
Implementing the Interval Picard Operator

Michal Konečný (Aston)

joint work with
Walid Taha (Halmstad and Rice),

Jan Duracz,
Amin Farjudian (Nottingham Ningbo) 1

21st September 2014, SCAN 2014, Würzburg

1This work was supported by the US National Science Foundation award NSF-CPS-1136099/1136104,
the Swedish Knowledge Foundation (KK), The Center for Research on Embedded Systems (CERES),
and EPSRC grant EP/C01037X/1.

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 1 / 24

Outline

1 The Goal: Verifiable validated ODE solver

2 Tool 1: Interval Picard operator

3 Tool 2: Polynomial Interval Arithmetic

4 How far can interval Picard go?

5 Conclusion

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 2 / 24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

1 The Goal: Verifiable validated ODE solver

2 Tool 1: Interval Picard operator

3 Tool 2: Polynomial Interval Arithmetic

4 How far can interval Picard go?

5 Conclusion

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 3 / 24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

How much can we trust validated ODE solvers?

Have rounding errors been correctly accounted for throughout?

Does the implementation agree with the theory?

Simpler method→ easier to check/verify correctness

Which known validated ODE solving method is the simplest?

probably the interval Picard operator (Edalat & Pattinson 2007)

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 4 / 24

The Goal: Verifiable validated ODE solver

The Goal: Verifiable validated ODE solver

Interval Picard vs solvers such as VNODE and COSY
in our current implementation, interval Picard is considerably slower

← but there is a lot of scope for optimization

interval Picard does not need derivatives of the field
→ it can naturally deal with non-smooth fields

interval Picard is considerably simpler
→ it is easier to prove/check its correctness and convergence

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 5 / 24

Tool 1: Interval Picard operator

Tool 1: Interval Picard operator

1 The Goal: Verifiable validated ODE solver

2 Tool 1: Interval Picard operator
Example ODE
The ODE solving method
Convergence
Initial enclosure
Convergence for flow
Implementation using function arithmetic
Requirements on the function arithmetic

3 Tool 2: Polynomial Interval Arithmetic

4 How far can interval Picard go?

5 ConclusionKonečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 6 / 24

Tool 1: Interval Picard operator

Example ODE

A spring mass with exact initial value

y′ = f(y), y(0) = a example: y′1 = y2, y′2 = −y1, y1(0) = 1, y2(0) = 0

0 4 8
-1

0

1

-1 0 1-1

0

1

A spring mass ODE IVP with interval initial values

y′ = f(y), y(0) ∈ A example: y′1 = y2, y′2 = −y1, y(0) ∈ [1, 0] ± 0.125

0 4 8
-1

0

1

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 7 / 24

Tool 1: Interval Picard operator

The ODE solving method

Iterating classical Picard operator

P(x) = λt .
(
a +

∫ t
0 f(x(s)) ds

)
x0,P(x0),P(P(x0)), . . .

x0 = λt .a (any function OK)

Iterating interval Picard operator

P(X) = λt .
(
a +

∫ t
0 F(X(s)) ds

)
X0,P(X0),P(P(X0)), . . .

X0 = λt .a ± 0.2 (or any function with a ± ε ⊆ X0(0))

Demonstration of bin/plotPicard springmass-exact-initval-classical 1 10 200 12 0
Demonstration of bin/plotPicard springmass-exact-initval-naive 1 10 200 7 0

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 8 / 24

Tool 1: Interval Picard operator

Convergence

Interval Picard Theorem [Edalat & Pattinson 2007]
Assuming:

F is an interval extension of f

F is Lipschitz (i. e., ∃L ∈ R.∀B ∈ In.w(F(B)) ≤ L · w(B))

F is Scott-continuous, i. e.,

inclusion isotone (i. e., B ⊆ C =⇒ F(B) ⊆ F(C))

preserving limits of directed interval sets

P(Y0) ⊆ Y0

Then it holds:

Y0 ⊇ P(Y0) ⊇ P(P(Y0)) ⊇ . . .⋂∞
i=0 P i(Y0) is the unique solution of y′ = f(y), y(0) = a

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 9 / 24

Tool 1: Interval Picard operator

Initial enclosure

Iterating P tends to increase the region where P(Y) ⊆ Y :

iterations 0 and 1 iterations 1 and 2

in (probably unlikely) pathological cases the region may fail to increase
→ then need to revert to exponential widening

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 10 / 24

Tool 1: Interval Picard operator

Convergence for flow

ODE IVP with a set of initial values

→ parametrize the set by n variables

→ parametrized interval Picard operator (n + 1 variables)

→ iteratively compute enclosure of the flow
(i. e., an interval function of n + 1 variables)

ae−t

[−e−t, e−t]

y′ = −y, y(0) = a ∈ A

0 4 8
-1

0

1

graph of a ternary function
projected from 4D to 2D

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 11 / 24

Tool 1: Interval Picard operator

Implementation using function arithmetic 1/3
enclosure =

stopWhenAccurateEnough −− ignore enclosures that are too wide
(waitUntilEnclosureHolds −− ignore Y0,Y1,Y2, . . . until Y i ⊇ Y i+1

intervalPicardIterations)
where
intervalPicardIterations =

iterate (picardOp limits field initValsFns) initApprox
initApprox = −− Y0(t) = y(0) ± δ

map (+| initialWideningInterval) initValsFns
initValsFns = −− y(0) as a constant function

map initValConstant initValues
where
initValConstant initVal =

newConstFn limits [(tVar, tSegment)] initVal

picardOp limits field y0 yPrev = −− P(f , y0, yk) = . . .

zipWith picardOneFn y0 (field yPrev) −− do it component-wise
where
picardOneFn y0_i xd_i = y0_i + primitFn xd_i −− y0,i +

∫
fi(yk) dt

primitFn xd = primitiveFunctionOut xd tVar

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 12 / 24

Tool 1: Interval Picard operator

Implementation using function arithmetic 2/3
enclosure = function arithmetic operations

stopWhenAccurateEnough −− ignore enclosures that are too wide
(waitUntilEnclosureHolds −− ignore Y0,Y1,Y2, . . . until Y i ⊇ Y i+1

intervalPicardIterations)
where
intervalPicardIterations =

iterate (picardOp limits field initValsFns) initApprox
initApprox = −− Y0(t) = y(0) ± δ

map (+| initialWideningInterval) initValsFns
initValsFns = −− y(0) as a constant function

map initValConstant initValues
where
initValConstant initVal =

newConstFn limits [(tVar, tSegment)] initVal

picardOp limits field y0 yPrev = −− P(f , y0, yk) = . . .

zipWith picardOneFn y0 (field yPrev) −− do it component-wise
where
picardOneFn y0_i xd_i = y0_i + primitFn xd_i −− y0,i +

∫
fi(yk) dt

primitFn xd = primitiveFunctionOut xd tVar

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 13 / 24

Tool 1: Interval Picard operator

Implementation using function arithmetic 3/3

Updated for interval initial values:

enclosure = function arithmetic operations
...
initApprox = −− Y0(t , x ∈ Y(0)) = x ± δ

map (+| initialWideningInterval) initValsFns
initValsFns = −− a vector of projections, eg [(t , x1, x2) 7→ x1, (t , x1, x2) 7→ x2]

map initValProjection paramVars
where
initValProjection paramVar =

newProjection limits varDomsTAndParams paramVar
varDomsTAndParams =

(tVar, tSegment) : zip paramVars initValues

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 14 / 24

Tool 1: Interval Picard operator

Requirements on the function arithmetic

Function Interval Arithmetic (FIA)

operations required by the interval Picard method:

constant functions over a given domain

functions that return the value of one of the domain variables
(e. g., (t , x1, x2) 7→ x1)

pointwise + etc (including whatever the field requires)

shifting by a constant — using mixed-type addition +|
primitive function (integration)

partially decide an inclusion [f1, g1] ⊆ [f2, g2]

measure the accuracy (i. e., width) of a function interval [f , g]

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 15 / 24

Tool 2: Polynomial Interval Arithmetic

Tool 2: Polynomial Interval Arithmetic

1 The Goal: Verifiable validated ODE solver

2 Tool 1: Interval Picard operator

3 Tool 2: Polynomial Interval Arithmetic
Reliability
Efficiency

4 How far can interval Picard go?

5 Conclusion

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 16 / 24

Tool 2: Polynomial Interval Arithmetic

Tool 2: Polynomial Interval Arithmetic

[f , g] where f and g are (multi-variate) polynomials

either two independent polynomials (accurate & flexible)

or single polynomial with interval coefficients (much faster)

similar to Taylor Models (Berz & Makino 1998)

implementing all FIA operations

“rounding” to use constant space, bounds on:

polynomial degree

number of terms

significands of coefficients

Here using AERN — own Haskell library that provides PIA

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 17 / 24

Tool 2: Polynomial Interval Arithmetic

Reliability — FIA specification (1/2)

FIA ops have outer- and inner-rounded versions (e. g., ‹+› and ›+‹)

AERN provides specification of rounded Kaucher interval arithmetic

property name approx. properties exact property

additive unit
a ‹−› a v 0

a ›−‹ a w 0
a − a = 0

distributive law

a, b , c consistent =⇒
(a ‹∗› b) ‹+› (a ‹∗› c)

v a ›∗‹ (b ›+‹ c)

ab + ac

= a(b + c) etc.

approximate properties→ exact property (with increasing effort)

There are over 100 such properties.

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 18 / 24

Tool 2: Polynomial Interval Arithmetic

Reliability — FIA specification (2/2)

Specification of FIA:

property name approx. properties exact property

function addition
‹(f ‹+› g)(a)›

v ›f(a)‹ ›+‹ ›g(a)‹

(f + g)(a)

= f(a) + g(a) etc.

implementation of full specification is in progress

function intervals can mix consistent and inverted intervals:

x · [−1, 1]

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 19 / 24

Tool 2: Polynomial Interval Arithmetic

Reliability — Testing the specification

these properties are tested on many randomly generated samples

the random distribution is carefully designed to cover

all logical cases

special values

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 20 / 24

Tool 2: Polynomial Interval Arithmetic

Efficiency

Currently not optimized at all, keeping it simple, e. g.:

currently using tree maps to represent sparse polynomials

currently using power basis instead of Chebyshev basis

Future work: optimize against a set of benchmarks

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 21 / 24

Tool 2: Polynomial Interval Arithmetic

Efficiency — Impact of polynomial degree

van der Pol, up to t = 1.5:

degree 0, 64 steps

precision ∼ 1

computation time
∼ 1s

degree 0, 1024
steps

precision ∼ 10−2

computation time
∼ 12s

degree 5, 16
steps:

precision ∼ 10−5

computation time
∼ 5s

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 22 / 24

How far can interval Picard go?

How far can interval Picard go? (1/2)

Naturally applies to
non-smooth systems, e. g.

y′ = −|y − 1| − 1, y(0) = 2

0/2 1/2 2/20

1

2

Can deal with chaotic systems
of low dimension, e. g.,
Lorenz system with a small
initial value uncertainty

(+ simple shrink wrapping)

Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 23 / 24

Conclusion

Conclusion

Summary

Interval Picard ODE solving method

is general, simple and easy to verify

can enclose ODE flows (by parametrizing the initial value set)

can be implemented using (bounded size) polynomial arithmetic

can construct a fairly good initial solution enclosure

Future work
Produce a formally verified implementation

Analyze complexity, conduct more performance experiments

Combine with other ODE solving methods

Adapt for other classes of differential equation problems

Thank you for listening!
Konečný, Taha, J Duracz, Farjudian Implementing Interval Picard 21st September 2014, SCAN 2014, Würzburg 24 / 24

	The Goal: Verifiable validated ODE solver
	Tool 1: Interval Picard operator
	Example ODE
	The ODE solving method
	Convergence
	Initial enclosure
	Convergence for flow
	Implementation using function arithmetic
	Requirements on the function arithmetic

	Tool 2: Polynomial Interval Arithmetic
	Reliability
	Efficiency

	How far can interval Picard go?
	Conclusion

