

Fast inclusion for the matrix inverse square root

Shinya Miyajima

Faculty of Engineering, Gifu University

16th GAMM - IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics

September 23, 2014, miyajima@gifu-u.ac.jp

Inverse square root of nonsingular $A \in \mathbb{C}^{n \times n}$

is $X^* \in \mathbb{C}^{n \times n}$ s.t. $X^{*^2} A = I_n$,

always exists for A being nonsingular,

is not unique.

If $\lambda_i(A) \notin \mathbb{R}_-$, $\forall i$, the **principal** inverse square root can be **uniquely** defined by requiring $\text{Re}\lambda_i(X^*) > 0$, $\forall i$.

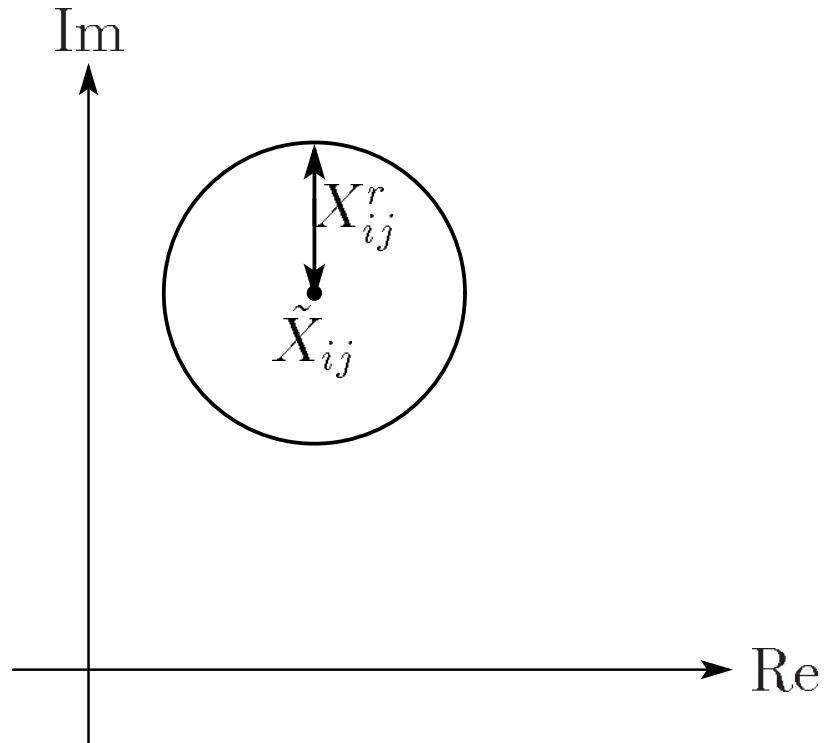
The principal inverse square root is of particular interest.

Purpose

Numerically computing \tilde{X} and X^r
s.t. $X^* \in \langle \tilde{X}, X^r \rangle$

Preferable

- Smaller X_{ij}^r
- Fast algorithm



Previous work

2 algorithms by Frommer-Hashemi-Sablik (2014)

- numerical spectral decomposition is utilized $\Rightarrow \mathcal{O}(n^3)$ operations
- Krawczyk operator is applied for nonlinear matrix equations

1st algorithm ($F(X) = 0$, where $F(X) := XAX - I_n$)

The uniqueness of the contained inverse square root is verified

2nd algorithm (an affine transformation of $F(X) = 0$)

Although the uniqueness is not verified, more effective than the 1st

Our contribution

Algorithm for computing \tilde{X} and X^r s.t. $X^* \in \langle \tilde{X}, X^r \rangle$

utilizes the spectral decomposition $\Rightarrow \mathcal{O}(n^3)$ operations

adopts the affine transformation and Newton operator

verifies the **principal property** and uniqueness

Affine transformation (1/2)

Assume we have diagonal $\tilde{D} \in \mathbb{C}^{n \times n}$ and $\tilde{V}, W \in \mathbb{C}^{n \times n}$ s.t. $A\tilde{V} \approx \tilde{V}\tilde{D}$, $W \approx \tilde{V}^{-1}$, and \tilde{V} and W are nonsingular (verifiable).

$$Q := \tilde{D} - WA\tilde{V}, S := I_n - W\tilde{V} \quad (Q \approx 0, S \approx 0), Y := \tilde{V}^{-1}XW^{-1}$$

$$\begin{aligned} F(X) = 0 &\Leftrightarrow \tilde{V}^{-1}XW^{-1}WA\tilde{V}\tilde{V}^{-1}XW^{-1} - \tilde{V}^{-1}W^{-1} = 0 \\ &\Leftrightarrow Y(\tilde{D} - (\tilde{D} - WA\tilde{V}))Y - (W\tilde{V})^{-1} = 0 \\ &\Leftrightarrow Y(\tilde{D} - Q)Y - (I_n - S)^{-1} = 0 \\ &\Leftrightarrow Y(\tilde{D} - Q)Y - I_n - (I_n - S)^{-1}S = 0. \end{aligned}$$

Affine transformation (2/2)

$$F(X) = 0 \Leftrightarrow \hat{F}(Y) = 0, \hat{F}(Y) := Y(\tilde{D} - Q)Y - I_n - (I_n - S)^{-1}S.$$

We compute an interval matrix \mathbf{Y} s.t. $Y^* \in \mathbf{Y}$ and $\hat{F}(Y^*) = 0$

and enclose X^* by computing the superset of $\{\tilde{V}Y\tilde{W} : Y \in \mathbf{Y}\}$.

Since $X^* = \tilde{V}Y^*\tilde{W}$, the superset contains X^* .

The superset can be obtained by interval arithmetic.

How to obtain Y ?

$\hat{F}'_Y(H) = Y(\tilde{D} - Q)H + H(\tilde{D} - Q)Y$. Let $\tilde{Y} \approx Y^*$ be diagonal.

If $\hat{F}'_{\tilde{Y}}(H)$ is invertible, $\hat{N}(Y) := Y - (\hat{F}'_{\tilde{Y}})^{-1}(\hat{F}(Y))$.

$\hat{N}(Y) = Y$ is a fixed point equation for Y .

We thus verify the invertibility and

$\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\} \subseteq \text{int}(\langle \tilde{Y}, Y^r \rangle)$ for given $Y^r \in \mathbb{R}^{n \times n}$.

The Brouwer theorem then implies $Y^* \in \{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\}$.

Y can be obtained s.t. $\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\} \subseteq Y$.

How to verify the invertibility?

$\hat{F}'_{\tilde{Y}}(H)$ can be represented in terms of matrix vector products as

$$\text{vec}(\hat{F}'_{\tilde{Y}}(H)) = \hat{P} \text{vec}(H), \hat{P} := I_n \otimes \tilde{Y}(\tilde{D} - Q) + \tilde{Y}^T(\tilde{D} - Q)^T \otimes I_n$$

If \hat{P} is nonsingular, $\hat{F}'_{\tilde{Y}}(H)$ is invertible. We verify the nonsingularity.

\hat{P} is a $n^2 \times n^2$ matrix.

By exploiting the sparsity of \tilde{D} and \tilde{Y} , however, this can be achieved with $\mathcal{O}(n^3)$ operations.

$$\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\} \subseteq \text{int}(\langle \tilde{Y}, Y^r \rangle) ? \ (1/2)$$

We compute $Y^\varepsilon \in \mathbb{R}^{n \times n}$ s.t. $\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\} \subseteq \langle \tilde{Y}, Y^\varepsilon \rangle$

and verify $Y^\varepsilon < Y^r$. Y^ε can be obtained by the following idea:

$$\hat{N}(Y) = Y - (\hat{F}'_{\tilde{Y}})^{-1}(\hat{F}(Y)) \Leftrightarrow \hat{F}'_{\tilde{Y}}(\hat{N}(Y)) = \hat{F}'_{\tilde{Y}}(Y) - \hat{F}(Y)$$

$$\text{LHS} = \tilde{Y}(\tilde{D} - Q)\hat{N}(Y) + \hat{N}(Y)(\tilde{D} - Q)\tilde{Y}$$

$$\text{RHS} = \tilde{Y}(\tilde{D} - Q)Y + Y(\tilde{D} - Q)\tilde{Y} - Y(\tilde{D} - Q)Y + I_n + (I_n - S)^{-1}S$$

$$\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\} \subseteq \text{int}(\langle \tilde{Y}, Y^r \rangle) ? \ (2/2)$$

$\{\hat{N}(Y) : Y \in \langle \tilde{Y}, Y^r \rangle\}$ is the set of all solutions of an equation

$$\tilde{Y}(\tilde{D} - Q)\hat{N}_Y + \hat{N}_Y(\tilde{D} - Q)\tilde{Y}$$

$$= \tilde{Y}(\tilde{D} - Q)Y + Y(\tilde{D} - Q)\tilde{Y} - Y(\tilde{D} - Q)Y + I_n + (I_n - S)^{-1}S,$$

where $\hat{N}_Y \in \mathbb{C}^{n \times n}$ is unknown and $Y \in \langle \tilde{Y}, Y^r \rangle$ is the parameter.

We hence enclose the solution set, which can be achieved with $\mathcal{O}(n^3)$ operations.

How to determine Y^r ?

In the computation of Y^ε , Y^r is required.

Let Y_0^ε be Y^ε when $Y^r = 0$. For $\eta \in \mathbb{R}$, we put $Y^r = \eta Y_0^\varepsilon$ and determine η s.t. $Y^\varepsilon < \eta Y_0^\varepsilon = Y^r$.

Note The determination of η includes some assumptions. If one of the assumptions cannot be verified, this determination fails.

How to verify the principal property?

Let $X^* \in \langle \tilde{X}, X^r \rangle$ and $X \in \langle \tilde{X}, X^r \rangle$ be arbitrary.

We show $\text{Re}\lambda_i(X) > 0, \forall i$. Then $\text{Re}\lambda_i(X^*) > 0, \forall i$.

Since the principal square root is unique, the **uniqueness** can also be verified.

By reusing the previously computed matrices, this can be achieved with $\mathcal{O}(n^2)$ operations.

The uniqueness when $\lambda_i(A) \in \mathbb{R}_-$? (1/2)

Let X^* and X^{**} , and X_1 and X_2 be the inverse square roots and arbitrarily matrices contained in $\langle \tilde{X}, X^r \rangle$, respectively. We show the invertibility of $F'_{\tilde{V}\tilde{Y}W}(H)$, use $N(X) := X - (F'_{\tilde{V}\tilde{Y}W})^{-1}(F(X))$ (Note $N(X^*) = X^*$, $N(X^{**}) = X^{**}$), derive $S(X_1, X_2)$ s.t. $\text{vec}(N(X_1) - N(X_2)) = S(X_1, X_2) \text{vec}(X_1 - X_2)$, and prove $\|S(X_1, X_2)\|_\infty < 1$, which gives $\|S(X^*, X^{**})\|_\infty < 1$.

The uniqueness when $\lambda_i(A) \in \mathbb{R}_-$? (2/2)

We obtain

$$\begin{aligned}
 \|\text{vec}(X^* - X^{**})\|_\infty &= \|\text{vec}(N(X^*) - N(X^{**}))\|_\infty \\
 &= \|S(X^*, X^{**})\text{vec}(X^* - X^{**})\|_\infty \\
 &\leq \|S(X^*, X^{**})\|_\infty \|\text{vec}(X^* - X^{**})\|_\infty,
 \end{aligned}$$

so that $(1 - \|S(X^*, X^{**})\|_\infty) \|\text{vec}(X^* - X^{**})\|_\infty \leq 0$.

This and $\|S(X^*, X^{**})\|_\infty < 1$ implies $X^* = X^{**}$.

These can be achieved with $\mathcal{O}(n^3)$ operations.

Numerical results (1/2)

Intel Xeon 2.66GHz Dual CPU, 4.00GB RAM, MATLAB 7.5 with Intel MKL, and IEEE 754 double precision

- FHS1: 1st algorithm by Frommer-Hashemi-Sablik (2014)
(the uniqueness is verified)
- FHS2: 2nd algorithm by Frommer-Hashemi-Sablik (2014)
(the uniqueness is not verified)
- M: the proposed algorithm
(the principal property and uniqueness are verified)
- : FHS1 or FHS2 did not succeed after 30 iterations

Numerical results (2/2)

Let $X^* \in \langle \tilde{X}, X^r \rangle$, $\text{mrp} := \max_{i,j} X_{ij}^p$ and $\text{arp} := (\sum_{i,j=1}^n X_{ij}^p)/n^2$,

$$\text{where } X_{ij}^p := \begin{cases} \min \left(1, \frac{X_{ij}^r}{|\tilde{X}_{ij}|} \right) & (\tilde{X}_{ij} \neq 0) \\ 1 & (\tilde{X}_{ij} = 0) \end{cases}.$$

mrp and arp by \mathbb{M} with underline: both of the principal property and uniqueness could not be verified

Results for “frank” matrix

n	FHS1	FHS2	M	FHS1	FHS2	M
	mrp	mrp	mrp	time	time	time
	arp	arp	arp			
7	2.6e-10	2.6e-10	6.2e-11	4.3e-1	1.3e-2	3.4e-3
	4.4e-11	4.4e-11	1.6e-11			
8	–	5.5e-9	1.0e-9	1.7e-1	1.1e-2	3.4e-3
	–	1.0e-9	2.1e-10			
9	–	–	1.5e-8	1.4e-1	1.3e-1	3.3e-3
	–	–	2.9e-9			
12	–	–	<u>1.4e-1</u>	1.4e-1	1.3e-1	4.1e-3
	–	–	<u>2.8e-3</u>			
13	–	–	fail	1.4e-1	1.3e-1	3.5e-3
	–	–	fail			

Results for “poisson” matrix

n	FHS1	FHS2	M	FHS1	FHS2	M
	mrp	mrp	mrp	time	time	time
	arp	arp	arp			
400	5.7e-7	5.5e-7	4.3e-8	3.7e+0	3.6e+0	8.2e-1
	3.0e-9	2.8e-9	2.2e-10			
625	–	3.2e-6	1.9e-7	1.4e+2	1.3e+1	2.8e+0
	–	9.6e-9	5.6e-10			
900	–	1.4e-5	6.6e-7	3.8e+2	3.5e+1	7.9e+0
	–	2.7e-8	1.2e-9			
1225	–	5.0e-5	2.0e-6	9.2e+2	8.6e+1	1.9e+1
	–	6.0e-8	2.4e-9			
1600	–	1.5e-4	4.7e-6	1.9e+3	1.8e+2	4.2e+1
	–	1.3e-7	4.1e-9			

Results for “prolate” matrix

n	FHS1	FHS2	M	FHS1	FHS2	M
	mrp	mrp	mrp	time	time	time
	arp	arp	arp			
10	4.6e-9	4.6e-9	6.2e-10	6.7e-2	1.2e-2	3.6e-3
	3.5e-10	3.5e-10	1.8e-10			
12	–	2.2e-7	1.9e-8	1.4e-1	3.6e-2	3.4e-3
	–	1.5e-8	5.7e-9			
14	–	–	1.6e-6	1.4e-1	1.3e-1	3.5e-3
	–	–	4.0e-7			
20	–	–	<u>2.3e-1</u>	1.5e-1	1.4e-1	4.4e-3
	–	–	<u>4.8e-2</u>			
22	–	–	fail	1.6e-1	1.4e-1	3.6e-3
	–	–	fail			

Results for “toeppen” matrix

n	FHS1	FHS2	M	FHS1	FHS2	M
	mrp	mrp	mrp	time	time	time
	arp	arp	arp			
400	1.0e+0	1.0e+0	1.0e+0	1.4e+1	1.4e+1	2.8e+0
	2.0e-1	2.0e-1	1.7e-1			
600	-	1.0e+0	1.0e+0	4.1e+2	4.0e+1	7.8e+0
	-	4.1e-1	3.8e-1			
800	-	1.0e+0	1.0e+0	8.8e+2	8.8e+1	1.7e+1
	-	5.4e-1	5.1e-1			
1000	-	1.0e+0	1.0e+0	1.6e+3	1.6e+2	3.2e+1
	-	6.2e-1	6.0e-1			
1200	-	1.0e+0	1.0e+0	2.6e+3	2.7e+2	5.3e+1
	-	6.8e-1	6.6e-1			