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Motive

Preceding studies: Nakao’s Theory

M. T. Nakao developed a method to verify the existence of
solutions to an elliptic boundary value problem [7, Nakao ’88].

Computer Assisted Analysis for PDEs

Motive: to generalize Nakao’s Method

Nakao’s method implicitly assumed the finite element space to
be conforming.

Interested in Nakao’s Method with nonconforming P1 FEM.
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Motive

Why do we use nonconforming FEM?

In 2D elasticity problem, convergence of conforming FEM is
slow (Rocking Effect) [1, Babuška et al. ’92].

A device to avoid Rocking Effect: nonconforming FEM
[3, Lee et al. ’03], [5, Lovadina ’05].

In such cases, engineers use nonconforming FEM in structual
analysis software tools.

Tomoki UDA Numer. Verif. for Elliptic BVP with Nonconforming P1 FE



Introduction
Preliminaries

Nakao’s method
Nakao’s method with nonconforming elements

Summary

Motive
Table of Contents

Table of Contents

. Introduction
0.1 Motive
0.2 Table of Contents
1. Preliminaries
1.1 Notations
1.2 FEM
2. Nakao’s method
2.1 Configuration
2.2 Idea
2.3 Sufficient condition for

infinite dimensional part
2.4 Sufficient condition for

finite dimensional part
2.5 Algorithm
3. Nakao’s method with
nonconforming elements
3.1 Idea’
3.2 Sufficient condition for

infinite dimensional part’
3.3 Sufficient condition for

finite dimensional part’
3.4 Boundary-integration terms
3.5 Numerical examples
4. Summary
4.1 References

§.3 Nakao’s Method with nonconforming FEs

We generalize the algorithm for the
nonconforming P1 FE.

We obtain constructive inequalities for
integrations on element boundaries which
come from nonconforming FE.

We show numerical results of our proposal
method.
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Subsections

1.1 Notations
1.2 FEM
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Notations

Let IR := { [a, b] | a ≤ b }.
Let Ω ⊂ R2 be a bounded convex polygon.

For simplicity, suppose Ω := (0, 1)2.
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Notations

Notation. Inner products and norms on Hilbert spaces

(u, v)L2(Ω) :=

∫
Ω
uv dx |u|2H1(Ω)

:=
2∑

i=1

‖∂xiu‖
2
L2(Ω)

(u, v ∈ L2(Ω)) (u ∈ H1(Ω))

(u, v)L2(Ω) :=

∫
Ω
u · v dx |u|2H2(Ω)

:=
2∑

i,j=1

∥∥∂xi∂xju
∥∥2
L2(Ω)

(u, v ∈ L2(Ω)2) (u ∈ H2(Ω))

‖u‖2H2(Ω)
:= ‖u‖2L2(Ω) + |u|2H1(Ω) + |u|2H2(Ω)

(u ∈ H2(Ω))
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Notations

Let {Th}h be regular triangulations.

For simplicity, suppose T1/N is the
P1 triangulation shown in the
figure.
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Figure: Triangulation Th
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Figure: numerical solution by
conforming P1 FEM
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Nonconforming P1 FE

A node is a midpoint of each
edge of each triangle T ∈ Th.
Let ϕi be a piecewise linear
function s.t.

ϕi = 1 on the i-th node,
ϕi = 0 on other nodes,
continuous in each triangle
T ∈ Th,
continuous at each node.
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Figure: Nonconforming P1 basis
function ϕi
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Nonconforming P1 FE

Definition. Nonconforming P1 FE space

Let Nh0 be the number of interior nodes in Ω.

Xh0 := span {ϕ1, . . . , ϕNh0
}.

Notation. Inner product on the FE space

For each u, v ∈ Xh0 +H1
0 (Ω),

(u, v)h :=
∑
T∈Th

(∇u,∇v)L2(T ) .

(
Xh0 +H1

0 (Ω) , ( · , · )h
)
is a Hilbert space [2].
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Section 2

Nakao’s method

Subsections

2.1 Configuration
2.2 Idea
2.3 Sufficient condition for infinite dimensional part
2.4 Sufficient condition for finite dimensional part
2.5 Algorithm
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Configuration

Let f : H1
0 (Ω) −→ L2(Ω) be a confinuous map.

2D elliptic BVP

Find u ∈ H2(Ω) s.t.{
−4u = f(u) in Ω ,

u = 0 on ∂Ω .

Equivalent fixpoint problem

Find u ∈ H1
0 (Ω) s.t.

u = −4−1 f(u) .
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Idea

Let Yh0 ⊂ H1
0 (Ω) be a conforming FE space and uh ∈ Yh0 be a

numerical solution obtained by FEM.

We expect there exists an exact solution nearby uh.

We want to verify existence of an exact solution in a
“candidate” set U . We use Schauder’s fixpoint theorem to
verify the existence.

For applying the fixpoint theorem, we now formulate sufficient
conditions which we can check rigorously in computers.
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Idea
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Definition. Candidate set

Let U ⊂ H1
0 (Ω) be a closed convex set s.t.:

U = uh + Uh + U∗ ,

Uh =

Nh0∑
i=1

Uiϕi ⊂ Yh0 (Ui ∈ IR , Uh = t(Ui)i) ,

U∗ =
{
u∗ ∈ Y ⊥

h0

∣∣∣ ‖u‖h ≤ α
}
⊂ Y ⊥

h0 (α > 0) .

We here call U a candidate set.
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Let Ph : H
1
0 (Ω) −→ Yh0 be the orthogonal projection onto Yh0.

Infinite dimensional part + finite dimensional part

−4−1 f(U) ⊂ U holds if,

−(I − Ph)4−1 f(U) ⊂ U∗ , (A)

−Ph4−1 f(U) ⊂ uh + Uh . (B)
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Sufficient condition for infinite dimensional part

Theorem. Sufficient condition for infinite dimensional part

Let Πc
h be the conforming P1 interpolator from H2(Ω) ∩H1

0 (Ω)
onto Yh0. Then, (A) holds if,

‖I −Πc
h‖ sup

u∈U
‖f(u)‖L2 ≤ α. (1)

Remark.

If we know an explicit upper bound C(h) of ‖I −Πc
h‖ and

one of sup‖f(u)‖, we can check (1) rigorously in computers.

C(h)→ 0 as h→ 0. Therefore, we expect (1) to hold if h
small enough.
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Sufficient condition for finite dimensional part

Theorem. Sufficient condition for finite dimensional part

Let Dij := (∇ϕj ,∇ϕi)L2 . Suppose interval vectors d =
t
(di)i ∈ IRNh0

and Vh ∈ IRNh0 satisfy D−1d ⊂ Vh and

{ (f(u), ϕi)L2 − (uh, ϕi)h | u ∈ U } ⊂ di (2)

(i = 1, . . . , Nh0) .

Then, (B) holds if,

Vh ⊂ Uh .

Remark.

We can calculate Vh by Rump’s algorithm [8, Rump ’93].
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Algorithm

Calculate a next candidate
set V by (1) and (2).

V ⊂ U =⇒ O.K.

If not, U ← V and iterate.

When iterating, it is good
idea to use ε-inflation
[9, Rump ’98].

uh ← numerical solution by FEM
Uh ← some interval vector
α← some positive value
for i = 0 to MAXIT do

β ← L.H.S. of (1)
d← L.H.S. of (2)
Vh ← D−1d (Rump’s algorithm)
if Vh ⊂ Uh & β ≤ α then

Succeeded
else

(Uh, α)← update(Vh, β)
end if

end for
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Section 3

Nakao’s method with nonconforming elements

Subsections

3.1 Idea’
3.2 Sufficient condition for infinite dimensional part’
3.3 Sufficient condition for finite dimensional part’
3.4 Boundary-integration terms
3.5 Numerical examples
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Idea’

Let Xh0 6⊂ H1
0 (Ω) be a nonconforming FE space and uh ∈ Xh0 be

a numerical solution obtained by FEM.

We expect there exists an exact solution u ∈ H1
0 nearby uh ∈ Xh0.

We want to verify existence of an exact solution in a “candidate”
set U . We use Schauder’s fixpoint theorem to verify the existence.

For applying the fixpoint theorem, we now formulate sufficient
conditions which we can check rigorously in computers.

=⇒ We now consider a fixpoint problem on Xh0 +H1
0 (Ω).
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Idea’
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Definition. Candidate set’ (type-I)

Let U ⊂ Xh0 +H1
0 (Ω) be a closed convex set s.t.:

U = uh + Uh + U∗ ,

Uh =

Nh0∑
i=1

Uiϕi ⊂ Xh0 (Ui ∈ IR , Uh = t(Ui)i) ,

U∗ =
{
u∗ ∈ X⊥

h0

∣∣∣ ‖u‖h ≤ α
}
⊂ X⊥

h0 (α > 0) .

We here call U a candidate set.
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Definition. Candidate set’ (type-II)

Let U ⊂ Xh0 +H1
0 (Ω) be a closed convex set s.t.:

U = uh + Uh + U∗ ,

Uh =

{
Nh0∑
i=1

uiϕi

∣∣∣∣∣ t(ui)i ∈ D−1Uh

}
(Uh ∈ IRNh0) ,

U∗ =
{
u∗ ∈ X⊥

h0

∣∣∣ ‖u‖h ≤ α
}
⊂ X⊥

h0 (α > 0) .

In a later slide, we will explain why we define the type-II.
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Let Ph : Xh0 +H1
0 (Ω) −→ Xh0 be the orthogonal projection onto

Xh0.

Infinite dimensional part + finite dimensional part

−4−1 f(U) ⊂ U holds if,

−(I − Ph)4−1 f(U) ⊂ U∗ , (A’)

−Ph4−1 f(U) ⊂ uh + Uh . (B’)
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Sufficient condition for infinite dimensional part’

Theorem. Sufficient condition for infinite dimensional part’

Let Πnc
h be the nonconforming P1 interpolator from

H2(Ω) ∩H1
0 (Ω) onto Xh0. Then, (A’) holds if,

‖I −Πnc
h ‖ sup

u∈U
‖f(u)‖L2 ≤ α. (3)

Remark.

If we know an explicit upper bound C(h) of ‖I −Πnc
h ‖ and

one of sup‖f(u)‖, we can check (3) rigorously in computers.

An explicit upper bound of ‖I −Πnc
h ‖ is shown by [4, Liu ’09].

Tomoki UDA Numer. Verif. for Elliptic BVP with Nonconforming P1 FE



Introduction
Preliminaries

Nakao’s method
Nakao’s method with nonconforming elements

Summary

Idea’
Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms
Numerical examples

Sufficient condition for finite dimensional part’ (type-I)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let Dij := (ϕj , ϕi)h. Suppose interval vectors d =
t
(di)i ∈ IRNh0 and

Vh ∈ IRNh0 satisfy D−1d ⊂ Vh and{
(f(u), ϕi)L2 − (uh, ϕi)h + b

(
−4−1 f(u) ;ϕi

) ∣∣ u ∈ U
}
⊂ di

(i = 1, . . . , Nh0) ,

where b( · ;ϕi) are boundary-integrations

b(v;ϕi) :=

∫
∂Ki

∂v

∂ν
ϕi ds (v ∈ H2(Ω) ∩H1

0 (Ω)) .

Then, (B’) holds if Vh ⊂ Uh.
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Boundary-integration terms

Conforming case

A FE function is an element of H1
0 (Ω).

Therefore, the boundary-integration vanishes.

Nakao’s Theory implicitly assumes this property
[6, 11, 12, 10]．

Nonconforming case

A FE function does not vanish on the boundary of its support.
Therefore, the boundary-integration does not vanish.

Using Bramble-Hilbert Lemma, we get a constructive upper
bound estimate of O(h) of

∣∣b(−4−1 f(u) ;ϕi

)∣∣.
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Lemma. Bramble-Hilbert

For every v ∈ H2(Ω),

inf
p∈P1(Ω)

‖v + p‖H2 ≤ CBH(Ω) |v|H2 ,

where

CP(Ω) :=
diamΩ

π
,

CBH(Ω) :=
√

C2
P

(
C2
P + 1

)
+ 1 .
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Theorem. Estimates of boundary-integrations

For every v ∈ H2(Ω) ∩H1
0 (Ω),

|b(v;ϕi)| ≤ CBH

(
K̂k(i)

)
h
∥∥ϕ̂k(i)

∥∥
H1

(
K̂k(i)

) ‖4 v‖L2(Ω) .

x̂

ŷ

O 1

1

K̂0

x̂

ŷ

O 1

1

−1

K̂1

Figure: K̂k(i) ∼ Ki = suppϕi
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Numerical example with type-I

u := π−2 sin(πx) sin(πy)

=⇒

{
−4u = 0.001π2u+ 1.999 sin(πx) sin(πy) in Ω ,

u = 0 on ∂Ω .

# of ite- candidate set U next candidate set V verifi-
rations ‖Uh‖∞ α ‖Vh‖∞ β cation

1 1.0002e-5 0.1309620 11.1799 0.0795412

2 11.1811 0.0796412 11.2103 0.0797180

3 11.2114 0.0798180 11.2104 0.0797184 OK

Table: Verification with mesh size h = 1/8 and type-I candidate sets
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The interval vector Uh becomes too large.

It is difficult to use for numerical validated computations.

=⇒ Using type-II candidate sets, we improved numerical results!
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It is difficult to use for numerical validated computations.

=⇒ Using type-II candidate sets, we improved numerical results!
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Sufficient condition for finite dimensional part’ (type-I)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let Dij := (ϕj , ϕi)h. Suppose interval vectors d =
t
(di)i ∈ IRNh0 and

Vh ∈ IRNh0 satisfy D−1d ⊂ Vh and{
(f(u), ϕi)L2 − (uh, ϕi)h + b

(
−4−1 f(u) ;ϕi

) ∣∣ u ∈ U
}
⊂ di

(i = 1, . . . , Nh0) ,

where b( · ;ϕi) are boundary-integrations

b(v;ϕi) :=

∫
∂Ki

∂v

∂ν
ϕi ds (v ∈ H2(Ω) ∩H1

0 (Ω)) .

Then, (B’) holds if Vh ⊂ Uh.
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Sufficient condition for finite dimensional part’ (type-II)

Theorem. Sufficient condition for finite dimensional part’ (type-II)

Let Dij := (ϕj , ϕi)h. Suppose interval vector d =
t
(di)i satisfies{

(f(u), ϕi)L2 − (uh, ϕi)h + b
(
−4−1 f(u) ;ϕi

) ∣∣ u ∈ U
}
⊂ di

(i = 1, . . . , Nh0) ,

where b( · ;ϕi) are boundary-integrations

b(v;ϕi) :=

∫
∂Ki

∂v

∂ν
ϕi ds (v ∈ H2(Ω) ∩H1

0 (Ω)) .

Then, (B’) holds if d ⊂ Uh.

We need NOT solve a linear system here!
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Numerical example with type-I

u := π−2 sin(πx) sin(πy)

=⇒

{
−4u = 0.001π2u+ 1.999 sin(πx) sin(πy) in Ω ,

u = 0 on ∂Ω .

# of ite- candidate set U next candidate set V verifi-
rations ‖Uh‖∞ α ‖Vh‖∞ β cation

1 1.0002e-5 0.1309620 11.1799 0.0795412

2 11.1811 0.0796412 11.2103 0.0797180

3 11.2114 0.0798180 11.2104 0.0797184 OK

Table: Verification with mesh size h = 1/8 and type-I candidate sets
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Numerical example with type-II

u := π−2 sin(πx) sin(πy)

=⇒

{
−4u = 0.001π2u+ 1.999 sin(πx) sin(πy) in Ω ,

u = 0 on ∂Ω .

# of ite- candidate set U next candidate set V verifi-
rations ‖Uh‖∞ α ‖d‖∞ β cation

1 0.00101012 0.02 0.89045 0.0795599

2 0.899354 0.0895599 0.91856 0.0820849

3 0.927745 0.0920849 0.919445 0.0821645 OK

Table: Verification with mesh size h = 1/8 and type-II candidate sets
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Asymptotic behavior of a-posteriori error estimates
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1/h

‖Uh‖∞

Figure: A-posteriori error esitimate of finite dimensional part
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Asymptotic behavior of a-posteriori error estimates
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Figure: A-posteriori error esitimate of infinite dimensional part
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Section 4

Summary
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Summary

Our works

generalized Nakao’s method for nonconforming P1 FEM

got constructive inequalities for boundary-integrations

introduced type-II candidate sets

showed numerically validated results for approximated solution
to some elliptic BVP with nonconforming P1 FEM
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Future works

use other FEMs (e.g. P2 FEM)

try on “non-classical” Nakao’s methods

apply our proposal method to other elliptic BVPs (e.g. 2D
elasticity problem, free-boundary problem of vortex patch,
etc.)
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More precise fixpoint formulation

Let f : L2(Ω) −→ L2(Ω) be a map.

Assumption.

Assume, for any h > 0, f |Xh0+H1
0 (Ω) is a continuous bounded map.

2D elliptic BVP

Find u ∈ H2(Ω) s.t.{
−4u = f(u) in Ω ,

u = 0 on ∂Ω .
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More precise fixpoint formulation

Equivalent fixpoint problem

(*) Find u ∈ H1
0 (Ω) s.t.

u = −4−1 f(u) .

Equivalent fixpoint problem on Xh0 +H1
0

(**) Find u ∈ Xh0 +H1
0 (Ω) s.t.

u = −4−1 f(u) .
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More precise fixpoint formulation

Remark.

L2 −4−1

−−−−→ H2 ∩H1
0 ↪−→ H1

0 ↪−→ Xh0 +H1
0

f |
Xh0+H1

0−−−−−−−→ L2 .

(Equiv.) If u ∈ Xh0 +H1
0 is a solution to (**), u is an

element of H1
0 . Therefore, u ∈ H1

0 is also a solution to (*).

(Error) In general, a solution u is not an element of Xh0.
However, we can measure an error between u and uh in the
Xh0 +H1

0 framework.
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With type-II, do you really solve no linear systems?

In fact, one has to solve linear systems in other places.

Recall.

{
(f(u), ϕi)L2 − (uh, ϕi)h + b

(
−4−1 f(u) ;ϕi

) ∣∣ u ∈ U
}
⊂ di ,

‖I −Πnc
h ‖ sup

u∈U
‖f(u)‖L2 ≤ α.
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Sufficient condition for infinite dimensional part’

Theorem. Sufficient condition for infinite dimensional part’

Let Πnc
h be the nonconforming P1 interpolator from

H2(Ω) ∩H1
0 (Ω) onto Xh0. Then, (A’) holds if,

‖I −Πnc
h ‖ sup

u∈U
‖f(u)‖L2 ≤ α. (3)

Remark.

If we know an explicit upper bound C(h) of ‖I −Πnc
h ‖ and

one of sup‖f(u)‖, we can check (3) rigorously in computers.

An explicit upper bound of ‖I −Πnc
h ‖ is shown by [4, Liu ’09].
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Proof. Sufficient condition for infinite dimensional part’

Assume ‖I −Πnc
h ‖ supu∈U‖f(u)‖L2 ≤ α. Let u be an element of

the candidate set U . Then,∥∥− (I − Ph)4−1 f(u)
∥∥
h

≤ ‖I −Πnc
h ‖

∥∥44−1 f(u)
∥∥
L2 (by [4])

= ‖I −Πnc
h ‖ ‖f(u)‖L2

≤ α (by assumption) .

Consequently, −(I − Ph)4−1 f(u) ∈ U∗ holds.
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Sufficient condition for finite dimensional part’ (type-I)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let Dij := (ϕj , ϕi)h. Suppose interval vectors d =
t
(di)i ∈ IRNh0 and

Vh ∈ IRNh0 satisfy D−1d ⊂ Vh and{
(f(u), ϕi)L2 − (uh, ϕi)h + b

(
−4−1 f(u) ;ϕi

) ∣∣ u ∈ U
}
⊂ di

(i = 1, . . . , Nh0) ,

where b( · ;ϕi) are boundary-integrations

b(v;ϕi) :=

∫
∂Ki

∂v

∂ν
ϕi ds (v ∈ H2(Ω) ∩H1

0 (Ω)) .

Then, (B’) holds if Vh ⊂ Uh.
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Proof. Sufficient condition for finite dimensional part’

Assume Vh ⊂ Uh. Let u be an arbitrary element of the candidate
set U . Then, by definition of Ph, we get −Ph4−1 f(u) = uh + vh
(∃vh ∈ Xh0). We denote v by the coefficient vector of vh.

(vh, ϕi)h =
(
−Ph4−1 f(u)− uh, ϕi

)
h

=
(
−4−1 f(u), ϕi

)
h
− (uh, ϕi)h

= (f(u), ϕi)L2 + b
(
−4−1 f(u) ;ϕi

)
− (uh, ϕi)h

∈ di ,

∴ Dv ∈ d .

Therefore, by the assumption, it follows that vh ∈ Uh.
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Theorem. Estimates of boundary-integrations

For every v ∈ H2(Ω) ∩H1
0 (Ω),

|b(v;ϕi)| ≤ CBH

(
K̂k(i)

)
h
∥∥ϕ̂k(i)

∥∥
H1

(
K̂k(i)

) ‖4 v‖L2(Ω) .

x̂

ŷ

O 1

1

K̂0

x̂

ŷ

O 1

1

−1

K̂1

Figure: K̂k(i) ∼ Ki = suppϕi
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Proof. Estimates of boundary-integrations

Using change of variables by (the restriction of) the affine map

Φi : Ki
1:1−−→ K̂k, it follows from integration by parts:

|b(v;ϕi)| ≤ ‖v̂‖H2(K̂k)
· ‖ϕ̂k‖H1(K̂k)

,

∴ ‖b (( · ) ◦Φi;ϕi)‖ ≤ ‖ϕ̂k‖H1(K̂k)
.

Note that b(( · ) ◦Φi;ϕi) vanishes on P1. Then, applying
Bramble-Hilbert lemma to b(( · ) ◦Φi;ϕi), we get:

|b(v;ϕi)| ≤ CBH(K̂k) ‖ϕ̂k‖H1(K̂k)
|v̂|H2(K̂k)

= CBH(K̂k) ‖ϕ̂k‖H1(K̂k)
h|v|H2(Ki)

.
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