numbers. 

 Near Path Testing / Far Path Testing . 

 Rounding Up / Rounding Down . 

 Sequential Numbers / Random Numbers . 

 Exceptions (NaNs , Subnormal , Denormalized , …. ) 

 

 The design passed over 25 test vectors of ~100,000 Inputs each.  
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Results & comparisons  

 

Design / 

Parameter 

Area Clock 

Frequency 

(MHZ) 

 
Pipelining  

Depth  

 (Cycles)   

 

 

 
Pipelining 

Throughput 

  

 

No. of internal 

ALUTs 

No. of  

Reg. 

 

Single 

Path  

Adder/Subtract

or 

 

254 

 

220 

 

116.72 

 

4 

 

0.5 

Note: Stratix III Family is used   
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Results & comparisons  

 

Two path 

Design / 

Parameter 

Area Clock 

Frequency 

(MHZ) 

 
Pipelining  

Depth  

 (Cycles)   

 

 

 
Pipelining 

Throughput 

  

 

No. of internal 

ALUTs 

No. of  

Reg. 

 

Proposed 

Design 

 

 

1125 

 

798 

 

283.05 

 

4 

 

1 

 

Ayman’s  

 

1178 

 

745 

 

250 

 

7 

 

1 

Note: Stratix III Family is used   
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Results & comparisons  

 

MIBFP 

Adder/ 

Subtractor  

Area Clock 

Frequency 

(GHZ) 

 
Pipelining  

Depth  

 (Cycles)   

 

 

 
Pipelining 

Throughput 

  

 

Combinational 

Area  

    (µm)  

Non-

combinational 

Area  

    (µm)   

Proposed design 

(65nm) 

35588 21249 1.126 4 1 

Proposed design 

(45nm)   

17056 10184 1.624 4 1 

 

Ayman’s  

(45nm) 

 

11300 

 

8900 

 

1.176 

 

8 

 

1 

ASIC Simulation Results 
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Results & comparisons  

Notes on Simulation results:  

• Ayman’s design is the 1st implementation of Modal interval Binary 
floating point ADD/SUB. 

• Our design was implemented using 65nm technology, and the 
values provided in 45nm technology are approximate.  

• Area of the proposed design is a little bit larger than Ayman’s one, 
but the speed is higher.  
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Conclusion  

 This is the second hardware implementation of modal interval 
floating point adder.  

 The proposed implementation features faster speed, and smaller 
area.  

 This is the 1st implementation of the Decoration system.  
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What’s next? 

 More enhancement of the speed and area of the proposed design. 

 Implementing Decorations on Interval Floating point multiplier.  

 Basic interval functions:  

  Trigonometric 

  Exponential  

  Logarithmic  

 

 Multiple precision modal interval units.  
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Questions ? 
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Thank   you 
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