Implementing the Interval Picard Operator

Michal Konecny (Aston)

joint work with
Walid Taha (Halmstad and Rice),
Jan Duracz,
Amin Farjudian (Nottingham Ningbo) '

IR PRRTNERSHIP WITH THE
Knowledge Foundation ZS

218t September 2014, SCAN 2014, Wiirzburg EPSRC

Pioneering research
and skills

1This work was supported by the US National Science Foundation award NSF-CPS-1136099/1136104,
the Swedish Knowledge Foundation (KK), The Center for Research on Embedded Systems (CERES),

Aston University
and EPSRC grant EP/C01037X/1. [t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 1/24

0 The Goal: Verifiable validated ODE solver
© Tool 1: Interval Picard operator

e Tool 2: Polynomial Interval Arithmetic

0 How far can interval Picard go?

e Conclusion

Aston University
‘Beigim

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 2/24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

@ The Goal: Verifiable validated ODE solver

Aston University
‘Beigim

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 3/24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

@ How much can we trust validated ODE solvers?

e Have rounding errors been correctly accounted for throughout?

o Does the implementation agree with the theory?
@ Simpler method — easier to check/verify correctness

@ Which known validated ODE solving method is the simplest?

o probably the interval Picard operator (Edalat & Pattinson 2007)

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 4/24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

Interval Picard vs solvers such as VNODE and COSY

@ in our current implementation, interval Picard is considerably slower

« but there is a lot of scope for optimization

@ interval Picard does not need derivatives of the field
— it can naturally deal with non-smooth fields

@ interval Picard is considerably simpler
— it is easier to prove/check its correctness and convergence

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 5/24

Tool 1: Interval Picard operator
Tool 1: Interval Picard operator

9 Tool 1: Interval Picard operator
@ Example ODE
@ The ODE solving method
@ Convergence
@ Initial enclosure
@ Convergence for flow
@ Implementation using function arithmetic
@ Requirements on the function arithmetic

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 6/24

Tool 1: Interval Picard operator
Example ODE

A spring mass with exact initial value

y =f(y).y(0)=a example: y; = ya,y; = —y1,y1(0) = 1,¥2(0) = 0
a 1 ‘
© 0
-Jo 4 5 o i

interval
initial
value

A spring mass ODE IVP with interval initial values
y =1(y).y(0)cA example: y; = yo,y; = —y1,¥(0) € [1,0] £ 0.125

value enclosure
at sample times

7124

215t September 2014, SCAN 2014, Wiirzburg

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard

Tool 1: Interval Picard operator
The ODE solving method

Iterating classical Picard operator

P(x) = At. (a + [#(x(s)) ds)
Xo, P(Xo), P(P(Xo)), -
Xo = At.a (any function OK)

Iterating interval Picard operator

P(X) = At. (a + [F(X(s)) ds)
Xo, P(Xo), P(P(Xo)), ...

Xo = At.a + 0.2 (or any function with a + £ € X(0))

Demonstration of bin/plotPicard springmass-exact-initval-classical 1 10 200 12 0 Aston University
Demonstration of bin/plotPicard springmass-exact-initval-naive 1 10 200 7 0 ‘Bmingm

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 8/24

Tool 1: Interval Picard operator

Convergence

Interval Picard Theorem [Edalat & Pattinson 2007]

@ Assuming:
o F is an interval extension of f
o Fis Lipschitz (i.e,dL eR.VBeI".w(F(B)) <L -w(B))
e F is Scott-continuous, i. e.,
e inclusion isotone (i.e., BC C = F(B) < F(C))
o preserving limits of directed interval sets
o P(Yo) C Yo
@ Then it holds:
o Yo2 P(Yo) 2 P(P(Yo))2...
o N2, P'(Yo) is the unique solution of y’ = f(y), y(0) = a

Bmingram

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg

Tool 1: Interval Picard operator
Initial enclosure

lterating P tends to increase the region where P(Y) C Y:

iterations 0 and 1 iterations 1 and 2

in (probably unlikely) pathological cases the region may fail to increase
— then need to revert to exponential widening

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 10/ 24

Tool 1: Interval Picard operator

Convergence for flow

@ ODE IVP with a set of initial values
— parametrize the set by n variables
— parametrized interval Picard operator (n + 1 variables)

— iteratively compute enclosure of the flow
(i. e., an interval function of n + 1 variables)

=

o|

|
8

graph of a ternary function
projected from 4D to 2D

Aston University
[t

y=-y,y(0)=acA

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 11 /24

terval Picard operator

Implementation using function arithmetic 1

enclosure =
stopWhenAccurateEnough —— ignore enclosures that are too wide
(waitUntilEnclosureHolds ——ignore Yo, Y, Yo, ... untilY; 2 Yiy
intervalPicardIterations)
where

intervalPicardIterations =

iterate (picardOp limits field initValsFns) initApprox
initApprox = —— Yo(i) =y(0) 6

map (+| initialWideningInterval) initValsFns
initValsFns = —— y(0) as a constant function

map initValConstant initValues

where

initValConstant initVal =

newConstFn limits [(tVar, tSegment)] initVal

picardOp limits field y® yPrev = — P(f.y,. V) =..
zipWith picardOneFn y® (field yPrev) —— do it component-wise
where

picardOneFn y0_i xd_i = y0_i + primitFn xd_i ——er+jf1¥Jdt
primitFn xd = primitiveFunctionOut xd tVar

Aston University
fsy

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 12/ 24

terval Picard operator

Implementation using function arithmetic

enclosure = function arithmetic operations
stopWhenAccurateEnough —- ignore enclosures that are too wide
(waitUntilEnclosureHolds ——ignore Yo, Y, Yo, ... untilY; 2 Yiy

intervalPicardIterations)
where
intervalPicardIterations =
iterate (picardOp limits field initValsFns) initApprox
initApprox = —— Yq(i) =y(0) 6
map (+| initialWideningInterval) initValsFns
initValsFns = —— y(0) as a constant function
map initValConstant initValues
where
initValConstant initVal =
newConstFn limits [(tVar, tSegment)] initVal

picardOp limits field y® yPrev = — P(f.y,. V) =...
zipWith picardOneFn y® (field yPrev) —— do it component-wise
where

picardOneFn y0_i xd_i = y0_i + primitFn xd_i —— yo,,v+ff,v(y) dt
primitFn xd = primitiveFunctionOut xd tVar v

Aston University
fsy

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 21t September 2014, SCAN 2014, Wiirzburg 13/ 24

terval Picard operator

Implementation using function arithmetic

@ Updated for interval initial values:

enclosure = function arithmetic operations
initApprox = —— Yq(t.x e Y(0)) =x+6
map (+| initialWideningInterval) initValsFns
initValsFns = —- a vector of projections, eg [(t. X1, X2) = X1, (t, X1, X2) — Xo]
map initValProjection paramVars
where

initValProjection paramVar =

newProjection limits varDomsTAndParams paramVar
varDomsTAndParams =

(tVar, tSegment) : zip paramVars initValues

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 14/ 24

Tool 1: Interval Picard operator

Requirements on the function arithmetic

@ Function Interval Arithmetic (FIA)

@ operations required by the interval Picard method:

o constant functions over a given domain

o functions that return the value of one of the domain variables
(e.g., (t,x1,X2) — X1)

pointwise + etc (including whatever the field requires)

shifting by a constant — using mixed-type addition +|

primitive function (integration)

partially decide an inclusion [f1, g1] C [f2, g2]

o measure the accuracy (i. e., width) of a function interval [f, g]

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 15/ 24

Tool 2: Polynomial Interval Arithmetic

Tool 2: Polynomial Interval Arithmetic

e Tool 2: Polynomial Interval Arithmetic
o Reliability
o Efficiency

Aston University
‘Beigim

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 16/ 24

Tool 2: Polynomial Interval Arithmetic

Tool 2: Polynomial Interval Arithmetic

@ [f,g] where f and g are (multi-variate) polynomials
o either two independent polynomials (accurate & flexible)

e or single polynomial with interval coefficients (much faster)
@ similar to Taylor Models (Berz & Makino 1998)
@ implementing all FIA operations

@ “rounding” to use constant space, bounds on:
o polynomial degree
e number of terms

o significands of coefficients

@ Here using AERN — own Haskell library that provides PIA

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 21t September 2014, SCAN 2014, Wiirzburg 17 /24

Tool 2: Polynomial Interval Arithmetic

Reliability — FIA specification (1/2)

@ FIA ops have outer- and inner-rounded versions (e.g., <+ and >+<)

@ AERN provides specification of rounded Kaucher interval arithmetic

property name approx. properties exact property

.) a<—a L 0
additive unit a-a=0
a>—-—a 310

a, b, c consistent —
distributive law (a @ b) b (a > c) ab + ac
C @ (b < ©) —a(b+c) e

@ approximate properties — exact property (with increasing effort)

@ There are over 100 such properties.

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 18/ 24

Tool 2: Polynomial Interval Arithmetic

Reliability — FIA specification (2/2)

@ Specification of FIA:

property name approx. properties exact property
(f - g)(a) (f+9)(a)

function addition

Cof(a) +<>g(a)x =f(a)+g(a) et

@ implementation of full specification is in progress

@ function intervals can mix consistent and inverted intervals:

N]
2Ny
“.inner approximation .,
“.is inverted here

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg

19/24

Tool 2: Polynomial Interval Arithmetic

Reliability — Testing the specification

@ these properties are tested on many randomly generated samples

@ the random distribution is carefully designed to cover

o all logical cases

o special values

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 20/24

Tool 2: Polynomial Interval Arithmetic
Efficiency

@ Currently not optimized at all, keeping it simple, e. g.:

o currently using tree maps to represent sparse polynomials

o currently using power basis instead of Chebyshev basis

@ Future work: optimize against a set of benchmarks

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 21t September 2014, SCAN 2014, Wiirzburg 21/ 24

Tool 2: Polynomial Interval Arithmetic

Efficiency — Impact of polynomial degree

van der Pol,uptot = 1.5:

@ degree 0, 64 steps ° :fe gpr:e 0,1024 ° 2;%:_6 516

© precision ~ 1 @ precision ~ 1072 @ precision ~ 1075

° 2012 putation time @ computation time @ computation time
~12s ~ 5s

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 22/ 24

How far can interval Picard go?

How far can interval Picard go? (1/2)

@ Can deal with chaotic systems
of low dimension, e.g.,
Lorenz system with a small
initial value uncertainty

@ Naturally applies to
non-smooth systems, e. g.

initial value =

y'=-ly-11-1,y(0)=2
enclosure

5 100

intermediate
. value
. enclosure

10x

l

(+ simple shrink wrapping)

Nz

Aston University
[t

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 215t September 2014, SCAN 2014, Wiirzburg 23 /24

Conclusion
Conclusion

@ Interval Picard ODE solving method

o is general, simple and easy to verify

e can enclose ODE flows (by parametrizing the initial value set)

e can be implemented using (bounded size) polynomial arithmetic
e can construct a fairly good initial solution enclosure

@ Produce a formally verified implementation

@ Analyze complexity, conduct more performance experiments
@ Combine with other ODE solving methods

@ Adapt for other classes of differential equation problems

Thank you for listening! Aston Universiy

Konecény, Taha, J Duracz, Farjudian Implementing Interval Picard 21t September 2014, SCAN 2014, Wiirzburg 24 /24

	The Goal: Verifiable validated ODE solver
	Tool 1: Interval Picard operator
	Example ODE
	The ODE solving method
	Convergence
	Initial enclosure
	Convergence for flow
	Implementation using function arithmetic
	Requirements on the function arithmetic

	Tool 2: Polynomial Interval Arithmetic
	Reliability
	Efficiency

	How far can interval Picard go?
	Conclusion

