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Inverse square root of nonsingular A € C"*"

. 2

s X*eCt"st. X" A=1,,
always exists for A being nonsingular,
IS not unique.

If \;(A) ¢ R_, Vi, the principal inverse square root can be uniquely
defined by requiring ReX;(X*) > 0, Vi.

The principal inverse square root is of particular interest.
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Purpose

Numerically computing X and X" IIAH
s.t. X*e (X, X7")

Preferable
e Smaller X[j

e Fast algorithm
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Previous work

2 algorithms by Frommer-Hashemi-Sablik (2014)
e numerical spectral decomposition is utilized = O(n’) operations
e Krawczyk operator is applied for nonlinear matrix equations
1st algorithm (F'(X) =0, where F/(X) := XAX — I,,)
The uniqueness of the contained inverse square root is verified
2nd algorithm (an affine transformation of F'(X) = 0)

Although the uniqueness is not verified, more effective than the 1st
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Our contribution

Algorithm for computing X and X" s.t. X* € (X, X7)
utilizes the spectral decomposition = O (n>) operations
adopts the affine transformation and Newton operator

verifies the principal property and uniqueness
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Affine transformation (1/2)

Assume we have diagonal D e C* and V,W € C"*" st.
AV ~ VD, WV~ and V and W are nonsingular (verifiable).
5

=I,-WV (Q~0,S~0),Y :=V-1ixw-I

~

‘7
s VIIXW WAV IXWw - vl =0
& YD —-(D-WAV))Y —(WV)™!
& Y(D-Q)Y - (I,—8)"1t=0
s YD-QY—-I,—(I,—S)"1S=0.

CD
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Affine transformation (2/2)

FX)=0=FY)=0FY)=YD-Q)Y —I,—(I,—S)"'S.
We compute an interval matrix Ys.t. Y* €Y and F(Y*) =0

and enclose X* by computing the superset of {VYW :Y € Y'}.
Since X* = VY*W, the superset contains X*.

The superset can be obtained by interval arithmetic.
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How to obtain Y?

FIL(H)=Y(D—-Q)H+H(D—-Q)Y. Let Y ~ Y* be diagonal.
If F/(H) is invertible, N(Y) := Y — (FL)"'(F(Y)).

N(Y) =Y is a fixed point equation for Y.

We thus verify the invertibility and

(N(Y):Y €Y, Y} Cint((Y,Y7)) for given Y € R**".
The Brouwer theorem then implies Y* € {N(Y):Y € (Y, Y")}.
Y can be obtained s.t. {N(Y):Y e (Y, Y")}CY.
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How to verify the invertibility?

FSi/(H) can be represented in terms of matrix vector products as
vec(FL(H)) =Pvec(H), P:=1,0Y(D-Q)+Y'(D-Q)" &1,

If P is nonsingular, ﬁsl?(H) is invertible. We verify the nonsingularity.

2 2

P is a n“ X n“ matrix.

By exploiting the sparsity of D and Y, however, this can be achieved
with O(n?) operations.
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(N(Y):Y € (V,Y")} Cint((Y,Y"))? (1/2)

We compute Y € R"*" st. {N(Y):Y e (Y, Y")} C (Y,Y*?)
and verify Y < Y". Y*® can be obtained by the following idea:
NY)=Y = (F,)"HF(Y)) & FL(N(Y)) = FL(Y) = F(Y)

LHS =Y (D —Q)N(Y)+ N(Y)(D — Q)Y
RHS=Y(D-Q)Y+Y(D-Q)Y -Y(D—-Q)Y + 1,4+ (I,—S)"'S

Fast inclusion for the matrix inverse square root — 9



SCAN 2014 Shinya Miyajima

(N(Y):Y € (V,Y")} Cint((Y,Y"))? (2/2)

{N(Y):Y € (Y,Y")} is the set of all solutions of an equation
Y(D - Q)Ny + Ny (D — Q)Y

=YD-Q)Y+YD—-QY -YD-Q)Y +1I,+(I,—S)"1S,
where Ny € C™*" is unknown and Y € (Y,Y") is the parameter.

We hence enclose the solution set, which can be achieved with
O(n?) operations.
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How to determine Y"?

In the computation of Y¢, Y is required.
Let Y5 be Y* when YY" = 0. For n € R, we put Y" = nYy

and determine n s.t. Y* <nYy =Y".

Note The determination of 7 includes some assumptions. If one of

the assumptions cannot be verified, this determination fails.
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How to verify the principal property?

Let X* € (X, X") and X € (X, X7) be arbitrary.
We show Re\;(X) > 0, Vi. Then Re);(X*) > 0, Vi.

Since the principal square root is unique, the uniqueness can also
be verified.

By reusing the previously computed matrices, this can be achieved
with O(n?) operations.

Fast inclusion for the matrix inverse square root — 12



SCAN 2014 Shinya Miyajima

The uniqueness when \;(A) € R_? (1/2)

Let X* and X™*, and X7 and X5 be the inverse square roots and

arbitrarily matrices contained in (X, X"), respectively. We show

the invertibility of I o (H), use N(X) := X —(F, . )~ (F(X))
(Note N(X™) = X*, N(X**) = X**), derive S(X1, X5) s.t.
VeC(N(Xl) — N(XQ)) = S(Xl, XQ)VGC(Xl — XQ),

and prove ||S(X1, X5)|loo < 1, which gives ||S(X™, X*)||o < 1.
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The uniqueness when \;(A) € R_? (2/2)

We obtain

lvec(X™ — X™) |

vec(N(X*) = N(X™)) |l
S(X™, X™)vec(X™ — X))o
< ISXT, X7) [Jool[vee(X™ — X7) [| oo

so that (1 — [|S(X*, X**)||o0)|[vec(X* — X*) oo < 0.
This and ||S(X*, X**)||ec < 1 implies X* = X**.

These can be achieved with O(n?) operations.
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Numerical results (1/2)

Intel Xeon 2.66GHz Dual CPU, 4.00GB RAM, MATLAB 7.5 with
Intel MKL, and IEEE 754 double precision

FHS1: 1st algorithm by Frommer-Hashemi-Sablik (2014)
(the uniqueness is verified)
FHS2: 2nd algorithm by Frommer-Hashemi-Sablik (2014)
(the uniqueness is not verified)
M: the proposed algorithm
(the principal property and uniqueness are verified)

—: FHS1 or FHS2 did not succeed after 30 iterations
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Numerical results (2/2)

~

Let X* € (X, X"), mrp := max; ; X;; and arp := (3., X[)/n”,

i,j=1

- (1 ng) (X;; #0)

1min y T = ij
X)) '

" (X5 =0)

'\

where ij —

mrp and arp by M with underline: both of the principal property and
uniqueness could not be verified
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Results for “frank” matrix

FHS1 FHS2 M FHS1 FHS2 M

n | mrp mrp mrp time time time
arp arp arp

7 | 2.6e-10 2.6e-10 6.2e-11 | 4.3e-1 1.3e-2 3.4e-3
4 4e-11 4.4e-11 1.6e-11

3 | — 5.5e-9 1.0e-9 1.7e-1 1.1e-2 3.4e-3
— 1.0e9 2.1e-10

9 | - — 1.5e-8 l4e-1 13e-1 3.3e-3
— — 2.9e-9

12 | - — 1.4e—1 l.4de-=1 1.3e-1 4.1e-3
— — 2.8e—3

13 | - — fail l.4e-1 1.3e-1 3.5e-3

fail
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Results for “poisson” matrix

FHS1 FHS2 M FHS1 FHS2 M

n mrp mrp mrp time time time
arp arp arp

400 | 5.7e—=7 b.be-7 4.3e-38 | 3.7e+0 3.6e+0 38.2e-1
3.0e9 2.8e-9 2.2e-10

625 | - 3.2e=6 1.9e-7 l.4e+2 1.3e+1 2.8e+0
- 9.6e-9 5.6e-10

900 | - 1l.4e-5 6.6e—7 | 3.8e+2 3.be+1 7.9e+0
- 2.7e—=8 1.2e-9

1225 | - 50e-5 2.0e-6 | 9.2e+2 8.6e+1 1.9e+1
- 6.0e-8 2.4e-9

1600 | — 1.5e-4 4.7e—6 1.9e+3 1.8e+2 4.2e+1
- 1.3e=7 4.1e-9

Fast inclusion for the matrix inverse square root — 18



SCAN 2014

Shinya Miyajima

Results for “prolate” matrix

FHS1 FHS2 M FHS1 FHS2 M

n | mrp mrp mrp time time time
arp arp arp

10 | 4.6e9 4.6e9 6.2¢-10 | 6.7e-2 1.2e-2 3.6e-3
3.5e-10 3.5e-10 1.8e-10

12 | - 2.2e—7 1.9e-8 l.4e—-1 3.6e-2 3.4e-3
— 1.5e-8 b.7e-9

14 | - — 1.6e—6 l4e-1 13e-1 3.5e-3
— — 4.0e—7

20 | — — 2.3e—1 1.5e-1 14e-1 4.4e-3
— — 4.8e—2

22 | — - fail 1.6e-1 14e-1 3.6e-3

fail
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Results for “toeppen” matrix

FHS1 FHS2 M FHS1 FHS2 M

n mrp mrp mrp time time time
arp arp arp

400 1.0e+0 1.0e+0 1.0e+0 | 1.4e+1 1.4e+1 2.8e+0
2.0e-1 2.0e-1 1.7e-1

600 | — 1.0e+0 1.0e+0 | 4.1e+2 4.0e4+1 7.8e+0
— 41e-1 3.8e-1

800 | — 1.0e+0 1.0e+0 | 8.8e+2 8.8e+1 1.7e+1
— 54e-1 b5.le-1

1000 | — 1.0e+0 1.0e+0 | 1.6e+3 1.6e+2 3.2e+1
- 6.2e—1 6.0e-1

1200 | — 1.0e+0 1.0e+0 | 2.6e+3 2.7e4+2 b.3e+1
— 0.8e—1 6.6e-1
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