Implementation of affine arithmetic
using floating-point arithmetic:
how to handle roundoff errors

Jordan Ninin

IHSEV team, LAB-STICC, ENSTA-Bretagne, France
Nathalie Revol

INRIA - Université de Lyon - LIP, ENS de Lyon, France

SCAN 2014, Wiirzburg, Germany, 22 September 2014

computer arithmetic
floating-point arithmetic
roundoff errors

affine arithmetic
and applications

computer arithmetic
floating-point arithmetic
roundoff errors

affine arithmetic
and applications

Question: Is the inclusion property preserved?

computer arithmetic
floating-point arithmetic
roundoff errors

affine arithmetic
and applications

Question: Is the inclusion property preserved?
Question: Are roundoff errors accounted for?

computer arithmetic
floating-point arithmetic
roundoff errors

affine arithmetic
and applications

Question: Is the inclusion property preserved?
Question: Are roundoff errors accounted for?

implementation of affine arithmetic
using floating-point arithmetic:
fast and accurate

Contributions

Roundoff errors:
bounded computed

Use of directed roundings:
yes no

Influence of the architecture?

Agenda

Affine arithmetic: state of the art
Affine arithmetic: definition
Affine arithmetic: handling of roundoff errors

Affine arithmetic: new approach
Bounding the roundoff errors
Computing the roundoff errors
Accumulating the roundoff errors
Directed rounding modes

Experiments
Evaluation of Shekel5
Remaining questions

Conclusion

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Agenda

Affine arithmetic: state of the art
Affine arithmetic: definition
Affine arithmetic: handling of roundoff errors

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic
Comba, de Figueiredo, Stolfi — Vu, Sam-Haroud, Faltings

Variant of interval arithmetic, thus guaranteed enclosures of the
sought result.

Why? To counteract the dependency problem.
With affine arithmetic, x — x = [0].
How? Each quantity is a linear combination of noise symbols:

X =xp+ Zx,-e,- where x; € R and ¢; lives in [—1,1].

1

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: operations
Comba, de Figueiredo, Stolfi
Notations
aeR, [eR,

X=xp+ Zx,-e,- where x; € R and ¢; lives in [-1,1],

1

Y=y + Zy,-e,- where y; € R and ¢; lives in [—1,1].

1

a+BR+9 = (a+Bxo+y)+ > (Bx+yie

1

>

X
<>

Il

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Explosion of the number of symbols:

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Explosion of the number of symbols: handled by fixing the
maximal number of such symbols.

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Explosion of the number of symbols: handled by fixing the
maximal number of such symbols.

Handling the non-created symbols?

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Explosion of the number of symbols: handled by fixing the
maximal number of such symbols.

Handling the non-created symbols? through a dedicated
symbol €.

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: multiplication. ..
and limiting the number of noise symbols

RX§=x0Xyo+ ...+ Y (Xoyi + XiYo)€i + €nt1
i

€n+1 1S @ new symbol created to account for nonlinear terms.

Explosion of the number of symbols: handled by fixing the
maximal number of such symbols.

Handling the non-created symbols? through a dedicated
symbol €.

Variations exist. . .

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors

Implementation using floating-point arithmetic.
Question: Is the inclusion property preserved?

Question: Are roundoff errors accounted for?

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors
Comba, de Figueiredo, Stolfi

a+B%+§=(a+Bxo+y)+ D _(Bxi+yie

For each operation, either 4+ or x: roundoff error. Ex.: 8 x x;.

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors
Comba, de Figueiredo, Stolfi

a+B%+§=(a+Bxo+y)+ D _(Bxi+yie

For each operation, either 4+ or x: roundoff error. Ex.: 8 x x;.

Roundoff error computed as:
e = max(RU(B x x;) — RN(5 x x;), RN(8 x x;) — RD(8 x x;)).

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors
Comba, de Figueiredo, Stolfi

a+B%+§=(a+Bxo+y)+ D _(Bxi+yie

For each operation, either 4+ or x: roundoff error. Ex.: 8 x x;.

Roundoff error computed as:
e = max(RU(B x x;) — RN(5 x x;), RN(8 x x;) — RD(8 x x;)).

Roundoff errors accumulated in e4:
e+ = RU(ex + e).
~ Jordan Ninin & Nathalie Revol ||

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors

Hansen, Messine

a+pBx+y=(a+ Bxo+ y0)+ Z(ﬁxi + yi)ei.

For each operation, either 4 or x: roundoff error. Ex.: a + yp.
Actual value belongs to the interval [RD(a« + yo), RU(+ yo)].
Coefficients are intervals:

X =xg9 + ine; where x; € IR and ¢; lives in [—1,1],

1

with operations performed using interval arithmetic.

Affine arithmetic: state of the art
Affine arithmetic: definition

Affine arithmetic: handling of roundoff errors

Affine arithmetic: handling of roundoff errors
Rump in IntLab v.8, Kashiwagi

a+BR+9 = (a+Bxo+y)+ > (Bx+yie

1

For each operation, either + or x: roundoff error. Ex.: 8 x x;.

Roundoff errors accumulated in e4:

e+ = RU(ex + e).

Roundoff error computed as 777

Affine arithmetic: new approach

Agenda

Affine arithmetic: new approach
Bounding the roundoff errors
Computing the roundoff errors
Accumulating the roundoff errors
Directed rounding modes

Bounding the roundoff errors
Affine arithmetic: new approach Computing the roundoff errors

Accumulating the roundoff errors
Directed rounding modes

Bounding roundoff errors

a+BR+9 = (a+Bxo+y)+ > (Bx+yie

For each operation, either + or x: roundoff error.

Each roundoff error is bounded: approach a la COSY (u is the
machine roundoff unit):

» error on a+ b is less than 2umax(|al, |b]);

> error on a X b is less than 2uRN(|a x bl).

Roundoff errors accumulated in I:
| is an interval coefficient corresponding to €.

| =1 4+ bounds on roundoff errors

with operations performed using interval arithmetic.

Affine arithmetic: new approach Computing the roundoff errors

Accumulating the roundoff errors
Directed rounding modes

Computing the roundoff errors

Two useful properties of floating-point arithmetic:

Bounding the roundoff errors
Affine arithmetic: new approach Computing the roundoff errors

Accumulating the roundoff errors
Directed rounding modes

Computing the roundoff errors

Two useful properties of floating-point arithmetic:

> in rounding-to-nearest, the roundoff error for +, —, X is a
floating-point number;

Bounding the roundoff errors
Affine arithmetic: new approach ing the roundoff errors
ating the roundoff errors

Directed rounding modes

Computing the roundoff errors

Two useful properties of floating-point arithmetic:
> in rounding-to-nearest, the roundoff error for +, —, X is a
floating-point number;
> this error can be computed using floating-point arithmetic.

Codes that transform a< b into r + e with r = RN(a < b) and
e the roundoff error are called EFT: Error Free Transforms.

Bounding the roundoff errors
Affine arithmetic: new approach ing the roundoff errors
ating the roundoff errors

Directed rounding modes

Computing the roundoff errors

Two useful properties of floating-point arithmetic:
> in rounding-to-nearest, the roundoff error for +, —, X is a
floating-point number;

> this error can be computed using floating-point arithmetic.
Codes that transform a< b into r + e with r = RN(a < b) and
e the roundoff error are called EFT: Error Free Transforms.

Let’s make use of EFT!

Bounding the roundoff errors
Affine arithmetic: new approach Computing the roundoff errors

Accumulating the roundoff errors
Directed rounding modes

EFT for +

TwoSum: s+e=a+b

s =RN(a+ b)
a =RN(s — b)
b’ =RN(s — a)
d, =RN(a— &)
5p = RN(b — b)
e = RN(0, + 0p)

The equality s + e = a+ b holds in exact arithmetic.

Bounding the roundoff errors
Affine arithmetic: new approach ing the roundoff errors
ating the roundoff errors

Directed rounding modes

EFT for x

FMA: Fused Multiply and Add is a floating-point operator that
performs a x b+ ¢ with only one roundoff error of the exact result.

TwoProd: p+e=axb
p = RN(a x b)
e = RN(FMA(a, b, —p))

Without FMA: it is also possible to compute e, the code is a bit
longer (17 operations).

Bounding the roundoff errors
Affine arithmetic: new approach Computing the roundoff errors

Accumulating the roundoff errors
Directed rounding modes

EFT for other operations?

What about other operations? /, va
No EFT.

The “remainder” is a floating-point number that can be
computed. . . but not very useful for our purpose.

Roundoff errors are bounded.

Bounding
Affine arithmetic: new approach Computin

Accumulating the roundoff errors
Directed rounding modes

Accumulating the roundoff errors

Roundoff errors are computed exactly. What to do with
them?
Accumulate.

How?
» No need to be very accurate.

> Need to get an upper bound.

As only non-negative values are accumulated, this gives a bound:

accu = RU(accu + e).

Bounding
Affine arithmetic: new approach Computin

the roundoff errors
Directed rounding modes

Directed rounding modes or not?
Directed rounding modes can incur time penalty.
From 10 to 100 when rounding modes are set using global registers
and pipelines must be flushed when the rounding mode changes.

oundoff errors
Affine arithmetic: new approach ¢ roundoff errors
he roundoff errors

Directed rouﬁding modes

Directed rounding modes or not?
Directed rounding modes can incur time penalty.
From 10 to 100 when rounding modes are set using global registers
and pipelines must be flushed when the rounding mode changes.
Nothing when rounding modes are set in the instruction code (cf.
CUDA for GPU, assembler for Itanium).

roundoff
Affine arithmetic: new approach ¢ roundoff

Directed rounding modes or not?
Directed rounding modes can incur time penalty.
From 10 to 100 when rounding modes are set using global registers
and pipelines must be flushed when the rounding mode changes.

Nothing when rounding modes are set in the instruction code (cf.
CUDA for GPU, assembler for Itanium).

Directed rounding modes cannot be set. In OpenMP, OpenCL,
BLAS. . .: the only rounding mode is rounding-to-nearest.

roundoff
Affine arithmetic: new approach ¢ roundoff

Directed rounding modes or not?
Directed rounding modes can incur time penalty.
From 10 to 100 when rounding modes are set using global registers
and pipelines must be flushed when the rounding mode changes.
Nothing when rounding modes are set in the instruction code (cf.
CUDA for GPU, assembler for Itanium).

Directed rounding modes cannot be set. In OpenMP, OpenCL,
BLAS. . .: the only rounding mode is rounding-to-nearest.

Get free of the rounding modes!
As only non-negative terms are accumulated, this gives a bound:

accu = RN((1 + 4u) x (accu + e)).

Evaluation of Shekel5

Experiments Remaining questions

Agenda

Experiments
Evaluation of Shekel5
Remaining questions

Evaluation of Shekel5

Experiments Remaining questions

Framework

Variants of affine arithmetic are implemented in IBEX:

Experiments

Framework

Variants of affine arithmetic are implemented in IBEX:

>

>

>

double = no guarantee, arithmetic provided by the processor;
AF_no: affine arithmetic without control of roundoff errors;
sAF: de Figueiredo and Stolfi's version;

iAF: Hansen's and Messine's variant: affine arithmetic with
interval coefficients;

fAF: roundoff errors are bounded and accumulated in an
interval;

fAF_v2: roundoff errors are computed and accumulated — in
rounding to nearest — in a floating-point value.

Evaluation of Shekel5

Experiments Remaining questions

Evaluation of Shekel 5: time and accuracy

Points [xi x2 | f(x2) \
double 0.12s - -

Interval 148.4s 154.0s | [—10.1663975282993153, —7.28436947861868234]
AF_no 1072.5s | 1377.1s | [—10.1611323182907558, —7.04912944184162704]

sAF 3096.5s | 3593.6s | [—10.1611323182908002, —7.04912944184159329]
iAF 1898.4s | 3763.7s | [—10.1611323182907629, —7.04912944184162082]
fAF 1900.1s | 1946.8s | [—10.1611323182912301, —7.04912944184125667]

fAF_v2 | 1306.3s | 1579.4s | [—10.1611323182907913, —7.04912944184159862]

Table: CPU-time of 108 evaluations of the Shekel-5 function.

Evaluation of Shekel5

Experiments Remaining questions

Caution

Still experimental code:
» compiler’s options probably need a finer tuning;

» with FMA: prototype machine, buggy code for the time being.

Evaluation of Shekel5

Experiments Remaining questions

Evaluation of Shekel 5: timings
’ Points H X1 \ Xo ‘
double 0.01s -
Interval 1.48s 1.54s
Interval 8.45s 9.86s

AF_no 10.72s | 13.77s
AF_no 42 5s 57.6s

sAF 30.96s | 35.94s
sAF 562.9s | 371.6s
iAF 18.98s | 37.64s
iAF 73.6s | 141.7s
fAF 19.00s | 19.47s
fAF 75.0s | 97.2s

fAF_v2 || 13.06s | 15.79s
fAF_v2 71.8s 95.6s
~ CPU-time of 10° evaluations of the Shekel-5 function on a Xeon
CPU-time of 10° evaluations of the Shekel-5 function on an AMD

B avdan Ninin & Nathaie revor [

Evaluation of Shekel5

Experiments Remaining questions

On different architectures
Caution (reminder): experimental and probably buggy code.

Evaluation of Shekel5

Experiments Remaining questions

On different architectures

Caution (reminder): experimental and probably buggy code.

Use of fAF (bounds on the roundoff errors, only one interval:
the remainder):

» on Xeon: 1 to 2 times faster than other variants of affine
arithmetic,
50% to 100% slower than affine arithmetic without roundoff
errors,
10,000 times slower than double arithmetic;

» on AMD: up to 7 times faster than other variants of affine
arithmetic,
twice slower than affine arithmetic without roundoff errors,
100 times slower than double arithmetic;

» in both cases, 10 times slower than interval arithmetic.

Evaluation of Shekel5

Experiments Remaining questions

On different architectures
Caution (reminder): experimental and probably buggy code.

Evaluation of Shekel5

Experiments Remaining questions

On different architectures
Caution (reminder): experimental and probably buggy code.

Use of fAF_v2 (computations of the roundoff errors, no
changes of the rounding modes):
» on Xeon: from 50% to 2.5 times faster than other variants of
affine arithmetic,
slightly slower than affine arithmetic without roundoff errors,

1,500 times slower than double arithmetic;
» on AMD: from 2 to 10 times faster than other variants of

affine arithmetic,
similar to affine arithmetic without roundoff errors, 50 times
slower than double arithmetic;

» in both cases, 6 times slower than interval arithmetic.

Evaluation of Shekel5

Experiments Remaining questions

On different architectures
Caution (reminder): experimental and probably buggy code.

Use of fAF_v2 (computations of the roundoff errors, no
changes of the rounding modes):
» on Xeon: from 50% to 2.5 times faster than other variants of
affine arithmetic,
slightly slower than affine arithmetic without roundoff errors,

1,500 times slower than double arithmetic;
» on AMD: from 2 to 10 times faster than other variants of

affine arithmetic,
similar to affine arithmetic without roundoff errors, 50 times
slower than double arithmetic;

» in both cases, 6 times slower than interval arithmetic.

Evaluation of Shekel5

Experiments Remaining questions

On different architectures
Caution (reminder): experimental and probably buggy code.

Use of fAF_v2 (computations of the roundoff errors, no
changes of the rounding modes):
» on Xeon: from 50% to 2.5 times faster than other variants of
affine arithmetic,
slightly slower than affine arithmetic without roundoff errors,

1,500 times slower than double arithmetic;
» on AMD: from 2 to 10 times faster than other variants of

affine arithmetic,
similar to affine arithmetic without roundoff errors, 50 times
slower than double arithmetic;

» in both cases, 6 times slower than interval arithmetic.

Conclusion

Agenda

Conclusion

Conclusion

Conclusion and future work

For an implementation of interval/affine/. .. arithmetic
using floating-point arithmetic:

> to preserve the inclusion property: handle roundoff errors;

Conclusion

Conclusion and future work

For an implementation of interval/affine/. .. arithmetic
using floating-point arithmetic:

> to preserve the inclusion property: handle roundoff errors;

» many ways to handle roundoff errors: bound them, compute
them:
think in terms of significant bits

Conclusion

Conclusion and future work

For an implementation of interval/affine/. .. arithmetic
using floating-point arithmetic:

> to preserve the inclusion property: handle roundoff errors;

» many ways to handle roundoff errors: bound them, compute
them:
think in terms of significant bits

» influence of the architecture and of the instruction set: to be
further explored.

Conclusion

Global optimization

IBEX has code to solve global optimization problems: technique
chosen here = Affine Relaxation Technique.

COCONUT has benchmark problems: 113 problems are tested
here.

Conclusion

Global optimization

ersion of Affine non-reliable reliable
ithmetic used in AF_no sAF iAF fAF fAF _v2
IBEX nb | t(s) nb [t(s)| nb|t(s)| nb|t(s)| nb|t(s)
Average for 111 72 || 113 73 | 113 72 | 113 67 | 113 65

olved problems
rage for problems | 111 72 || 111 75 | 111 73 | 111 69 | 111 66

ed by all versions

	Affine arithmetic: state of the art
	Affine arithmetic: definition
	Affine arithmetic: handling of roundoff errors

	Affine arithmetic: new approach
	Bounding the roundoff errors
	Computing the roundoff errors
	Accumulating the roundoff errors
	Directed rounding modes

	Experiments
	Evaluation of Shekel5
	Remaining questions

	Conclusion

