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Case study: classical molecular dynamics

» Molecules (e.g. proteins) are modelled by classical particles. The
motion of the particles is governed by Newton’s 2nd law:

F=m-a

> Since the acceleration &(t) = \7(1‘) is the derivative of the velocity,
and the velocity v(t) = ¢(t) is the derivative of the coordinate G(t),
» an MD simulation can be seen as solving an ODE numerically:

5 1 =
Q—E'F(Q)-



MD simulation in practice

» The ODE is discretized, i.e. transformed to a discrete dynamical
system.

» The standard integration scheme in MD is the velocity Verlet
algorithm:

h
Voti2=Vn+ 5 om F(qn)
Gni1 =qn+th-Vopqp

h
Vit = Vo2 1 50 (Qn+1)

» Approximation: integration is replaced by iteration.
» Crucial parameter: step size h.
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Interpretation of simulation results

The situation

» The dynamics of typical simulations show sensitive dependence
on the initial condition: Lyapunov instability.

» The simulation scheme inherits this instability.
» | Simulation times are long compared to the Lyapunov time:
» True orbits and simulated orbits may differ extremely.

Interpretation

» Not true orbits are of interest in a simulation but statistically
defined quantities of the system.
» |t is assumed that a simulated pseudo orbit is good enough,

» motivated by shadowing.



Objections

Quotation

In D. FRENKEL AND B. SMIT, Understanding Molecular Simulation:
From Algorithms to Applications, 2nd ed., p. 73 we find:

"Hence, our trust in Molecular Dynamics Simulation ... is based largely
on belief. To conclude this discussion, let us say that there is clearly
still a corpse in the closet. We believe this corpse will not haunt us,

and we quickly close the closet.”



Exact real arithmetic

» To support this belief (or to falsify it) it is desirable to simulate true
orbits. Here, this is done using the iIRRAM "machine" (interactive
real-RAM, [Mu00]), an implementation of the concept of the
feasible real-RAM [BH98], which

1. simulates a RAM register machine,

2. where each register holds a real number.

3. The simulation is done by a Turing machine
4. and works iteratively with finite,

5. but arbitrary precision.

» The iRRAM is a software package, written in C++.

» The essential data type is REAL, a class with an arbitrary
precision floating point number and a fixed precision floating
point number representing an upper bound on the error as core
elements.
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Example of a discrete dynamical system
Hénon’s area-preserving map
Consider the discrete dynamical system f: M — M,

Xpi1 = 0Xp— (1= C)X5 — ¥
Yot = Xo— OXpp1 + (1= O)XG 4
with M = R? and control parameter ¢ € [-1, 1].

Simulation parameter

c=024, xp=-0.38484, y,=0.0

Finite time maximum Lyapunov exponent

NEE(XN) = - (D) (x))|



Finite time maximum Lyapunov exponent
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Autocorrelation function
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Complexity analysis

Loss of significance

» The loss of significant bits per iteration, o(x, N), is 1.4 for the
iRRAM in the above example.

» A theoretical analysis suggests an optimal o(x, N)
asymptotically given by the maximum Lyapunov exponent.

O-(X7 N) = mgig) : maX(O, )‘;-{a-x(xa N))

as N — oo.

» The above calculations would expect an optimal loss of significant
bits per iteration of 0.002.

» This would mean in the above example (108 iterations): 2000 bits
of precision would suffice, instead of 1400000 bits actually used.
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For interested persons

The iRRAM C++ package of Norbert Miller can be downloaded at
https://github.com/norbert-mueller/iRRAM
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https://github.com/norbert-mueller/iRRAM

Lyapunov instability
Linear stability analysis

» Consider a small sphere S and apply f N times.
» The image of S under fV is approximated by linearization:

N(S) ~ N(x) + (DfN)(x) - (S — x).

» The length of the axes of the ellipsoid (DfV)(x) - (S — x) are
denoted by rfN), cee r,SN).

» The value r,.(N)
dynamics.

measures the contraction or expansion of the
Lyapunov exponents

The i-th Lyapunov exponent: \j = limy_, lN : In(r,.(N)).
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Lyapunov instability: a picture

szJ

I

NG + (DN)E0[Sx]

DA
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The cocycle / triangularization

Linearized map: cocycle

XU = f(x ()
ZH) — (D) (xR . Z(k
xXOem z0=1

QR-decomposition: Triangularization

QU+ R+ — (DF)(xK)) Q)

QY =1

x+1) = f(x(K))

Tk+1) — Rk+1) . 7(K)
xXOem TO=1
z(K) — k) . T(k)

Connection to Lyapunov exponents: T( )

~eMN as N — oo
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Exact stability analysis (centered forms)

» Consider boxes
l: [31,b1] X o+ X [an7bn] an

Each box / € TR" is uniquely represented by

v

I=x+[-1,1]-e

v

with center x = mid(/) € R" and extent e = Jwid(/) € R”.
Then (assume f € C?) the inclusion follows (centered form):

v

f(1) C f(x) + W(I,x)- (I - X)
W(1, x) = (Df)(x) + 3(D*F)(I) - (I - x).

Finally use Lipschitz bound |(D?f)(/) - (I — x)| < ||/ — X||ooL € R™",

v
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The inclusion cocycle

Dynamics of boxes: inclusion cocycle Triangularization
XK1 = f(x(K)
2D = |y (xK) glh)|. z(K) P k1) — y(x(K) gk)yplk)
xXOem z0=1 PO =1
e(k) — Z(k) . e(o)’ e(o) c RIJ— \U/
xKH1) = f£(x(K)
T — | gkt . T
xXOem TO =1
ek) = |p(k)| . (k) . g(0)

where V(x, e) = (Df)(x) + 5||e]lsen((Df)(x)) : L.
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From the inclusion cocycle to an algorithm

The computational model
Real numbers x € R are represented by a

1. fixed point approximation % € R and an
2. upper bound e € H?q on the error.

The iteration algorithm

U = F(x()
TEED) = (18, ¢ U)- TR 11

¥ e MNAR"(p%), TO =1
ek = (1P| +d.E). TW.5=F
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