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Introduction

We treat dynamics of ODE’s.

Problem : Autonomous system of ODE

du

dt
= f(u), 0 < t < ∞,

u ∈ D ⊂ Rn,

f : D 7→ Rn, f ∈ C∞.

Poincaré map is used for analysis of closed orbits.

In this talk, we show how to identify a basin of an asymptotically
stable closed orbit by numerical verification without defining a
Poincaré map.
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Verification methods for existence of closed orbits

There are several verification methods for existence of closed orbits.
Among them, we will show outlines of following 2 methods.

Zigliczyński’s method

2-point boundary value problems with a bordering condition
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Zigliczyński’s method

Zigliczyński developed a verification method for existence of closed
orbits[3].⇒ This needs a narrow interval for return times.

1 Let u and P(u) be an interval vector and its image of a Poincaré
map, respectively.

2 N(u) is defined as a Newton operator for the fixed point equation
P(u) = u.

3 For an interval vector [U], if N([U]) ⊂ [U], then [U] includes a fixed
point of the Poincaré map, where N([U]) = {N(u)|u ∈ [U]}.

Features of Zigliczyński’s method

Use a Poincaré map and its variational equation.

A variational equation can be computed with a Poincaré map
simultaneously (C1-Lohner method).

Verification is carried out through Alefeld’s theorem[3].
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2-point boundary value problems with a bordering
condition

In the paper [1], we had developed a method which does not need a
rigorous return time. We refer to the method as HY method.⇒ In actual computation, we use a simplified version pointed out by
Professor Matsuo and his student Kaigaishi.
Note that it is equivalent to one of 2-point boundary value problems
with a bordering condition.
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2-point boundary value problems with a bordering
condition

HY method

Define a Poincaré section Γ and an orthogonal projection PΓ to Γ .

Use Newton method with validated computation to specify a time
period T ∗.

⇕
Simplified method

2-point boundary value problems with a bordering condition.

Verification is carried out through Brouwer’s fix point theorem.
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Numerical verification for existence of closed orbits

We verify existence of closed orbits by 2-point boundary value problems
with a bordering condition.

Notation

ũ(t) : an approximate periodic solution.

w̃ := ũ(0).

Γ : a plane which includes w̃.

nΓ : an unit normal vector of Γ .

For simplicity, translate the axes such that w̃ should be the origin of new
axes.
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Numerical verification for existence of closed orbits

2-point boundary value problems with bordering condition

{
nTΓ w

∗ = 0,
w∗ = φ(T ∗,w∗).

w∗ ∈ Γ is a point on the closed orbit, and T ∗ is the time period.

φ(t,w) indicates a point at time t on a trajectory starting at an
initial point w.
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Numerical verification for existence of closed orbits

We define a mapping K to find T ∗ and w∗ .

Mapping K

z =

(
T
w

)
,

K (z) =

(
nTΓ w

φ(T ,w) −w

)
.
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Numerical verification for existence of closed orbits

To get a zero point of K (z), we apply the interval Newton method or
the Krawczyk method for

K (z) = 0.

In order to use Brouwer’s fixed point theorem, we check N([Z ]) ⊂ [Z ]
for an interval vector [Z ]. Here N is the interval Newton operator or
the Krawczyk operator.
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Numerical verification for existence of closed orbits

If N([Z ]) ⊂ [Z ], then each element of the interval [Z ] = ([T ], [W ])T

satisfies T ∗ ∈ [T ] and w∗ ∈ [W ].

Let a ball Bη be an obtained set on Γ that is

Bη = {w ∈ Γ | ∥w∥2 ≤ η} ,

and

[W ] ⊂ Bη.

Note that the origin is the approximate fixed point w̃
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Identification of basin

The goal of this section is to show a sufficient condition for a given set
Wα on Γ to be included by a basin of the closed orbit, where

Wα = {w ∈ Γ | ∥w −w∗∥2 ≤ α} .

The center is w∗.

The radius is a given constant α.
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Theorem

Assumption 1: There is a family of intervals [Tw ] for all w ∈ Wα such
that

φ(Tw ,w) ∈ Γ,

where Tw ∈ [Tw ] (Tw > 0). In other words, penetration condition;(
nTΓ φ

(
Tw ,w

))(
nTΓ φ

(
Tw ,w

))
< 0

holds when [Tw ] =
[
Tw ,Tw

]
.
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Theorem

nΓ is given by f(w̃)/∥f(w̃)∥2, which is along the flow.

To restrict our problem on Γ , we define an orthogonal projection PΓ as

PΓ = I − nΓnΓ
T .

Assumption 2: There is µ(0 < µ < 1) such that

∥nΓ −
f(φ(T ,w))

∥f(φ(T ,w))∥2
∥2 + ∥∂φ

∂w
(T ,w)PΓ∥2 ≤ µ

holds for any w ∈ Wα and any T ∈
∪

w∈Wα

[Tw ].
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Theorem

If Assumption 1 and 2 are satisfied, there is a sequence (Ti ,wi ) where
Ti ∈ [Twi ] and wi ∈ Wα such that

wi = φ(Ti−1,wi−1), i = 1, 2, 3, . . . ,

holds for each w0 ∈ Wα. Moreover, the time Ti is uniquely specified
within [Twi ], and

lim
i→∞ ∥w∗ −wi∥2 = 0,

lim
i→∞ |kT ∗ − Ti | = 0.

Here k is a certain integer corresponding to k period.
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Outline of proof

For simplicity, we introduce w, w ′, and T by

w = wk −w∗,

w ′ = wk+1 −w∗,

T = Tk − T ∗,

then (
T
w ′

)
=

(
1 0

f
∂φ

∂w

)(
T
w

)
.
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Outline of proof

Multiplying certain matrices, the above becomes

TnΓ +w ′ =

((
nΓ −

f

∥f∥2

)
nTΓ +

∂φ

∂w
PΓ

)
(TnΓ +w),

and using Assumption 2

∥TnΓ +w ′∥2 = ∥
(
nΓ −

f
∥f∥2

)
nTΓ +

∂φ

∂w
PΓ∥2 ∥TnΓ +w∥2

≤ µ∥TnΓ +w∥2, µ < 1,

holds. Because the vector nΓ is orthogonal to the vector w,

∥TnΓ +w∥22 = T 2 + ∥w∥22⇒ ∥w ′∥2 ≤ µ∥w∥2.
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Remark

It is proved the closed orbit is an asymptotically stable within Wα.

The Poincaré map wi = φ(Ti−1,wi−1) is well defined since the
number of crossing of the trajectory φ(t,wi ) (Tw < t < Tw ) and Γ is
one.

In actual calculation, Assumption 1 and 2 are verified using numerical
verification techniques, for example Lohner method, C1-Lohner
method, mean value form and so on.
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Numerical examples

Rössler system 
dx

dt
= −y − z

dy

dt
= x + ay

dz

dt
= b − z(c − x)
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Rössler system

Initial values and parameter values

a = 1/5, b = 1/5, c = 11/5,

w̃ = (−2.918, 1.514, 0.08106)T ,

T̃ = 11.4770.

nΓ =

 −0.4974
−0.8652
−0.06278

 .
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Rössler system
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Figure: Approximate orbit
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Verification for closed orbit existence

For [Z ] = ([T ], [w])T ,

[Z ] =


[11.453898210, 11.4538982166]
[−0.001606575,−0.001606552]

[0.00094202, 0.000942042]
[−0.0002530964,−0.0002530926]



N([Z ]) =


[11.453898211, 11.4538982161]
[−0.001606573,−0.001606554]

[0.00094203, 0.000942041]
[−0.0002530961,−0.0002530929]


⇒ N([Z ]) ⊂ [Z ]⇒ η = 9.339×10−9
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Identification of basin

Figure: Illustration of Wα, Bα, Bα+η

Bη : the ball which

includes a fixed

point w∗.

Wα : a given ball

which should be

included by the basin

of the closed orbit.

Bα+η : a ball on Γ

where the

assumptions are

checked.

η = 9.339×10−9.

We take α = 10−5 − η.
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Bα+η

Figure: Bα+η
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Assumption 1

Figure: Boxes covering Bα+η
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Assumption 1

We obtained ∪
w∈Bα+η

[Tw ] = [11.47, 11.48].

.
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Assumption 2

∥nΓ −
f(φ(T ,w))

∥f(φ(T ,w))∥2
∥2 = [0.001344, 0.001382],

∥∂φ
∂w

(T ,w)PΓ∥2 = [0.9258, 0.9260],

∥nΓ −
f(φ(T ,w))

∥f(φ(T ,w))∥2
∥2+∥∂φ

∂w
(T ,w)PΓ∥2 = [0.9272, 0.9274].
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Identification of basin

Figure: Illustration of Wα, Bα, Bα+η

η = 9.339×10−9, α = 10−5 − η

There is a limit cycle in Bη, and its basin includes Wα.
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Conclusion

Conclusion

We developed a method to prove the closed orbit is asymptotically
stable and to identify an area in the basin of a closed orbit.

Future works

We will extend our methods for saddle type closed orbits to construct
Lyapunov functions.
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