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The aim of this presentation is to demonstrate

one interesting practical problem of estimation

of experimental process parameters under uncertainty

conditions when components of the parameter vector

can be only estimated on the basis of the Interval

Analysis approach and available a priori data
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Experimental process

Description of a molten salt conductivity

vs the temperature [1,2]:

σ(T,A,B,C,D) = Aexp
(
−B/T +C/(T ∗VM(T ))+D/VM(T )

)
,

where T is the temperature, the main argument; VM(T ) is
an auxiliary dependence given tabulated for each value of the
temperature; A > 0, B > 0, C > 0, and D > 0 are constant
parameters to be estimated. The parameters reflect influence
(on conductivity) of various internal properties of the melt.
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Measured information and its uncertainty
Results of the experiment are presented as the following collection (sam-
ple) of conductivity measurements:

{Tn, σn}, n = 1, N,

where the temperature values Tn are assumed to be known exactly,
but the conductivity σ is measured with essential error bounded
by the value emax.

The sample is dramatically short: N ≈ 5 ∼ 7 measurements only.

No probabilistic information on errors is known.

From theoretical estimations or previous experience, usually,
the following a priori constraints on possible values
of the coefficients could be known:

[Aapr
min, A

aprmax], [Bapr
min, B

aprmax], [Capr
min, C

aprmax], [Dapr
min, D

aprmax].
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Measured information
The given experimental sample of the potassium-chlorine (K-Cl) melt [1] measurements

has the following form.
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Formal application of the LSQM-approximation [3− 5]

The LSQM-curve and pointwise estimation Ã, B̃, C̃, and D̃, and their practically

meaningless “cloud-built” intervals are available.
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Problem formulation and how to solve it?

Since of very short length of the measurements sample,
absence of probabilistic characteristics of the errors,
and measurements uncertainty, it is impossible to use
(with any good reasoning) the standard statistical methods [3–5]).

It is necessary:
on the basis of the Interval Analysis methods
to built the set of admissible values (Informational Set,
or the Set-membership) of coefficients A, B, C, D,
consistent with the described data.
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Interval approach and its essence

Ideas and methods of the Interval Analysis Theory and Applications
arose from the fundamental, pioneer work by L.V. Kantorovich [6].
Nowadays, very effective developments of the theory and
computational methods were created by many researchers
both abroad [7-9] and in Russia [10–13].

Special interval algorithms have been elaborated for estimating
parameters of experimental chemical processes [14-18].

Remind that essence of this branch of numerical methods theory and
application consists in estimation (or identification) of parameters
under bounded errors, noises, or perturbations in the input
information to be processed, under total absence of
probabilistic characteristics of errors.
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The main definitions

Uncertainty set of each measurement (USM). It is the interval of values of
measured process consistent with the measurement and the error bound:

Hn = [hn, hn] : hn = σn − emax, hn = σn + emax.

Admissible value of the parameters vector and corresponding admissible
curve:

(A,B,C,D) : σ(Tn, A,B,C,D) ∈ Hn, for all n = 1, N.

Informational Set (InfSet) is a totality of admissible values of the param-
eters vector

I(A,B,C,D) = {(A,B,C,D) : σ(Tn, A,B,C,D) ∈ Hn, for all n = 1, N}.
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Measurements and their uncertainty sets (USM)
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Remark: if the actual level of errors in the sample is lower than a priori bound emax,

the LSQM-curve and the point-estimate (Ã, B̃, C̃, D̃ ) could be admissible.
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Illustration to the main definitions
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Applied procedures. Transformed mathematical model

Usually, by standard passage to the natural logarithmic

scale [1,2], researchers obtain a simple linear dependency

on the parameters α = log(A), B, C, and D:

log(σ(T, α,B,C,D)) = α−B/T +C/(T ∗VM(T ))+D/VM(T ),

After the passage, in contrast to standard statistical approaches, the
problem formulated is reduced to solving the following system of the
interval inequalities:

I(α,B,C,D) = {(α,B,C,D) : log(σ(Tn, α,B,C,D)) ∈ Hn, for all n = 1, N}.

under a priori given additional constraints

[Aapr
min, A

aprmax], [Bapr
min, B

aprmax], [Capr
min, C

aprmax], [Dapr
min, D

aprmax].
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Applied procedures.
The hybrid grid–set technology

Estimation of parameters A and B is of the most

interest. So, a two dimensional grid

in parameters C and D is introduced on their

given a priori intervals

[Capr
min, C

apr
max] and [Dapr

min, D
apr
max]:

{Ck, Dm}, k = 1,K, m = 1,M ,

with practically acceptable small steps ∆C and ∆D.
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Applied procedures.
Further transformation of the description dependence

Resolving the transformed dependency w.r.t. parameters A and B and,
shifting to the right terms with parameters Ck and Dm, we obtain:

α−B/T = log
(
σ(Tn)

)
− Ck/(T ∗ VM(T ))−Dm/VM(T ),

or, shortly, for the whole sample

{α−B/Tn ∈ W (Tn, Hn, Ck, Dm)}, n = 1, N , k = 1,K, m = 1,M . (*)

Note that the right sides are intervals.

This form allows one to build constructively a collection of InfSets

{I(α,B,Ck, Dm)}, k = 1,K, m = 1,M . (**)
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Applied procedures.
Direct set-estimation approach

There are several approaches to solve system (*) of the interval linear
inequalities
– classic linear programming methods [6, and many others],
– parallelotopes Walter [7], Hansen [8], Fiedler M., et al [9], Shary [10],
– by the “stripes” method Shary,Sharaya [11], Sharaya [12], Zhilin [13].

More convenient and faster grid-set method has been elaborated (see,
Kumkov and with co-authors [14–18]) that gives exact estimations of the
Informational sets (**) on part of parameters for each node of the grid
on other parameters

Underline that we obtain exact estimation of each section
I(α,B,Ck, Dm) of the InfSet I(α,B,C,D) in contrast, for example,
to outer approximation of informational sets
in the parallelotope approaches.
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Ideology of the partial informational sets Gij(α,B))

( , )1 1Ba

( , )3 3Ba

( , )4 4Ba

Bmin

Bmax

B3

B1

……
Ti Tj

T

Hi

Hj

( , )2 2Bay a( )T, ,B marginal lines

intermediate lines

a a2 min=

B =B2 maxB =B4 min

B =B1 3

4
1

2

3

B

a a4 max=

a3

a

I

II

G Bij( , )a

G B( , )a
apr

The main intersection procedure: I(α,B,Ck, Dm) = ∩i=1,j=2,NGij(α,B,Ck, Dm)

Remark: Coordinates of apices 1–4 are calculated immediately. Additionally,
if given, the a priory data could be directly taken into account.
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Computation results. Intersection of partial InfSets
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Computation results. Intersection of partial InfSets

Process of intersection of partial sets
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Computation results. Intersection of partial InfSets
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Computation results. Intersection of partial InfSets
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Computation results. Intersection of partial InfSets

Process of intersection of partial sets
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Computation results. Intersection of partial InfSets
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What do we usually obtain by such a hybrid “grid-set”
approach?
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Remark: The result is simultaneous estimation of sets of ALL parameters.
But in our case, it is not so.
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In our example, collection of {I(α,B,Ck, D1)}

I B C D( , , , )a 3 1
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Results of constructing the InfSets and taking into
account a priori data in parameters A and B
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For practical application: procedure of direct finding
verified inner estimations of intervals’ parameters

1) Calculation of only one InfSet I(α,B,C,D) for admissible internal point, in our case,
it is the LSQM-point (C̃, D̃).

2) Calculation the central point αcntr, Bcntr of the set I(α,B, C̃, D̃).

3) For the fixed point (αcntr, Bcntr,D̃), one implements variation (“up” and “down” from
the value C̃) of the parameter C and determines the corresponding marginal values Cmin

and Cmax of the verified inner interval [Cmin, Cmax]. For finding these admissible marginal
points, direct check of admissibility of the corresponding curve σ(T, αcntr, Bcntr, Cvar, D̃)
is performed by the intervals {Hn}.

4) Calculation of the central point Ccntr of the interval [Cmin, Cmax].

5) For the fixed point (αcntr, Bcntr, Ccntr), one implements variation (“up” and “down”
from the value D̃) of the parameter D and determines the corresponding marginal values
Dmin and Dmax of the verified inner interval [Dmin, Dmax]. For finding these admissible
marginal points, direct check of admissibility of the corresponding curve
σ(T, αcntr, Bcntr, Ccntr, Dvar) is performed by the intervals {Hn}.

6) Calculation of the central point Dcntr of the interval [Dmin, Dmax].

7) For practical application, the determined central points and approximate inner inter-
vals of parameters are given out.
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Constructing the recommended output estimations
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Recommended output estimations

B, KT
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Recommended output curve
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Conclusions

Under mentioned conditions of uncertainty, the interval

approach allows one:

– to construct the verified informational set of the process

parameters;

– to find the verified estimations of inner intervals for admis-

sible values of the parameters;

– if necessary, using the found InfSet I(α,B,C,D), to con-

struct the tube of admissible process curves and to enhance

the uncertainty set of each input measurement.
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Thanks for attention
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