

Error Estimations of Interpolations on Triangular Elements

Kenta KOBAYASHI (Hitotsubashi University)

Takuya TSUCHIYA (Ehime University)

SCAN2014

University of Würzburg, September 23, 2014

Contents

- The k th-order Lagrange interpolation on triangles
- The importance of error estimations
- The geometric conditions on triangles
- Kobayashi's formula and the circumradius condition
- The definition of surface area – Schwarz-Peano's example
- An extension
- Remarks

The k th-order Lagrange interpolation on triangles

k : a positive integer,

\mathcal{P}_k : the set of polynomials whose order are at most k ,

$K \subset \mathbb{R}^2$: any triangle on \mathbb{R}^2 ,

$(\lambda_1, \lambda_2, \lambda_3)$: the barycentric coordinate on K ,

a_i : integers,

$$\Sigma^k(K) := \left\{ \left(\frac{a_1}{k}, \frac{a_2}{k}, \frac{a_3}{k} \right) \in K \mid 0 \leq a_i \leq k, a_1 + a_2 + a_3 = k \right\}.$$

K and $\Sigma^k(K)$, $k = 1, k = 2, k = 3$.

For $v \in C^0(\overline{K})$, define $\mathcal{I}_K^k v \in \mathcal{P}_k$ by

$$(\mathcal{I}_K^k v)(\mathbf{x}) = v(\mathbf{x}), \quad \forall \mathbf{x} \in \Sigma^k(K).$$

We would like to estimate the error $\|v - \mathcal{I}_K^k v\|_{1,2,K}$.

The piecewise \mathcal{P}_k finite element method

$\Omega \subset \mathbb{R}^2$: a bounded polygonal domain

τ : a proper triangulation of Ω

$$S_\tau := \{v_h \in C^0(\bar{\Omega}) \cap H_0^1(\Omega) \mid v|_K \in \mathcal{P}_k, \forall K \in \tau\}$$

Model problem Find $u \in H_0^1(\Omega)$ such that

$$-\Delta u = f \text{ for a given } f \in L^2(\Omega).$$

Weak form Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \text{for } \forall v \in H_0^1(\Omega).$$

\mathcal{P}_k FEM Find $u_h \in S_\tau$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx \quad \text{for } \forall v_h \in S_\tau.$$

Let $u \in H_0^1(\Omega) \cap H^2(\Omega)$ and $u_h \in S_\tau$ be the exact and finite element solutions, respectively. Then, by Céa's Lemma, we have

$$\begin{aligned}\|u - u_h\|_{1,2,\Omega} &\leq C \inf_{v_h \in S_h} \|u - v_h\|_{1,2,\Omega} \\ &\leq C \|u - \mathcal{I}_\tau^k u\|_{1,2,\Omega} \\ &= C \left(\sum_{K \in \tau} \|u - \mathcal{I}_K^k u\|_{1,2,K}^2 \right)^{1/2},\end{aligned}$$

where C is a positive constant.

Therefore, estimating $\|u - \mathcal{I}_K^k u\|_{1,2,K}$ is very important in the error analysis of finite element methods.

Nakao's theory for numerical verifications of PDEs

For a given triangle $K \subset \mathbb{R}^2$, let $C(K)$ be the smallest constant such that

$$\|v - \mathcal{I}_K^k v\|_{1,2,K} \leq C(K)|v|_{2,2,K} \quad \forall v \in H^2(K).$$

In Nakao's theory, it is very important to obtain a concrete value (or good upper bound) of $C(K)$ for a given triangle K .

Geometric Conditions on Triangles

It is known that we need to impose a geometric condition on triangles to obtain an error estimation.

- The minimum angle condition
- Shape-regularity
- The maximum angle condition
- Kobayashi's formula
- The circumradius condition

The minimum angle condition

Let h_K be the diameter (or the length of the longest edge) of K .

Theorem 1 *Let θ_0 , $0 < \theta_0 < \pi/3$ be a constant. If any angle θ of K satisfies $\theta \geq \theta_0$, there exists a constant $C = C(\theta_0)$ independent of h_K such that, for $\forall h_K \leq h_0$,*

$$\|v - \mathcal{I}_K^1 v\|_{1,2,K} \leq Ch_K |v|_{2,2,K}, \quad \forall v \in H^2(K).$$

Zlámal, On the finite element method,

Numer. Math., 12 (1968) 394–409.

Shape-regularity

Let ρ_K be the diameter of the inscribed circle of K .

Theorem 2 Let $\sigma > 0$ be a constant. If $h_K/\rho_K \leq \sigma$, there exists a constant $C = C(\sigma)$ independent of h_K such that, for $\forall h_K \leq h_0$,

$$\|v - \mathcal{I}_K^1 v\|_{1,2,K} \leq Ch_K |v|_{2,2,K}, \quad \forall v \in H^2(K).$$

Ciarlet, *The Finite Element Methods for Elliptic Problems*,
North Holland, 1978, reprint by SIAM 2008.

Brenner-Scott, *The Mathematical Theory of Finite Element Methods*,
3rd edition, Springer, 2008.

Note that the shape-regularity is equivalent to the minimum angle condition in \mathbb{R}^2

The maximum angle condition

Theorem 3 Let θ_1 , $2\pi/3 < \theta_1 < \pi$ be a constant. If any angle θ of K satisfies $\theta \leq \theta_1$, there exists a constant $C = C(\theta_1)$ independent of h_K such that, for $\forall h_K \leq h_0$,

$$\|v - \mathcal{I}_K^1 v\|_{1,2,K} \leq Ch_K |v|_{2,2,K}, \quad \forall v \in H^2(K).$$

Babuška-Aziz, On the angle condition in the finite element method,
SIAM J. Numer. Anal., **13** (1976) 214–226.

Kobayashi's formula

Let A, B, C be the lengths of edges of K and S be the area of K .

Theorem 4 Let $C(K)$ be defined by

$$C(K) := \sqrt{\frac{A^2 B^2 C^2}{16S^2} - \frac{A^2 + B^2 + C^2}{30} - \frac{S^2}{5} \left(\frac{1}{A^2} + \frac{1}{B^2} + \frac{1}{C^2} \right)},$$

then we have the following estimate:

$$|v - \mathcal{I}_K^1 v|_{1,2,K} \leq C(K) |v|_{2,2,K}, \quad \forall v \in H^2(K).$$

Kobayashi, On the interpolation constants over triangular elements
(in Japanese), RIMS Kokyuroku, 1733 (2011), 58-77.

A corollary of Kobayashi's formula

Let R_K be the circumradius of K . Note that

$$R_K = \frac{ABC}{4S},$$

and therefore

$$\begin{aligned} C(K) &:= \sqrt{\frac{A^2 B^2 C^2}{16S^2} - \frac{A^2 + B^2 + C^2}{30} - \frac{S^2}{5} \left(\frac{1}{A^2} + \frac{1}{B^2} + \frac{1}{C^2} \right)} \\ &< R_K. \end{aligned}$$

Corollary 5

$$|v - \mathcal{I}_K^1 v|_{1,2,K} \leq R_K |v|_{2,2,K}, \quad \forall v \in H^2(K).$$

The circumradius condition

Let R_K be the circumradius of K .

Theorem 6 *There exists a constant C_p independent of K such that, for $R_K \leq 1$,*

$$\|v - \mathcal{I}_K^1 v\|_{1,p,K} \leq C_p R_K |v|_{2,p,K}, \quad \forall v \in W^{2,p}(K), \quad 1 \leq p \leq \infty.$$

Kobayashi-Tsuchiya, A Babuška-Aziz type proof of the circumradius condition,
Japan Journal of Industrial and Applied Mathematics, **31** (2014) 193–210.

Rand, Delaunay refinement algorithms for numerical methods,
Ph.D. dissertation, Carnegie Mellon University, 2009.

The circumradius condition (cont.)

Let $\{\tau_n\}_{n=1}^{\infty}$ be a sequence of triangulations of $\Omega \subset \mathbb{R}^2$ such that

$$\lim_{n \rightarrow \infty} R_n = 0, \quad R_n := \max_{K \in \tau_n} R_K.$$

We say that $\{\tau_n\}_{n=1}^{\infty}$ satisfies the **circumradius condition** (of order 1).

Let $u \in H_0^1(\Omega)$ and $u_n \in S_{\tau_n}$ be the exact and piecewise \mathcal{P}_1 finite element solutions of Poisson's equation $-\Delta u = f \in L^2(\Omega)$.

Corollary 7 *If $\{\tau_n\}$ satisfies the circumradius condition and $u \in H^2(\Omega)$, then we have*

$$\|u - u_n\|_{1,2,\Omega} \leq CR_n|u|_{2,2,\Omega}.$$

The circumradius R_K and the maximum angle θ_K

Let $0 < h < 1$ and $\alpha > 1$. Consider the following isosceles triangle:

Let θ_K be the maximum angle of K . Note that $R_K = h^\alpha/2 + h^{2-\alpha}/8$.

Hence, if $1 < \alpha < 2$, we see

$$\lim_{h \rightarrow 0} R_K = 0 \quad \text{and} \quad \lim_{h \rightarrow 0} \theta_K = \pi.$$

Therefore, *the circumradius condition is more general than the maximum angle condition.*

Hannukainen-Korotov-Křížek, The maximum angle condition is not necessary for convergence of the finite element method,

Numer. Math., 120 (2011) 79–88.

The area of surfaces – The Schwarz-Peano paradox (1880)

Let C be a curve in \mathbb{R}^n , $n \geq 2$. The length $L(C)$ of C is defined by

$$L(C) := \sup L(C_h), \quad C_h \text{ is an inscribed polygonal curve.}$$

For a surface S , one might think we could define the area $A(S)$ by

$$A(S) := \sup A(S_h), \quad S_h \text{ is an inscribed polygonal (triangular) surface.}$$

In 1880, Schwarz and Peano independently showed that this definition does not work.

Consider the cylinder with radius r and height H . We triangulate the side of the cylinder as shown in the picture.

Let A_E be the sum of the area of all triangles. Then, we have

$$\begin{aligned} A_E &= 2mnr \sin \frac{\pi}{n} \sqrt{\left(\frac{H}{m}\right)^2 + r^2 \left(1 - \cos \frac{\pi}{n}\right)^2} \\ &= 2\pi r \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}} \sqrt{H^2 + \left(\frac{m}{n^2}\right)^2 \frac{\pi^4 r^2}{4} \left(\frac{\sin \frac{\pi}{2n}}{\frac{\pi}{2n}}\right)^4}. \end{aligned}$$

Therefore, when $n \rightarrow \infty$, $m \rightarrow \infty$, the value $\lim_{m,n \rightarrow \infty} A_E$ depends on the value $\lim_{m,n \rightarrow \infty} (m/n^2)$. In particular,

$$\lim_{m,n \rightarrow \infty} A_E = 2\pi r H \iff \lim_{m,n \rightarrow \infty} \frac{m}{n^2} = 0.$$

In the Schwarz-Peano example, the circumradius R of triangles is

$$R = \frac{\pi^2 r^2 \frac{m}{n^2} \left(\frac{\sin \frac{\pi}{2n}}{\frac{\pi}{2n}} \right)^2 + \frac{H^2}{m}}{2 \sqrt{\frac{\pi^4 r^2}{4} \left(\frac{m}{n^2} \right)^2 \left(\frac{\sin \frac{\pi}{2n}}{\frac{\pi}{2n}} \right)^4 + H^2}}.$$

Therefore, when $m, n \rightarrow \infty$, we have

$$\lim_{m,n \rightarrow \infty} A_E = 2\pi r H \iff \lim_{m,n \rightarrow \infty} \frac{m}{n^2} = 0 \iff \lim_{m,n \rightarrow \infty} R = 0.$$

Kobayashi-Tsuchiya; On the circumradius condition for piecewise linear triangular elements, *submitted*, arXiv:1308.2113.

Extension to higher-order Lagrange interpolations

Let $\mathcal{T}_p^k(K)$ and $B_p^{m,k}(K)$ be defined by

$$\mathcal{T}_p^k(K) := \left\{ v \in W^{k+1,p}(K) \mid v(\mathbf{x}) = 0, \forall \mathbf{x} \in \Sigma^k(K) \right\},$$
$$B_p^{m,k}(K) := \sup_{v \in \mathcal{T}_p^k(K)} \frac{|v|_{m,p,K}}{|v|_{k+1,p,K}}.$$

From the definitions, we have

$$v - \mathcal{I}_K^k v \in \mathcal{T}_p^k(K), \quad \forall v \in W^{k+1,p}(K),$$
$$|v - \mathcal{I}_K^k v|_{m,p,K} \leq B_p^{m,k}(K) |v|_{k+1,p,K}.$$

Note that

$$B_p^{m,k}(K) = \inf \left\{ C; |v - \mathcal{I}_K^k v|_{m,p,K} \leq C |v|_{k+1,p,K}, \forall v \in W^{k+1,p}(K) \right\}.$$

An extension to high-order Lagrange interpolations

Theorem 8 (Kobayashi-Tsuchiya) *Let $K \subset \mathbb{R}^2$ be an arbitrary triangle. Let R_K be the circumradius of K and $h_K := \text{diam } K$. For any positive integer k and p , $1 \leq p \leq \infty$, there exists a constant $C_{k,p}$ independent of K such that, for $m = 0, 1, \dots, k$ and $\forall v \in W^{k+1,p}(K)$,*

$$\begin{aligned}|v - \mathcal{I}_K^k v|_{m,p,K} &\leq C_{k,p} R_K^m h_K^{k+1-2m} |v|_{k+1,p,K} \\&= C_{k,p} \left(\frac{R_K}{h_K} \right)^m h_K^{k+1-m} |v|_{k+1,p,K}.\end{aligned}$$

Note that *no geometric condition is imposed on K .*

Kobayashi-Tsuchiya, Error estimates for Lagrange interpolations on triangles,
submitted, arXiv:1408.2179

Remark 1

In many textbooks of the finite element methods, a triangulation τ of a domain $\Omega \subset \mathbb{R}^2$ is called **shape-regular** if

$$\frac{h_K}{\rho_K} \leq C, \quad \forall K \in \tau.$$

It seems, however, that the ratio $\frac{R_K}{h_K}$ is **more important** than $\frac{h_K}{\rho_K}$.

Let $h_1 \leq h_2 \leq h_K$ be the length of edges of K and θ_K be the maximum angle of K . Observe

$$\frac{R_K}{h_K} = \frac{\frac{h_1 h_2 h_K}{4S}}{h_K} = \frac{h_1 h_2}{2h_1 h_2 \sin \theta_K} = \frac{1}{2 \sin \theta_K},$$

$$\frac{R_K}{h_K} \leq C \iff \theta_K \leq \theta_0 < \pi : \text{The Maximum Angle Condition!}$$

Let $\{\tau_n\}_{n=1}^{\infty}$ be a sequence of triangulations of $\Omega \subset \mathbb{R}^2$ such that

$$\lim_{n \rightarrow \infty} R_n = 0, \quad R_n := \max_{K \in \tau_n} R_K.$$

We say that $\{\tau_n\}_{n=1}^{\infty}$ satisfies the **circumradius condition** of order 1. Let $h_n := \max_{K \in \tau_n} h_K$.

Corollary 9 Let $u \in H_0^1(\Omega)$ be a solution of the Poisson problem. Let u_n be the piecewise \mathcal{P}_k finite element solution on τ_n . Suppose that $\{\tau_n\}$ satisfies the circumradius condition and $u \in H^{k+1}(\Omega)$, $k \geq 2$. Then we have

$$\|u - u_n\|_{1,2,\Omega} \leq CR_n h_n^{k-1} |u|_{k+1,2,\Omega}.$$

If $\{\tau_n\}$ satisfies the maximum angle condition, we have

$$\|u - u_n\|_{1,2,\Omega} \leq Ch_n^k |u|_{k+1,2,\Omega}.$$

Remark 2

Note that even if $\{\tau_n\}$ does not satisfy the circumradius condition of order 1, smaller h_K can overwhelm R_K .

Suppose that, for γ , $1 \leq \gamma < k$,

$$\lim_{n \rightarrow \infty} (Rh^{\gamma-1})_n = 0, \quad (Rh^{\gamma-1})_n := \max_{K \in \tau_n} R_K h_K^{\gamma-1}.$$

We call the above condition the **circumradius condition** of order γ .

Theorem 10 Let $\{\tau_n\}_{n=1}^{\infty}$ be an sequence of triangulations of $\Omega \subset \mathbb{R}^2$. Let $u \in H^{k+1}(\Omega)$ be the exact solution, and u_n be the piecewise \mathcal{P}_k finite element solution on τ_n . Suppose that $\{\tau_n\}_{n=1}^{\infty}$ satisfies the circumradius condition of order γ , $1 \leq \gamma < k$. Then we have

$$\|u - u_n\|_{1,2,\Omega} \leq C(Rh^{\gamma-1})_n h_n^{k-\gamma} |u|_{k+1,2,\Omega}.$$

Related problems

- Develop a similar theory for Q_k -elements in 2-dim.
- Perform numerical experiments to see how finite element solutions of the (Navier-)Stokes equation behave under the circumradius condition.
- Find a good condition for tetrahedron or n -simplex, $n \geq 3$ similar to the circumradius condition.
- Error estimation of $\|u - u_h\|_{1,\infty,\Omega}$ under the circumradius condition.
-

References

- Babuška, Aziz; On the angle condition in the finite element method, SIAM J. Numer. Anal., **13** (1976) 214–226.
- Jamet; Estimations d'erreur pour des éléments finis droits presque dégénérés, R.A.I.R.O. Anal. Numer., **10** (1976) 43–61.
- Kobayashi, Tsuchiya; A Babuška-Aziz type proof of the circumradius condition, Japan J. Indust. Appl. Math., **31** (2014) 193–210.
- Kobayashi, Tsuchiya; On the circumradius condition for piecewise linear triangular elements, *submitted*, arXiv:1308.2113.
- Kobayashi, Tsuchiya; Error estimates for Lagrange interpolations on triangles, *submitted*, arXiv:1408.2179.
- Liu, Kikuchi; Analysis and estimation of error constants for P_0 and P_1 interpolations over triangular finite elements, J. Math. Sci., Univ. Tokyo, **17** (2010) 27–78.
- Shenk; Uniform error estimates for certain narrow Lagrange finite elements, Math. Comp., **63** (1994) 105–119.