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Introduction

This talk is concerned with linear systems

Ax= b, A ∈ Rn×n, b ∈ Rn.

Let x̃ be an approximate solution of the system.

Our concern is to obtain a bound for ∥x̃− x∥∞.

We don’t assume that A has special structure.
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Introduction

Let F be a set of floating-point numbers as defined by
IEEE 754 (A ∈ Fn×n, b ∈ Fn)．

For R ∈ Fn×n and the identity matrix I ,

∥RA− I∥∞ < 1 =⇒ ∥x− x̃∥∞ ≤
∥R(Ax̃− b)∥∞
1− ∥RA− I∥∞

.

We focus on evaluation (upper bound) of ∥RA− I∥∞.
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Works

Table 1: Methods for Verification (PA≈ LU,R≈ A−1)

Year Authors R Cost
A 2002 Oishi-Rump U−1L−1P 4/3n3

B 2011 Ozaki-Ogita-Oishi U−1L−1P 7/3n3

C 2005 Ogita-Oishi U−1L−1P 10/3n3

D 2006 Ogita-Rump-Oishi A−1 4n3

E 2002 Oishi-Rump A−1 6n3

F 2011 Ozaki-Ogita-Oishi A−1 8n3

G 2011 Ozaki-Ogita-Oishi A−1 12n3
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Figure 1: Treatable range of problems for each method
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Introduction

We developed an algorithm which automatically selects a
suitable method:

K. Ozaki, T. Ogita, S. Oishi: An Algorithm for
Automatically Selecting a Suitable Verification Method
for Linear Systems, Numerical Algorithms, Volume 56,
Number 3 (2011), pp. 363-382.

Cost for selection is O(n2) flops.

SCAN2014 – 5



K. Ozaki，T. Ogita，S. Oishi Automatic Verified Numerical Computations for Linear Systems

Introduction

Figure 2: Flow of our Automatic Verification
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Introduction

We improve treatable range

• Method B (Ozaki-Ogita-Oishi, 2011)

• Method D (Ogita-Rump-Oishi, 2006)

by automatically using block computations.

SCAN2014 – 8



K. Ozaki，T. Ogita，S. Oishi Automatic Verified Numerical Computations for Linear Systems

Method D
fl(·): each operation in the parenthesis is evaluated by
floating-point arithmetic. γn = nu/(1− nu), n < u−1 where
u is the unit roundoff. We know

|RA− I − fl(RA− I )| ≤ (n+ 1)u(|R||A| + I ) ≤ γn+1(|R||A| + I ).

Then

|RA− I | ≤ fl(|RA− I |) + (n+ 1)u(|R||A| + I ).
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Method D

fl△(·): floating-point evaluation by rounding upwards
mode.

|RA− I | ≤ fl△(fl(|RA− I |) + (n+ 1)u(|R||A| + I )).

By taking maximum norm

∥RA− I∥∞ ≤ fl△(∥fl(|RA− I |)e+ (n+ 1)u(|R|(|A|e) + e)∥∞),

where all elements in the vector e are ones.
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Error for Dot Product

For x, y ∈ Fn,

|fl(xTy) − xTy| ≤ nu|xT ||y| ≤ γn|xT ||y|

This inequality is satisfied for any order of computations.

But, assume that Winograd-type computations is not
used.
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Error for Dot Product
The following is dot product with pair wise order:

((x1y1+ x2y2)+ (x3y3+ x4y4))+ ((x5y5+ x6y6)+ (x7y7+ x8y8))

Let flp(xTy) be a computed result by such pairwise
computation,

|flp(x
Ty) − xTy| ≤ γ1+⌈log2 n⌉|xT ||y|
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For Performance

• Generally, BLAS is used for matrix multiplication

• The detail in gemm is sometimes unknown

• We prefer small error constant

• Pair wise implementation will be slow

We apply simple block computations by using BLAS.
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Block Computations
Both A and B are square matrices and n is dividable by s.

A11 A12 . . . A1s

A21 A22 . . . A2s
... ... . . . ...

As1 As2 . . . Ass




B11 B12 . . . B1s

B21 B22 . . . B2s
... ... . . . ...

Bs1 Bs2 . . . Bss


Let C be a result of block computations, then

|C − AB| ≤ γn/s+s−1|A||B|.
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Block Computations

If we apply such block computations, then

∥RA− I∥∞ ≤ ∥fl△(fl(|RA− I |)e+ γn/s+s(|R|(|A|e) + e))∥∞.

Optimal block size is approximately
√

n.

The constant nu ≈ γn is approximately reduced to γ2
√

n.

For example, γ199 is obtained for n = 10000.
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SuperBlock Family

2-grouped computations:

Ci j = (((Ai1B1 j+Ai2B2 j)+(Ai3B3 j+Ai4B4 j))+(Ai5B5 j+Ai6B6 j)+. . . )

3-grouped computations:

Ci j = (((Ai1B1 j+Ai2B2 j+Ai3B3 j)+(Ai4B4 j+Ai5B5 j+Ai6B6 j))+. . . )
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SuperBlock Family
For a result C by α-grouped computations,

|C − AB| ≤ γn′+α+⌈s/α⌉−2|A||B|.

The constant nu ≈ γn approximately is reduced to γ3 3√n.

For example, γ58 is obtained for n = 8000.

For n = 4,900, we set n′ = 70 and get γ139 for usual block
computation.

However, setting n′ = 120and α = 8, we get γ134.
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SuperBlock Family
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Figure 3: Each block is computed by multi-threads.
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SuperBlock Family
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Figure 4: Some blocks are obtained in parallel.
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Strategy

Figure 5: Choice
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Modification of Method D

∥RA− I∥∞ ≤ fl△(∥fl(|RA− I |)e+(n+1)u(|R|(|A|e)+e)∥∞). (1)

From numerical experiments,

fl(|RA− I |) ≪ (n+ 1)u(|R||A| + I ) ≤ γn+1(|R||A| + I ).

First, we partially evaluate

fl△(∥|R|(|A|e) + e∥∞) = p.
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Modification of Method D
After that, we find k such that

γkp < c < 1

and set n′ from k = n′ + α + ⌈s/α⌉ − 2.

If k is too small, then we directly use Method E. If k ≥ n,
then we directly use original Method D.

Computational order is decided later
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Modification of Method B

Let PA≈ LU for LU decomposition, XU ≈ U−1, XL ≈ L−1,
e= (1,1, . . . , 1)T and B = PA.

∥RA− I∥∞
≤ ∥|XU |(fl(|XLB− U |) + (n + 1)u(|XL||B| + |U |) + nu|U |)∥∞

(n + 1)u is reduced to γn′+α+s/α by similar block
computations.
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Numerical Example (Computing time)
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Conclusion

We improve two methods by automatically using block
computations.

Block Computations efficiently reduce the error bound.

The performance of the grouped block computations is
comparable to the original routines.
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