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Object under study

Our object under study is the interval linear inclusion

Cx ⊆ d, C ∈ KR
m×n, d ∈ KR

m×n
, x ∈ R

n,

where KR = {[v, v] | v,v ∈ R} is the set of Kaucher intervals,

KR = {[v, v] | v,v ∈ R} is the set of Kaucher intervals over

the extended real axis R = R ∪ {−∞,∞}.

The set of (formal) solutions is

Ξ = {x ∈ R
n | Cx ⊆ d}

=
{

x ∈ R
n |

∑

Cijxj > di,
∑

Cijxj 6 di, i = 1, . . . ,m
}

.
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Where the inclusion Cx ⊆ d is useful?
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Quantifier solutions to interval problems

Usually, we consider intervals

• from the set of proper intervals

IR = {v = [v,v] | v, v ∈ R, v 6 v}

• and in connection with a property (say, P ) that

can be fulfilled or not fulfilled for its point members.

Then the following different situations may occur:

1) either the property P (v) holds for all

members v from the given interval v,

2) or the property P (v) holds only for some

members v from the interval v,
not necessarily all, or even for a single value.
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Quantifier solutions to interval problems

Types of interval uncertainty

Formally, the above distinction can be expressed

by logical quantifiers:

• In the first case, we write “(∀v ∈ v)P (v) ”

and speak of interval A-uncertainty,

• In the second case, we write “(∃v ∈ v)P (v) ”

and speak of interval E-uncertainty.
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Quantifier solutions to interval problems

Interval system of relations

Let us consider the interval system of relations

F(a, x) σ b, σ ∈ {=,6,>}m, a ∈ IR
l, b ∈ IR

m, x ∈ R
n,

with a selecting predicate

(Q1vπ1 ∈ vπ1)(Q2vπ2 ∈ vπ2) · · · (Ql+mvπl+m ∈ vπl+m)
(

F(a, x)σ b
)

where
Q1, Q2, . . . , Ql+m — logical quantifiers “∀ ” or “∃”,

( v1, v2, . . . , vl+m) := ( a1, a2, . . . , al, b1, b2, . . . , bm) ∈ R
l+m

— aggregated parameter vector,

(v1, v2, . . . , vl+m) := (a1,a2, . . . ,al, b1, b2, . . . , bm) ∈ IR
l+m

— aggregated interval vector of their possible values,

(π1, π2, . . . , πl+m) — a permutation of the integer
numbers 1,2, . . . , l+m.
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Quantifier solutions to interval problems

Interval system of relations

A vector x will be referred to as quantifier solution

to interval system of relations F(a, x) σ b

if the selecting predicate is true.

A quantifier solution for which, in the selecting predicate,

all occurrences of the universal quantifier “∀ ” precede

those of the existential quantifier “∃ ” will be referred to

as AE-solution.
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Particular cases of Cx ⊆ d

The inclusion Cx ⊆ d is closely connected with the system

of interval linear relations Axσ b, where

σ ∈ {=,6,>}m, A ∈ IR
m×n, b ∈ IR

m, x ∈ R
n,

A ∈ {∀, ∃}m×n and β ∈ {∀, ∃}m specify uncertainty types

of the separate interval parameters Aij, bi for all i and j.

We define the matrices A
∀, A

∃ and vectors b
∀, b

∃ as follows

A
∀
ij :=











Aij, if Aij = ∀,

0, if Aij = ∃,
b
∀
i :=











bi, if βi = ∀,

0, if βi = ∃,

A
∃
ij :=











Aij, if Aij = ∃,

0, if Aij = ∀,
b
∃
i :=











bi, if βi = ∃,

0, if βi = ∀.
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Particular cases of Cx ⊆ d

AE-solutions to Ax = b

(∀A′ ∈ A
∀) (∀b′ ∈ b

∀) (∃A′′ ∈ A
∃) (∃b′′ ∈ b

∃)
(

(A′+A′′)x = b′+b′′
)

⇐⇒
(

A
∀ +dualA∃

)

x ⊆ dual b∀ + b
∃ .

S.P. Shary, A new technique in systems analysis under interval uncertainty

and ambiguity, Reliable Computing, 8 (2002), No. 5, pp. 321–418.

http://interval.ict.nsc.ru/shary/Papers/ANewTech.pdf
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Particular cases of Cx ⊆ d

Quantifier solutions to Ax 6 b or Ax > b

Q(A, b,A, β) is a quantifier prefix made up of the quantifier

prefixes that correspond to the separate interval parameters.

The order of the quantifiers is arbitrary.

Q(A, b,A, β)(Ax > b) ⇐⇒
(

A
∀ +dualA∃

)

x ⊆ [b
∀
+ b

∃,∞]) ,

Q(A, b,A, β)(Ax 6 b) ⇐⇒
(

A
∀ +dualA∃

)

x ⊆ [−∞, b∀ + b
∃
]) .

I.A. Sharaya, Quantifier-free descriptions of interval-quantifier linear

systems, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 20 (2014),

No. 2, pp. 311–323. (In Russian)

http://interval.ict.nsc.ru/sharaya/Papers/trIMM14.pdf
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Particular cases of Cx ⊆ d

Some quantifier solutions to Axσ b

Qσ(A, b,A, β) is a quantifier prefix made up of the quantifier

prefixes that correspond to the separate interval parameters.

For the interval parameters from the relation with “=”,

all quantifiers “∀ ” precede all quantifiers “∃”.

Qσ(A, b,A, β)(Axσ b) ⇐⇒
(

A
∀ +dualA∃

)

x ⊆ dual b∀ + b
∃ +w ,

where wi :=















0, if σi is “=” ,
[0,∞], if σi is “>” ,
[−∞,0], if σi is “6” .

ibidem
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Particular cases of Cx ⊆ d

The inclusion Cx ⊆ d allows us

to study all the particular cases

• simultaneously and in a uniform way,

• by interval methods.
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Definition

By Reserve of the inclusion Cx ⊆ d, we call

the maximal number Rsv ∈ R such that

Cx+ [−Rsv,Rsv] e ⊆ d

for the m-vector e = (1 1 . . . 1)⊤.

If Rsv < 0 then [−Rsv,Rsv] is improper interval.
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Formulas for Rsv

From the above definition, we can deduce

Rsv = min
i

min
{

Ci:x− di, −Ci:x+ di

}

= min
i

min
{

Ci:x
+ −Ci:x

− − di, −Ci:x
+ +Ci:x

− + di

}

= min
i

min











n
∑

j=1
C

− sgn xj
ij xj − di, −

n
∑

j=1
C

sgn xj
ij xj + di











,

where x+, x− ∈ R
n
+, x+ = max{0, x}, x− = max{0,−x},

C
− sgn xj
ij =











Cij, if xj > 0,

Cij, otherwise,
C

sgn xj
ij =











Cij, if xj > 0,

Cij, otherwise.
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Reserve as functional of x

For fixed C, d, we can consider Rsv(x) : Rn → R.

Properties of the functional Rsv(x):

• is defined on the entire R
n,

• Lipschitz continuous,

• piecewise-linear,

• concave in each orthant of R
n.
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Example of Rsv(x)

For the system of interval equations Ax = b

with selecting predicate (∃A ∈ A)(∃b ∈ b)(Ax = b),

Reserve of characteristic inclusion (dualA)x ⊆ b

as functional of x coincides with functional

Uss(x) = min
i

{

rad bi + radAi: |x| −
∣

∣

∣mid bi −midAi: x
∣

∣

∣

}

.

(See S.P. Shary, Maximum consistency method for data fitting

under interval uncertainty, presentation at SCAN2014,

http://www.nsc.ru/interval/shary/Slides/Shary-SCAN2014.pdf)
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Example of Rsv(x)

Given the interval system





[2,4] [−1,1]

[−1,1] [2,4]



 x =







[−3,3]

0





 ,

we have the functional
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Reserve as functional of x can recognize:

position of a point with respect to the solution set,

is the solution set Ξ empty or not,

is the interior of Ξ empty or not,

the ‘best’ points for the inclusion Cx ⊆ d.
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Position of a point with respect to the solution set

General case

From the definition of Reserve and properties of the functional

Rsv(x), it is obvious that

Rsv(x̃) > 0 ⇐⇒ x̃ ∈ Ξ,

Rsv(x̃) > 0 ⇒ x̃ ∈ intΞ,

Rsv(x̃) = 0 ⇐ x̃ ∈ ∂Ξ,

where

intΞ is topological interior of Ξ,

∂Ξ is boundary of Ξ.

x

intΞ

∂Ξ

Rsv(x)

18



Position of a point with respect to the solution set

Special conditions on C and d in the point

Notation: L := {i | Ci:x̃ = di},

R := {i | Ci:x̃ = di},

P := {j | x̃j > 0},
N := {j | x̃j < 0},
E := {j | x̃j = 0}.

Special conditions SpeC(x̃):

CLP = 0,

CRP = 0,

CLN = 0,

CRN = 0,
C(L∪R)E ⊆ 0.

Proposition 1.

x̃ ∈ intΞ ⇐⇒ (Rsv(x̃) > 0) OR

(

Rsv(x̃) = 0 & SpeC(x̃)
)

,

x̃ ∈ ∂Ξ ⇐⇒
(

Rsv(x̃) = 0 & ¬SpeC(x̃)
)

.
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Position of a point with respect to the solution set

Special conditions on the point, C and d

Proposition 2. Let

1) at least one of the conditions be fulfilled

• x̃ does not lie on the coordinate hyperplane,
• the matrix C is proper,

2) and the augmented matrix (C,d)
does not have rows with zero vertices.

Then x̃ ∈ intΞ ⇐⇒ Rsv(x̃) > 0,

x̃ ∈ ∂Ξ ⇐⇒ Rsv(x̃) = 0.

Vertex of the vector u ∈ KR
l
is u ∈ R

l
such that uk ∈ {uk,uk}.
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If Rsv(x) is bounded from above,

then it reaches a finite maximum max
x∈Rn

Rsv(x).

If Rsv(x) is unbounded from above,

we assume max
x∈Rn

Rsv(x) = ∞.

Notation (for brevity): maxRsv := max
x∈Rn

Rsv(x).
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Is the solution set empty or not?

(Solvability of the inclusion Cx ⊆ d)

From
(

Rsv(x̃) > 0 ⇐⇒ x̃ ∈ Ξ
)

,

it follows that

Ξ 6= ∅ ⇐⇒ maxRsv > 0.
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Is the interior of Ξ empty or not?

General case

From
(

Rsv(x̃) > 0 ⇒ x̃ ∈ intΞ
)

,

it follows that

maxRsv > 0 ⇒ intΞ 6= ∅.

Example ( 6⇐ ).

For [0,1]x ⊆ [0,1],

we have intΞ = ]0,1[ 6= ∅,

but maxRsv = 0.

x

intΞ
Rsv(x)

0 1
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Is the interior of Ξ empty or not?

Special conditions on C and d

Proposition 3.

If the augmented matrix (C,d)

does not have rows with zero vertices,

then

intΞ 6= ∅ ⇐⇒ maxRsv > 0.
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The ‘best’ points for the inclusion Cx ⊆ d

Notation: Argmax := {y ∈ R
n | Rsv(y) = maxRsv}.

Case maxRsv > 0.

• Argmax consists of all such points for which

Cx ⊆ d holds with maximum positive reserve.

• Argmax ⊆ intΞ.

x

intΞ

Rsv(x)

maxRsv

Argmax
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The ‘best’ points for the inclusion Cx ⊆ d

Case maxRsv = 0.

• Argmax consists of all such points for which

Cx ⊆ d holds with maximum reserve.

But this reserve is 0.

• Argmax = Ξ.

x

Ξ

Argmax

Rsv(x)
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The ‘best’ points for the inclusion Cx ⊆ d

Case maxRsv < 0.

• Argmax consists of all such points for which

Cx ⊆ d is violated in the minimum amount.

• Ξ = ∅. Argmax is the solution set to

Cx ⊆ d+ e [maxRsv,−maxRsv].

One can use Argmax as set of ‘pseudosolutions’.

x

Rsv(x)

maxRsv

Argmax
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We wish you

positive reserve and

nonempty interior!


