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The kth-order Lagrange interpolation on triangles
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k : a positive interger,

Pk : the set of polynomials whose order are at most k,

K ⊂ R
2 : any triangle on R

2,

(λ1, λ2, λ3) : the barycentric coordinate on K,

ai : integers,

Σk(K) :=
{(a1

k
,
a2
k
,
a3
k

)

∈ K
∣

∣

∣
0 ≤ ai ≤ k, a1 + a2 + a3 = k

}

.
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K and Σk(K), k = 1, k = 2, k = 3.

For v ∈ C0(K), define Ik
Kv ∈ Pk by

(Ik
Kv)(x) = v(x), ∀x ∈ Σk(K).

We would like to estimate the error ‖v − Ik
Kv‖1,2,K .



The piecewise Pk finite element method
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Ω ⊂ R
2 : a bounded polygonal domain

τ : a proper triangulation of Ω

Sτ :=
{

vh ∈ C0(Ω) ∩H1
0 (Ω)

∣

∣ v|K ∈ Pk, ∀K ∈ τ
}

Model problem Find u ∈ H1
0 (Ω) such that

−∆u = f for a given f ∈ L2(Ω).

Weak form Find u ∈ H1
0 (Ω) such that

∫

Ω
∇u · ∇vdx =

∫

Ω
fvdx for ∀v ∈ H1

0 (Ω).

Pk FEM Find uh ∈ Sτ such that
∫

Ω
∇uh · ∇vhdx =

∫

Ω
fvhdx for ∀vh ∈ Sτ .
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Let u ∈ H1
0 (Ω) ∩H2(Ω) and uh ∈ Sτ be the exact and finite element

solutions, respectively. Then, by Céa’s Lemma, we have

‖u− uh‖1,2,Ω ≤ C inf
vh∈Sh

‖u− vh‖1,2,Ω

≤ C‖u− Ik
τ u‖1,2,Ω

= C

(

∑

K∈τ

‖u− Ik
Ku‖21,2,K

)1/2

,

where C is a positive constant.

Therefore, estimating ‖u− Ik
Ku‖1,2,K is very important in the error analysis of

finite element methods.



Nakao’s theory for numerical verifications of PDEs
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For a given triangle K ⊂ R
2, let C(K) be the smallest constant such that

‖v − Ik
Kv‖1,2,K ≤ C(K)|v|2,2,K ∀v ∈ H2(K).

In Nakao’s theory, it is very important to obtain a concrete value (or good upper

bound) of C(K) for a given triangle K.



Geometric Conditions on Triangles
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It is known that we need to impose a geometric condition on triangles to obtain

an error estimation.

• The minimum angle condition

• Shape-regularity

• The maximum angle condition

• Kobayashi’s formula

• The circumradius condition



The minimum angle condition
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Let hK be the diameter (or the length of the longest edge) of K.

Theorem 1 Let θ0, 0 < θ0 < π/3 be a constant. If any angle θ of K satisfies
θ ≥ θ0, there exists a constant C = C(θ0) independent of hK such that, for

∀hK ≤ h0,

‖v − I1
Kv‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K).

Zlámal, On the finite element method,

Numer. Math., 12 (1968) 394–409.



Shape-regularity
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Let ρK be the diameter of the inscribed circle of K.

Theorem 2 Let σ > 0 be a constant. If hK/ρK ≤ σ, there exists a constant
C = C(σ) independent of hK such that, for ∀hK ≤ h0,

‖v − I1
Kv‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K).

Ciarlet, The Finite Element Methods for Elliptic Problems,

North Holland, 1978, reprint by SIAM 2008.

Brenner-Scott, The Mathematical Theory of Finite Element Methods,

3rd edition, Springer, 2008.

Note that the shape-regularity is equivalent to the minimum angle condition in

R
2



The maximum angle condition
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Theorem 3 Let θ1, 2π/3 < θ1 < π be a constant. If any angle θ of K
satisfies θ ≤ θ1, there exists a constant C = C(θ1) independent of hK such

that, for ∀hK ≤ h0,

‖v − I1
Kv‖1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K).

Babuška-Aziz, On the angle condition in the finite element method,

SIAM J. Numer. Anal., 13 (1976) 214–226.



Kobayashi’s formula
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Let A, B, C be the lengths of edges of K and S be the area of K.

Theorem 4 Let C(K) be defined by

C(K) :=

√

A2B2C2

16S2
−

A2 +B2 + C2

30
−

S2

5

(

1

A2
+

1

B2
+

1

C2

)

,

then we have the following estimate:

|v − I1
Kv|1,2,K ≤ C(K)|v|2,2,K , ∀v ∈ H2(K).

Kobayashi, On the interpolation constants over triangular elements

(in Japanese), RIMS Kokyuroku, 1733 (2011), 58-77.



A corollary of Kobayashi’s formula
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Let RK be the circumradius of K. Note that

RK =
ABC

4S
,

and therefore

C(K) :=

√

A2B2C2

16S2
−

A2 +B2 + C2

30
−

S2

5

(

1

A2
+

1

B2
+

1

C2

)

< RK .

Corollary 5

|v − I1
Kv|1,2,K ≤ RK |v|2,2,K , ∀v ∈ H2(K).



The circumradius condition
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Let RK be the circumradius of K.

Theorem 6 There exists a constant Cp independent of K such that, for
RK ≤ 1,

‖v − I1
Kv‖1,p,K ≤ CpRK |v|2,p,K , ∀v ∈ W 2,p(K), 1 ≤ p ≤ ∞.

Kobayashi-Tsuchiya, A Babuška-Aziz type proof of the circumradius condition,

Japan Journal of Industrial and Applied Mathematics, 31 (2014) 193–210.

Rand, Delaunay refinement algorithms for numerical methods,

Ph.D. dissertation, Carnegie Mellon University, 2009.



The circumradius condition (cont.)
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Let {τn}
∞
n=1 be a sequence of triangulations of Ω ⊂ R

2 such that

lim
n→∞

Rn = 0, Rn := max
K∈τn

RK .

We say that {τn}
∞
n=1 satisfies the circumradius condition (of order 1).

Let u ∈ H1
0 (Ω) and un ∈ Sτn be the exact and piecewise P1 finite element

solutions of Poisson’s equation −∆u = f ∈ L2(Ω).

Corollary 7 If {τn} satisfies the circumradius condition and u ∈ H2(Ω), then

we have

‖u− un‖1,2,Ω ≤ CRn|u|2,2,Ω.



The circumradius RK and the maximum angle θK
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Let 0 < h < 1 and α > 1. Consider the following isosceles triangle:

h

hα

Let θK be the maximum angle of K. Note that RK = hα/2 + h2−α/8.

Hence, if 1 < α < 2, we see

lim
h→0

RK = 0 and lim
h→0

θK = π.

Therefore, the circumradius condition is more general than the maximum angle

condition.

Hannukainen-Korotov-Křı́žek, The maximum angle condition is not necessary

for convergence of the finite element method,

Numer. Math., 120 (2011) 79–88.



The area of surfaces – The Schwarz-Peano paradox (1880)
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Let C be a curve in R
n, n ≥ 2. The length L(C) of C is defined by

L(C) := supL(Ch), Ch is an inscribed polygonal curve.

C

Ch

For a surface S, one might think we could define the area A(S) by

A(S) := supA(Sh), Sh is an inscribed polygonal (triangular) surface.
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In 1880, Schwarz and Peano independently showed that this definition does not

work.

Consider the cylinder with radius r and height H . We triangulate the side of the

cylinder as shown in the picture.

2πr

H
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Let AE be the sum of the area of all triangles. Then, we have

AE = 2mnr sin
π

n

√

(

H

m

)2

+ r2
(

1− cos
π

n

)2

= 2πr
sin π

n
π
n

√

H2 +
(m

n2

)2 π4r2

4

(

sin π
2n

π
2n

)4

.

Therefore, when n → ∞, m → ∞, the value limm,n→∞AE depends on the

value limm,n→∞(m/n2). In particular,

lim
m,n→∞

AE = 2πrH ⇐⇒ lim
m,n→∞

m

n2
= 0.
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In the Schwarz-Peano example, the circumradius R of triangles is

R =
π2r2 m

n2

(

sin π
2n

π
2n

)2
+ H2

m

2

√

π4r2

4

(

m
n2

)2
(

sin π
2n

π
2n

)4
+H2

.

Therefore, when m,n → ∞, we have

lim
m,n→∞

AE = 2πrH ⇐⇒ lim
m,n→∞

m

n2
= 0 ⇐⇒ lim

m,n→∞
R = 0.

Kobayashi-Tsuchiya; On the circumradius condition for piecewise linear
triangular elements, submitted, arXiv:1308.2113.



Extension to higher-order Lagrange interpolations
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Let T k
p (K) and Bm,k

p (K) be defined by

T k
p (K) :=

{

v ∈ W k+1,p(K)
∣

∣

∣
v(x) = 0, ∀x ∈ Σk(K)

}

,

Bm,k
p (K) := sup

v∈T k
p (K)

|v|m,p,K

|v|k+1,p,K
.

From the definitions, we have

v − Ik
Kv ∈ T k

p (K), ∀v ∈ W k+1,p(K),

|v − Ik
Kv|m,p,K ≤ Bm,k

p (K)|v|k+1,p,K .

Note that

Bm,k
p (K) = inf

{

C; |v − Ik
Kv|m,p,K ≤ C|v|k+1,p,K , ∀v ∈ W k+1,p(K)

}

.



An extension to high-order Lagrange interpolations
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Theorem 8 (Kobayashi-Tsuchiya) Let K ⊂ R
2 be an arbitrary triangle. Let

RK be the circumradius of K and hK := diamK. For any positive integer k
and p, 1 ≤ p ≤ ∞, there exists a constant Ck,p independent of K such that,

for m = 0, 1, · · · , k and ∀v ∈ W k+1,p(K),

|v − Ik
Kv|m,p,K ≤ Ck,pR

m
Khk+1−2m

K |v|k+1,p,K

= Ck,p

(

RK

hK

)m

hk+1−m
K |v|k+1,p,K .

Note that no geometric condition is imposed on K.

Kobayashi-Tsuchiya, Error estimates for Lagrange interpolations on triangles,

submitted, arXiv:1408.2179



Remark 1
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In many textbooks of the finite element methods, a triangulation τ of a domain

Ω ⊂ R
2 is called shape-regular if

hK
ρK

≤ C, ∀K ∈ τ.

It seems, however, that the ratio RK

hK
is more important than hK

ρK
.

Let h1 ≤ h2 ≤ hK be the length of edges of K and θK be the maximum

angle of K. Observe

RK

hK
=

h1h2hK

4S

hK
=

h1h2
2h1h2 sin θK

=
1

2 sin θK
,

RK

hK
≤ C ⇐⇒ θK ≤ θ0 < π : The Maximum Angle Condition!
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Let {τn}
∞
n=1 be a sequence of triangulations of Ω ⊂ R

2 such that

lim
n→∞

Rn = 0, Rn := max
K∈τn

RK .

We say that {τn}
∞
n=1 satisfies the circumradius condition of order 1. Let

hn := maxK∈τn hK .

Corollary 9 Let u ∈ H1
0 (Ω) be an solution of the Poisson problem. Let un be

the piecewise Pk finite element solution on τn. Supoose that {τn} satisfies the

circumradius condition and u ∈ Hk+1(Ω), k ≥ 2. Then we have

‖u− un‖1,2,Ω ≤ CRnh
k−1
n |u|k+1,2,Ω.

If {τn} satisfies the maximum angle condition, we have

‖u− un‖1,2,Ω ≤ Chkn|u|k+1,2,Ω.



Remark 2
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Note that even if {τn} does not satisfy the circumradius condition of order 1,

smaller hK can overwhelm RK .

Suppose that, for γ, 1 ≤ γ < k,

lim
n→∞

(Rhγ−1)n = 0, (Rhγ−1)n := max
K∈τn

RKhγ−1
K .

We call the above condition the circumradius condition of order γ.

Theorem 10 Let {τn}
∞
n=1 be an sequence of trianglulations of Ω ⊂ R

2. Let

u ∈ Hk+1(Ω) be the exact solution, and un be the piecewise Pk finite

element solution on τn. Suppose that {τn}
∞
n=1 satisfies the circumradius

condition of order γ, 1 ≤ γ < k. Then we have

‖u− un‖1,2,Ω ≤ C(Rhγ−1)nh
k−γ
n |u|k+1,2,Ω.



Related problems
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• Develop a similar theory for Qk-elements in 2-dim.

• Perform numerical experiments to see how finite element solutions of the

(Navier-)Stokes equation behave under the circumradius condition.

• Find a good condition for tetrahedron or n-simplex, n ≥ 3 similar to the

circumradius condition.

• Error estimation of ‖u− uh‖1,∞,Ω under the circumradius condtion.

• ......
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