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The problem addressed in this talk

Let f : R→ R be a real function and x ∈ R be a real number.
The exact computation of f (x) may be

I impossible,

I too expensive.

The real value x =
√

2 could be represented by x = [1.414, 1.415]
or by x′ = [−2, 1.5].

Question 1

How to compare x and x′?

Assume that for some real interval x 3 x , we can compute F(x)
such that f (x) ⊆ F(x).

Question 2

How to measure the approximation error of F(x)?
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Content

How to quantify the intrinsic accuracy of an interval quantity?

How to measure the approximation error of an interval result?

Experimental results for the interval matrix multiplication
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The relative accuracy

Example

√
2 ∈ [1.414, 1.415] (1)
√

2 ∈ [−2, 1.5] (2)

How to quantify the quality of the enclosure?

Definition

The relative accuracy of an interval x is the quantity

racc(x) =
rad x

|mid x|

By convention, racc(x) = +∞, if mid x = 0.

If racc(x) < 1 then 0 /∈ x.
If racc(x) < 1 and x ⊆ y, then racc(x) ≤ racc(y).
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Links with other metrics

Definition (Kulpa, Markov 2003)

relative extent: radx
midx

Definition (Rump 1999)

relative precision:

{
radx
|midx| , if 0 /∈ x

1, otherwise

Definition (Kreinovich 2013)

relative approximation error: minx̃∈[x ,x] maxx∈[x ,x]
|x−x̃ |
|x̃ |

x racc(x) K. & M. Rump Kreinovich
[1.414, 1.415] 0.0007 0.0007 0.0007 0.0007
[−2, 1.5] 7 -7 1 1.75
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The diversity of measures

Let f : R→ R be a real function and x ∈ IR a real interval.
Assume we can compute interval enclosures of f :

I F(x) such that f (x) ⊆ F(x),

I G(x) such that f (x) ⊆ G(x).

How to compare the computed approximates F(x) and G(x)?

Different metrics found in the litterature:

absolute measures: width or radii,

relative measures: ratios of width, ratios of radii,
ratios of relative precision.



The Hausdorff distance

The set of real intervals IR endowed with the Hausdorff distance is
a metric space.

The interval case

Let x = [x , x ] and y = [y , y ] be two real intervals.
The Hausdorff distance between x and y is the quantity

d(x, y) = max{|y − x |, |y − x |}
= |mid y −mid x|+ |rad y − rad x|.

Definition

The absolute value (or magnitude) of x is the metric associated to
the Hausdorff distance: |x| = d(x, 0) = |mid x|+ rad x.
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Relative errors

Let x = [x , x ] and y = [y , y ] be two real intervals. Assume x ⊆ y.

Definition

The relative Hausdorff error of y with respect to x is

RHEx(y) =
d(x, y)

d(x, 0)
=
|mid y −mid x|+ rad y − rad x

|mid x|+ rad x
.

Definition

The relative radius error of y with respect to x is defined as the
quantity

RREx(y) =
rad y − rad x

rad x
.



The special case of interval arithmetic computations

Proposition

If F : IR→ IR is an interval enclosure of f that verifies the
inclusion property, then

RHEf (x)(F(x)) ≤ 2 RREf (x)(F(x))

If x ⊆ y, then |mid y −mid x| ≤ rad y − rad x.

I RHE[1.414,1.415]([−2, 1.5]) = 1.4145−(−0.25)+1.75−0.0005
1.4145+0.0005 ≈ 2.4

I RRE[1.414,1.415]([−2, 1.5]) = 1.75−0.0005
0.0005 = 3499
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Interval matrices: semantics

An interval matrix A ∈ IRm×n is a pair of real matrices.

A = [A,A] = {M ∈ Rm×n | A ≤ M ≤ A}.

Let A ∈ IRm×p and B ∈ IRp×n.

AB = {M = AB ∈ Rm×n | A ∈ A,B ∈ B}.



Interval matrix multiplication
Rump, Fast Interval Matrix Multiplication, 2011

Input: A = 〈MA,RA〉 ∈ IFm×k ,B = 〈MB,RB〉 ∈ IFk×n

Output: C ⊇ AB
1: MC ← fl�(MAMB)
2: R ′B ← fl∆((k + 2)u|MB|+ RB)

3: RC ← fl∆(|MA|R
′
B + RA(|MB|+ RB) + realmin)

4: return 〈MC,RC〉
where

I u is the roundoff unit,

I realmin is the smallest positive normal floating-point number,

I fl�: floating-point computation with rounding to nearest,

I fl∆: floating-point computation with rounding toward +∞.

Question

How to bound overestimation error and roundoff errors?
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Theoretical bound on the error

Products of 128-by-128 interval matrices in double precision
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Experimental setup
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1. Take random midpoint matrices MA
and MB

2. Choose a value e for the relative
accuracy and set

RA = e |MA|
RB = e |MB|

3. Compute a very good approximation
of AB using multiprecision

4. Compute the overestimate C

5. Report the mesured RHEABij
(Cij)
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Experimental results
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Conclusion

I For measuring the intrinsic accuracy of x

racc(x) =
rad x

|mid x|
.

I For approximation error between intervals:
I the relative Hausdorff error RHEx(y) takes midpoints and

radii into account,
I the relative radius error RREx(y) is easier to bound,
I RHEf (x)(F(x)) ≤ 2 RREf (x)(F(x)) when F : IR→ IR is an

interval enclosure of f that verifies the inclusion property.

Question

Shall we come to a general agreement on the way to measure
errors on interval quantities?
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