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Inverse square root of nonsingular A ∈ C
n×n

is X∗ ∈ C
n×n s.t. X∗2

A = In,

always exists for A being nonsingular,

is not unique.

If λi(A) /∈ R−, ∀i, the principal inverse square root can be uniquely

defined by requiring Reλi(X∗) > 0, ∀i.

The principal inverse square root is of particular interest.
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Purpose

Numerically computing X̃ and Xr
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����
�

�
��

s.t. X∗ ∈ 〈X̃,Xr〉

Preferable

• Smaller Xr
ij

• Fast algorithm
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Previous work

2 algorithms by Frommer-Hashemi-Sablik (2014)

• numerical spectral decomposition is utilized ⇒O(n3) operations

• Krawczyk operator is applied for nonlinear matrix equations

1st algorithm (F (X) = 0, where F (X) := XAX − In)

The uniqueness of the contained inverse square root is verified

2nd algorithm (an affine transformation of F (X) = 0)

Although the uniqueness is not verified, more effective than the 1st
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Our contribution

Algorithm for computing X̃ and Xr s.t. X∗ ∈ 〈X̃,Xr〉
utilizes the spectral decomposition ⇒ O(n3) operations

adopts the affine transformation and Newton operator

verifies the principal property and uniqueness
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Affine transformation (1/2)

Assume we have diagonal D̃ ∈ C
n×n and Ṽ ,W ∈ C

n×n s.t.

AṼ ≈ Ṽ D̃, W ≈ Ṽ −1, and Ṽ and W are nonsingular (verifiable).

Q := D̃−WAṼ , S := In−WṼ (Q ≈ 0, S ≈ 0), Y := Ṽ −1XW−1

F (X) = 0 ⇔ Ṽ −1XW−1WAṼ Ṽ −1XW−1 − Ṽ −1W−1 = 0

⇔ Y (D̃ − (D̃ − WAṼ ))Y − (WṼ )−1 = 0

⇔ Y (D̃ − Q)Y − (In − S)−1 = 0

⇔ Y (D̃ − Q)Y − In − (In − S)−1S = 0.
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Affine transformation (2/2)

F (X) = 0 ⇔ F̂ (Y ) = 0, F̂ (Y ) := Y (D̃−Q)Y − In− (In−S)−1S.

We compute an interval matrix Y s.t. Y ∗ ∈ Y and F̂ (Y ∗) = 0

and enclose X∗ by computing the superset of {Ṽ Y W : Y ∈ Y }.
Since X∗ = Ṽ Y ∗W , the superset contains X∗.

The superset can be obtained by interval arithmetic.
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How to obtain Y ?

F̂ ′
Y (H) = Y (D̃ − Q)H + H(D̃ − Q)Y . Let Ỹ ≈ Y ∗ be diagonal.

If F̂ ′
Ỹ
(H) is invertible, N̂(Y ) := Y − (F̂ ′

Ỹ
)−1(F̂ (Y )).

N̂(Y ) = Y is a fixed point equation for Y .

We thus verify the invertibility and

{N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} ⊆ int(〈Ỹ , Y r〉) for given Y r ∈ R
n×n.

The Brouwer theorem then implies Y ∗ ∈ {N̂(Y ) : Y ∈ 〈Ỹ , Y r〉}.
Y can be obtained s.t. {N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} ⊆ Y .
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How to verify the invertibility?

F̂ ′
Ỹ
(H) can be represented in terms of matrix vector products as

vec(F̂ ′
Ỹ
(H)) = P̂vec(H), P̂ := In ⊗ Ỹ (D̃−Q)+ Ỹ T (D̃−Q)T ⊗ In

If P̂ is nonsingular, F̂ ′
Ỹ
(H) is invertible. We verify the nonsingularity.

P̂ is a n2 × n2 matrix.

By exploiting the sparsity of D̃ and Ỹ , however, this can be achieved

with O(n3) operations.

Fast inclusion for the matrix inverse square root – 8



SCAN 2014 Shinya Miyajima

{N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} ⊆ int(〈Ỹ , Y r〉)? (1/2)

We compute Y ε ∈ R
n×n s.t. {N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} ⊆ 〈Ỹ , Y ε〉

and verify Y ε < Y r. Y ε can be obtained by the following idea:

N̂(Y ) = Y − (F̂ ′
Ỹ
)−1(F̂ (Y )) ⇔ F̂ ′

Ỹ
(N̂(Y )) = F̂ ′

Ỹ
(Y ) − F̂ (Y )

LHS = Ỹ (D̃ − Q)N̂(Y ) + N̂(Y )(D̃ − Q)Ỹ

RHS = Ỹ (D̃−Q)Y +Y (D̃−Q)Ỹ −Y (D̃−Q)Y +In+(In−S)−1S
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{N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} ⊆ int(〈Ỹ , Y r〉)? (2/2)

{N̂(Y ) : Y ∈ 〈Ỹ , Y r〉} is the set of all solutions of an equation

Ỹ (D̃ − Q)N̂Y + N̂Y (D̃ − Q)Ỹ

= Ỹ (D̃ − Q)Y + Y (D̃ − Q)Ỹ − Y (D̃ − Q)Y + In + (In − S)−1S,

where N̂Y ∈ C
n×n is unknown and Y ∈ 〈Ỹ , Y r〉 is the parameter.

We hence enclose the solution set, which can be achieved with

O(n3) operations.
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How to determine Y r?

In the computation of Y ε, Y r is required.

Let Y ε
0 be Y ε when Y r = 0. For η ∈ R, we put Y r = ηY ε

0

and determine η s.t. Y ε < ηY ε
0 = Y r.

Note The determination of η includes some assumptions. If one of

the assumptions cannot be verified, this determination fails.
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How to verify the principal property?

Let X∗ ∈ 〈X̃,Xr〉 and X ∈ 〈X̃,Xr〉 be arbitrary.

We show Reλi(X) > 0, ∀i. Then Reλi(X∗) > 0, ∀i.

Since the principal square root is unique, the uniqueness can also

be verified.

By reusing the previously computed matrices, this can be achieved

with O(n2) operations.
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The uniqueness when λi(A) ∈ R−? (1/2)

Let X∗ and X∗∗, and X1 and X2 be the inverse square roots and

arbitrarily matrices contained in 〈X̃,Xr〉, respectively. We show

the invertibility of F ′
Ṽ Ỹ W

(H), use N(X) := X−(F ′
Ṽ Ỹ W

)−1(F (X))

(Note N(X∗) = X∗, N(X∗∗) = X∗∗), derive S(X1,X2) s.t.

vec(N(X1) − N(X2)) = S(X1,X2)vec(X1 − X2),

and prove ‖S(X1,X2)‖∞ < 1, which gives ‖S(X∗,X∗∗)‖∞ < 1.
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The uniqueness when λi(A) ∈ R−? (2/2)

We obtain

‖vec(X∗ − X∗∗)‖∞ = ‖vec(N(X∗) − N(X∗∗))‖∞
= ‖S(X∗,X∗∗)vec(X∗ − X∗∗)‖∞
≤ ‖S(X∗,X∗∗)‖∞‖vec(X∗ − X∗∗)‖∞,

so that (1 − ‖S(X∗,X∗∗)‖∞)‖vec(X∗ − X∗∗)‖∞ ≤ 0.

This and ‖S(X∗,X∗∗)‖∞ < 1 implies X∗ = X∗∗.

These can be achieved with O(n3) operations.
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Numerical results (1/2)

Intel Xeon 2.66GHz Dual CPU, 4.00GB RAM, MATLAB 7.5 with

Intel MKL, and IEEE 754 double precision

FHS1: 1st algorithm by Frommer-Hashemi-Sablik (2014)

(the uniqueness is verified)

FHS2: 2nd algorithm by Frommer-Hashemi-Sablik (2014)

(the uniqueness is not verified)

M: the proposed algorithm

(the principal property and uniqueness are verified)

–: FHS1 or FHS2 did not succeed after 30 iterations
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Numerical results (2/2)

Let X∗ ∈ 〈X̃,Xr〉, mrp := maxi,j Xp
ij and arp := (

∑n
i,j=1 Xp

ij)/n2,

where Xp
ij :=

⎧⎪⎨
⎪⎩

min

(
1,

Xr
ij

|X̃ij|

)
(X̃ij 
= 0)

1 (X̃ij = 0)
.

mrp and arp by M with underline: both of the principal property and

uniqueness could not be verified
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Results for “frank” matrix

FHS1 FHS2 M FHS1 FHS2 M
n mrp mrp mrp time time time

arp arp arp
7 2.6e–10 2.6e–10 6.2e–11 4.3e–1 1.3e–2 3.4e–3

4.4e–11 4.4e–11 1.6e–11
8 – 5.5e–9 1.0e–9 1.7e–1 1.1e–2 3.4e–3

– 1.0e–9 2.1e–10
9 – – 1.5e–8 1.4e–1 1.3e–1 3.3e–3

– – 2.9e–9
12 – – 1.4e–1 1.4e–1 1.3e–1 4.1e–3

– – 2.8e–3
13 – – fail 1.4e–1 1.3e–1 3.5e–3

– – fail
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Results for “poisson” matrix

FHS1 FHS2 M FHS1 FHS2 M
n mrp mrp mrp time time time

arp arp arp
400 5.7e–7 5.5e–7 4.3e–8 3.7e+0 3.6e+0 8.2e–1

3.0e–9 2.8e–9 2.2e–10
625 – 3.2e–6 1.9e–7 1.4e+2 1.3e+1 2.8e+0

– 9.6e–9 5.6e–10
900 – 1.4e–5 6.6e–7 3.8e+2 3.5e+1 7.9e+0

– 2.7e–8 1.2e–9
1225 – 5.0e–5 2.0e–6 9.2e+2 8.6e+1 1.9e+1

– 6.0e–8 2.4e–9
1600 – 1.5e–4 4.7e–6 1.9e+3 1.8e+2 4.2e+1

– 1.3e–7 4.1e–9
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Results for “prolate” matrix

FHS1 FHS2 M FHS1 FHS2 M
n mrp mrp mrp time time time

arp arp arp
10 4.6e–9 4.6e–9 6.2e–10 6.7e–2 1.2e–2 3.6e–3

3.5e–10 3.5e–10 1.8e–10
12 – 2.2e–7 1.9e–8 1.4e–1 3.6e–2 3.4e–3

– 1.5e–8 5.7e–9
14 – – 1.6e–6 1.4e–1 1.3e–1 3.5e–3

– – 4.0e–7
20 – – 2.3e–1 1.5e–1 1.4e–1 4.4e–3

– – 4.8e–2
22 – – fail 1.6e–1 1.4e–1 3.6e–3

– – fail
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Results for “toeppen” matrix

FHS1 FHS2 M FHS1 FHS2 M
n mrp mrp mrp time time time

arp arp arp
400 1.0e+0 1.0e+0 1.0e+0 1.4e+1 1.4e+1 2.8e+0

2.0e–1 2.0e–1 1.7e–1
600 – 1.0e+0 1.0e+0 4.1e+2 4.0e+1 7.8e+0

– 4.1e–1 3.8e–1
800 – 1.0e+0 1.0e+0 8.8e+2 8.8e+1 1.7e+1

– 5.4e–1 5.1e–1
1000 – 1.0e+0 1.0e+0 1.6e+3 1.6e+2 3.2e+1

– 6.2e–1 6.0e–1
1200 – 1.0e+0 1.0e+0 2.6e+3 2.7e+2 5.3e+1

– 6.8e–1 6.6e–1
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