
True orbit simulation of dynamical systems and its
computational complexity

Christoph Spandl

Fakultät für Informatik
Universität der Bundeswehr München

SCAN 2014

1 / 17

Case study: classical molecular dynamics

I Molecules (e.g. proteins) are modelled by classical particles. The
motion of the particles is governed by Newton’s 2nd law:

~F = m · ~a

I Since the acceleration ~a(t) = ~̇v(t) is the derivative of the velocity,
and the velocity ~v(t) = ~̇q(t) is the derivative of the coordinate ~q(t),

I an MD simulation can be seen as solving an ODE numerically:

~̈q =
1
m
· ~F (~q).

2 / 17

MD simulation in practice

I The ODE is discretized, i.e. transformed to a discrete dynamical
system.

I The standard integration scheme in MD is the velocity Verlet
algorithm:

vn+1/2 = vn +
h

2m
F (qn)

qn+1 = qn + h · vn+1/2

vn+1 = vn+1/2 +
h

2m
F (qn+1).

I Approximation: integration is replaced by iteration.
I Crucial parameter: step size h.

3 / 17

Interpretation of simulation results

The situation
I The dynamics of typical simulations show sensitive dependence

on the initial condition: Lyapunov instability.
I The simulation scheme inherits this instability.
I Simulation times are long compared to the Lyapunov time:
I True orbits and simulated orbits may differ extremely.

Interpretation

I Not true orbits are of interest in a simulation but statistically
defined quantities of the system.

I It is assumed that a simulated pseudo orbit is good enough,
I motivated by shadowing.

4 / 17

Objections

Quotation
In D. FRENKEL AND B. SMIT, Understanding Molecular Simulation:
From Algorithms to Applications, 2nd ed., p. 73 we find:

"Hence, our trust in Molecular Dynamics Simulation ... is based largely
on belief. To conclude this discussion, let us say that there is clearly
still a corpse in the closet. We believe this corpse will not haunt us,

and we quickly close the closet."

5 / 17

Exact real arithmetic

I To support this belief (or to falsify it) it is desirable to simulate true
orbits. Here, this is done using the iRRAM "machine" (interactive
real-RAM, [Mu00]), an implementation of the concept of the
feasible real-RAM [BH98], which

1. simulates a RAM register machine,
2. where each register holds a real number.
3. The simulation is done by a Turing machine
4. and works iteratively with finite,
5. but arbitrary precision.

I The iRRAM is a software package, written in C++.
I The essential data type is REAL, a class with an arbitrary

precision floating point number and a fixed precision floating
point number representing an upper bound on the error as core
elements.

6 / 17

Example of a discrete dynamical system
Hénon’s area-preserving map
Consider the discrete dynamical system f : M → M,

xn+1 = cxn − (1− c)x2
n − yn

yn+1 = xn − cxn+1 + (1− c)x2
n+1

with M = R2 and control parameter c ∈ [−1,1].

Simulation parameter

c = 0.24, x0 = −0.38484, y0 = 0.0

Finite time maximum Lyapunov exponent

λFT
max(x ,N) =

1
N
· ln ||(D f N)(x)||.

7 / 17

Finite time maximum Lyapunov exponent

0.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0 0.2e+6 0.4e+6 0.6e+6 0.8e+6 1.0e+6

λ
FT m

ax
(N

)/
ln
(2
)

N

true values (iRRAM)
IEEE 754 double

8 / 17

Autocorrelation function

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000 80000 100000

ρ
(τ
)

τ

true orbit (iRRAM)
pseudo orbit (IEEE 754 double)

9 / 17

Complexity analysis

Loss of significance

I The loss of significant bits per iteration, σ(x ,N), is 1.4 for the
iRRAM in the above example.

I A theoretical analysis suggests an optimal σ(x ,N)
asymptotically given by the maximum Lyapunov exponent:

σ(x ,N) = 1
ln(2) ·max(0, λFT

max(x ,N))

as N →∞.
I The above calculations would expect an optimal loss of significant

bits per iteration of 0.002.
I This would mean in the above example (106 iterations): 2000 bits

of precision would suffice, instead of 1400000 bits actually used.

10 / 17

For interested persons

The iRRAM C++ package of Norbert Müller can be downloaded at
https://github.com/norbert-mueller/iRRAM

11 / 17

https://github.com/norbert-mueller/iRRAM

Lyapunov instability
Linear stability analysis

I Consider a small sphere S and apply f N times.
I The image of S under f N is approximated by linearization:

f N(S) ≈ f N(x) + (Df N)(x) · (S − x).

I The length of the axes of the ellipsoid (Df N)(x) · (S − x) are
denoted by r (N)

1 , . . . , r (N)
n .

I The value r (N)
i measures the contraction or expansion of the

dynamics.

Lyapunov exponents

The i-th Lyapunov exponent: λi = limN→∞
1
N · ln(r

(N)
i).

12 / 17

Lyapunov instability: a picture

13 / 17

The cocycle / triangularization
Linearized map: cocycle QR-decomposition: Triangularization

x (k+1) = f (x (k))

z(k+1) = (Df)(x (k)) · z(k) Q(k+1)R(k+1) = (Df)(x (k))Q(k)

x (0) ∈ M, z(0) = 1 Q(0) = 1w�
x (k+1) = f (x (k))

T (k+1) = R(k+1) · T (k)

x (0) ∈ M, T (0) = 1

z(k) = Q(k) · T (k)

Connection to Lyapunov exponents: T (N)
ii ∼ eλi ·N as N →∞

14 / 17

Exact stability analysis (centered forms)

I Consider boxes

I = [a1,b1]× · · · × [an,bn] ⊆ Rn.

I Each box I ∈ IRn is uniquely represented by

I = x + [−1,1] · e

I with center x = mid(I) ∈ Rn and extent e = 1
2wid(I) ∈ Rn

+.
I Then (assume f ∈ C2) the inclusion follows (centered form):

f (I) ⊆ f (x) + W (I, x) · (I − x)

W (I, x) = (Df)(x) + 1
2(D

2f)(I) · (I − x).

I Finally use Lipschitz bound |(D2f)(I) · (I − x)| ≤ ‖I − x‖∞L ∈ Rn×n.

15 / 17

The inclusion cocycle

Dynamics of boxes: inclusion cocycle Triangularization

x (k+1) = f (x (k))

z(k+1) = |V (x (k),e(k))| · z(k) P(k+1)S(k+1) = V (x (k),e(k))P(k)

x (0) ∈ M, z(0) = 1 P(0) = 1

e(k) = z(k) · e(0), e(0) ∈ Rn
+

w�
x (k+1) = f (x (k))

T (k+1) = |S(k+1)| · T (k)

x (0) ∈ M, T (0) = 1

e(k) = |P(k)| · T (k) · e(0)

where V (x ,e) = (Df)(x) + 1
2‖e‖∞sgn((Df)(x)) : L.

16 / 17

From the inclusion cocycle to an algorithm

The computational model
Real numbers x ∈ R are represented by a

1. fixed point approximation x̂ ∈ R̂ and an
2. upper bound e ∈ R̂+ on the error.

The iteration algorithm

x̂ (k+1) = f̂ (x̂ (k))

T̂ (k+1) = (|Ŝ(k+1)|+ c · U) · T̂ (k) + 1

x̂ (0) ∈ M ∩ R̂n(ps), T̂ (0) = 1

e(k) = (|P̂(k)|+ d · E) · T̂ (k) · β−ps
.

17 / 17

