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What is SONIC

SONIC- A Solver and Optimizer for Nonlinear Problems
based on Interval Computations

m rigorous solver for nonlinear systems
m developed at RWTH Aachen and University of Wuppertal

m initially for dynamic systems in chemical processes
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Features

m written in C++

m portability and performance by different interval libraries:
choice between C-XSC, filib++
m parallel versions for distributed and shared memory

(MPI, OpenMP)

m solver for optimization problems

handling of unbounded intervals
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Branch and Bound

startbox x(0)

[ investigate further
M solution box
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1
I
/ \ [l contains no solution
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Subdivison

m subdivision using gaps caused by division

m choice of subdivision direction:

m subdivide direction with largest width

m search zeros near boundary

m search direction with highest influence on function value
m hybrid strategy

m choice of subdivision point:

. . . —
m bisect at midpoint
m shift bisection point —
m iterated subdivision _) ]
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SONIC

Contractors

Aim: Contract or discard a given box

m Constraint propagation
m Taylor refinement
m Interval Newton method

m Taylor models
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SONIC

Constraint propagation

Consider system

fl(x)=x12—xz=0 1
x5 €
h(x)=x2+x3—-1=0 N
with x € [-2,2]? sar |4 <,
X1 |€[-2,2] X2 |€[-2,2]
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Constraint propagation

L. Balzer

Forward sweep corresponds to
the natural interval evaluation

X1

€ [-2,2]

sqr

X2

x4 €
[0,4]

€ [-2,2]
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Constraint propagation

L. Balzer

Backward sweep yields
narrower bounds:

Ozﬂ:X3—X2
Sx3=f+x €
(0+ [_232])ﬁ [074] = [072]

X1 = :|:\/X_3 S [—1, 1]
Xp = :|:\/X_4 S [0, 1]

sqr

X1

fi=0 — |sh=0
+ =1 1
x3 € x4 €
[0, 1] A" 1o, 1]
S [—17 1] X2 |e [0, 1]
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Taylor refinement

Gain sharper enclosure by Taylor expansion for f : D C R" — R:

I
[y
3

n

X :=xnN|c— f(C)+ZSj'(Xj—(:j) osi|, i
Jj=1
J#i

with some center ¢ € x and slope vector s
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Interval Newton method

Refines or discards box
f(x) C f(c)+S(x—c¢)
—f(c) =S(x* —¢c)

m solve with GauB-Seidel-approach
m several preconditioners available

m can be used to verify the existence of a (unique) solution
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Algorithm 1 Application scheme for contractors (box x)

: if CP is enabled then apply CP

: if x cannot contain a solution then discard x

: if Taylor refinement of first order is enabled then
apply Taylor refinement of first order
if CP is enabled then apply CP

end if

if x cannot contain a solution then discard x

if Taylor refinement of second order is enabled then
apply Taylor refinement of second order

10: if CP is enabled then apply CP

11: end if

12: if x cannot contain a solution then discard x

13: if Newton method is enabled then

14: apply Newton method

15: if CP is enabled then apply CP

16: end if

17: if x cannot contain a solution then discard x

QRN
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Verification

Aim: Prove existence or uniqueness of a solution in a given box

Newton test
m apply one step of the interval Newton method
m proofs uniqueness

Miranda test
m compare sign of function values on opposite facets

m Borsuk test

topological degree test
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Taylor models

Problem: Too many boxes...

N T RN R N

L. Balzer

—

no discarding

of boxes

many boxes

— slow
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Taylor models

Problem: Too many boxes...

Taylor models

discard boxes

fewer boxes
left to investi-

gate

;
;
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Taylor models

Taylor models
Idea: Enclosure of a function over its course

based on the works by Berz, Hoefkens and Makino

Consists of
m domain D € R
m reference point xg € D
m Taylor polynomial P, : D — R" of order n

m remainder interval R € IR%

Inclusion property for all x € D:

f(x) € Ph(x)+ R
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Taylor models

Function enclosures

F(x) f(x)

Enclosure by a box ... ...and a Taylor Model
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Taylor models

Properties of Taylor models

L. Balzer

sharper enclosure over relatively large domain
= avoids subdivisons

the remainder interval scales with the (n + 1)-st order of the
magnitude of D

reduced impact of the dependency problem

number of coefficients for a polynomial of order n with v

. |
variables: (”?LV,)'
nt-vi
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Taylor models in SONIC

Usage of Taylor models as a contractor in SONIC:

Algorithm 2 Usage of Taylor models as a contractor (box x)

1:

build Taylor model T over x
compute evaluation B(T) of T
if 0 ¢ B(T) then

discard x
end if
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Taylor models

Results

Observations for the naive usage of Taylor models:

m computation time increases significantly
m most time is consumed on the buildup of the TM
m very few boxes get discarded

m natural function evaluation of Taylor polynomial causes
overestimations
— linear dominated bounder
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Inversion & Newton method

Inverse Taylor models

Taylor models T = (P, x0, D, R) and S = (Gp, yo, A, Q)

S left-inverse Taylor model for T if
B GoP,=,71

m Ph(x0) = yo
mfeT=fD)CA

m B(G,(T)—1)CQ
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Inversion & Newton method

Theorem

Let T = (Pn,x0,D,R) and S = (Gp, y0, A, Q) be given Taylor
models such that S is a left-inverse Taylor model for T. Assume
that f € T is invertible over D.

Then there is g € S such that g = f~! on f(D).
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Inversion & Newton method

Newton method with inverse Taylor models

Algorithm 3 Newton method with taylor models ()
1. k=0

2: repeat

3. build n-th order Taylor model T()
over D) with reference point mid(D(¥))
compute left-inverse Taylor model S(¥) for T(K)
D+1) .= p(k) 0 s(K)(0)
if D(+1) = () then

discard box

end if

9: k=k+1
10: until D) accurate enough

® N TR
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Inversion & Newton method

Properties

Properties of the inverse TM Newton method:

m faster speed of convergence
m larger domain of convergence
m less domain splitting required

m less impact of dependency problem and cancellation errors
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Future plans

m web interface

m graphical output
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Contact

For questions write to

balzer@math.uni-wuppertal.de
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