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Motive

Preceding studies: Nakao's Theory

m M. T. Nakao developed a method to verify the existence of
solutions to an elliptic boundary value problem [7, Nakao '88].

m Computer Assisted Analysis for PDEs

Motive: to generalize Nakao's Method

m Nakao's method implicitly assumed the finite element space to
be conforming.

m Interested in Nakao's Method with nonconforming P; FEM.
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Motive

Why do we use nonconforming FEM?

m In 2D elasticity problem, convergence of conforming FEM is
slow (Rocking Effect) [1, Babuska et al. '92].

m A device to avoid Rocking Effect: nonconforming FEM
[3, Lee et al. '03], [5, Lovadina '05].

m In such cases, engineers use nonconforming FEM in structual
analysis software tools.
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Notations

FEM

Section 1

1.1 Notations
1.2 FEM
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Notations

m Let IR :={[a,b] |a <b}.
m Let O C R? be a bounded convex polygon.
m For simplicity, suppose € := (0, 1)2.
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Notations

Notation. Inner products and norms on Hilbert spaces

2
(u,v)p2(q) = /Q uv dx |u|§{1(m 3= ;HBMU”QL%Q)
(u,v € L*(Q)) (ue HY(Q))
2
(w,v) p2(q) = /Qu'vdx |u|?{2(n) = i;IHawiaZj“Hi?(n)
(u,v € L*(Q)?) (u € H?(Q))
Hulléz(g) 8= ||u||i2(g) + ‘u@ﬂ(n) + |u‘§12(ﬂ)
(v € H2(Q))
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Notations

m Let {73}, be regular triangulations. y

m For simplicity, suppose 7y is the
Py triangulation shown in the
figure. oh

o n 2 1z

Figure: Triangulation 7},
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Notations

AT

Figure: numerical solution by Figure: numerical solution by
conforming P; FEM nonconforming P; FEM
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Notations

Nonconforming P; FE

m A node is a midpoint of each
edge of each triangle T' € Tj,.
m Let ; be a piecewise linear
function s.t.
m p; = 1 on the i-th node,
m ¢; = 0 on other nodes,
m continuous in each triangle
T €Th,

m continuous at each node.

Figure: Nonconforming P; basis
function ¢;
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Notations

Nonconforming P; FE

Definition. Nonconforming P; FE space

Let Ny be the number of interior nodes in €.

Xho .= Span {(,0]_7 ceey QON}LO}‘

Notation. Inner product on the FE space

For each u,v € Xpo + H(Q),

(w,v)y, = Z (Vu, Vo) a2y -
TeT,

(Xno + Hg(), (-, -),) is a Hilbert space [2].
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condition for infinite dimensional part

condition for finite dimensional part

Section 2

Subsections

2.1 Configuration

2.2 Idea

2.3 Sufficient condition for infinite dimensional part
2.4 Sufficient condition for finite dimensional part
2.5 Algorithm

Tomoki UDA



Idea
Sufficient condition for infinite dimensional part
Sufficient condition for finite dimensional part

Algorithm

Configuration

Let f: H}(Q) — L?*(Q) be a confinuous map.

2D elliptic BVP
Find u € H?(Q) s.t.
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Idea

Sufficient condition for infinite dimensional part
Sufficient condition for finite dimensional part
Algorithm

Configuration

Let f: H}(Q) — L?*(Q) be a confinuous map.

2D elliptic BVP

Find u € H?(Q) s.t.

—Au= f(u) in 2,
u=0 on 0f).

Equivalent fixpoint problem

Find u € H}(Q) s.t.
u=—A"1f(u).
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Configuration

Sufficient condition for infinite dimensional part
Sufficient condition for finite dimensional part

Algorithm

Let Y0 C HE () be a conforming FE space and uy, € Y, be a
numerical solution obtained by FEM.
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Configuration

Sufficient condition for infinite dimensional part
Sufficient condition for finite dimensional part

Algorithm

Let Y0 C HE () be a conforming FE space and uy, € Y, be a
numerical solution obtained by FEM.

m We expect there exists an exact solution nearby wuy,.

m We want to verify existence of an exact solution in a
“candidate” set U. We use Schauder’s fixpoint theorem to
verify the existence.

m For applying the fixpoint theorem, we now formulate sufficient
conditions which we can check rigorously in computers.
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Configuration

Sufficient condition for infinite dimensional part

Sufficient condition for finite dimensional part
Algorithm

Definition. Candidate set

Let U C H(Q) be a closed convex set s.t.:

U=up,+U,+U,,

Nho

Un =Y _ Ui C Yio (Ui e IR, U, ="(Us)i),
i=1

U*:{u*eYh%‘Hutha}CYh% (a > 0).

We here call U a candidate set.
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Configuration

condition for infinite dimensional part

condition for finite dimensional part
Algorithm

Let P,: Hi(Q) — Yo be the orthogonal projection onto Y.

Infinite dimensional part + finite dimensional part

~ AL f(U) C U holds if,

—(I - Py) AT F(U) C U, (A)
P, ATYFU) Cup + Uy, (B)
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Configuration
Idea

Sufficient condition for finite dimensional part
Algorithm

Sufficient condition for infinite dimensional part

Theorem. Sufficient condition for infinite dimensional part

Let II¢ be the conforming P; interpolator from H2(Q) N H} ()
onto Yyo. Then, (A) holds if,

I = I || sup | f (w)]| 2 < . (1)
uelU

RENEIS

m If we know an explicit upper bound C(h) of ||I — II}| and
one of sup||f(u)||, we can check (1) rigorously in computers.

m C(h) — 0 as h — 0. Therefore, we expect (1) to hold if
small enough.
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Configuration
Idea
Sufficient condition for infinite dimensional part

Algorithm

Sufficient condition for finite dimensional part

Theorem. Sufficient condition for finite dimensional part

Let D;j := (Vp;, Vi), .. Suppose interval vectors d = t(di)i e IRNwo
and V;, € IRV satisfy D~'d ¢ V, and

{(F(w),06) 2 — (un, i), |ue U} Cds (2)
(i=1,...,Ny).

Then, (B) holds if,

V, Cc Uy.

Remark.

We can calculate Vj, by Rump’s algorithm [3, Rump '93].
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Configuration

ent condition for infinite dimensional part
Sufﬁrwnt condition for finite dimensional part

Algorithm

m Calculate a next candidate up, + numerical solution by FEM

set V by (1) and (2). Uy;, < some in.te.rval vector
« < some positive value
mVCcU=— OK. for i = 0 to MAXIT do

B+ LH.S. of (1)

m If not, U < V and iterate.
d <« L.HS. of (2)

m When iterating, it is good V;, < D~'d (Rump's algorithm)
idea to use e-inflation if V), c U, & 5 < athen
[9, Rump '98]. Succeeded
else
(U, a) < update(Vy, f)
end if
end for
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Section 3

Subsections

3.1 Idea’

3.2 Sufficient condition for infinite dimensional part’
3.3 Sufficient condition for finite dimensional part’
3.4 Boundary-integration terms

3.5 Numerical examples

Tomoki UDA



Sufficient condition for infinite dimensional part’
Suffici condition for finite dimensional part’
Bound ntegration terms

Numerical e

Let Xpo ¢ HL(2) be a nonconforming FE space and uj, € Xjo be
a numerical solution obtained by FEM.

m We expect there exists an exact solution u € H(]) nearby up € Xpo.

m We want to verify existence of an exact solution in a “candidate”
set U. We use Schauder’s fixpoint theorem to verify the existence.

m For applying the fixpoint theorem, we now formulate sufficient
conditions which we can check rigorously in computers.
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Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Bounda ration terms

xamples

Let Xpo ¢ HL(2) be a nonconforming FE space and uj, € Xjo be
a numerical solution obtained by FEM.

m We expect there exists an exact solution u € H(]) nearby up € Xpo.
m We want to verify existence of an exact solution in a “candidate”
set U. We use Schauder’s fixpoint theorem to verify the existence.

m For applying the fixpoint theorem, we now formulate sufficient
conditions which we can check rigorously in computers.

—> We now consider a fixpoint problem on X + HS(Q) J
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Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Bounda ration terms

i xamples

Definition. Candidate set’ (type-l)

Let U C X} + H&(Q) be a closed convex set s.t.:

U=up+Uy+U,,

Nho

Un =Y _ Uspi C Xno (Ui € IR, Uy, = “(Ui)i),
i=1

U. = {ue € Xi | lully < 0} € X (a > 0).

We here call U a candidate set.
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fficient condition for infinite dimensional part’
condition for finite dimensional part’
gration terms

Definition. Candidate set’ (type-11)

Let U C Xpo + HE () be a closed convex set s.t.:

U=up+U,+U,,
Nho

Up =1 Y ui; | “(us); € D'U, (Up € IRM),
=1l

U*:{u*EX,ﬁ)’Hutha}CX,#) (a > 0).
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condition for infinite dimensional part’
condition for finite dimensional part’
egration terms
xamples

Definition. Candidate set’ (type-11)

Let U C Xpo + HE () be a closed convex set s.t.:

U:Uh+Uh+U*7

Nho
Up =1 Y ui; | “(us); € D'U, (Up € IRM),
i=1
U*:{u*EX,ﬁ)’Hutha}CX,#) (a>0).
In a later slide, we will explain why we define the type-II. ]
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ndition for infinite dimensional part’
condition for finite dimensional part’

Infinite dimensional part + finite dimensional part
~ AL f(U) C U holds if,

—(I - Py) AT F(U) C UL, (A)
P, AT FU) Cup + Uy, (B")
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Idea’

Sufficient condition for finite dimensional part’
Boundary-integration terms
Numerical examples

Sufficient condition for infinite dimensional part’

Theorem. Sufficient condition for infinite dimensional part’

Let I} be the nonconforming P; interpolator from
H?(Q) N HE(Q) onto Xj0. Then, (A') holds if,

I = 11|l Stelgllf(U)lle <. (3)

Remark.

m If we know an explicit upper bound C(h) of ||I — II;¢|| and
one of sup||f(u)||, we can check (3) rigorously in computers.

An explicit upper bound of ||I — I1}°|| is shown by [4, Liu "09].
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Idea’
Sufficient condition for infinite dimensional part’

Boundary-integration terms
Numerical examples

Sufficient condition for finite dimensional part’ (type-1)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let D;j := (¢;, i), Suppose interval vectors d = t(di)i e IRV and
V,, € IRNwo satisfy D~'d C V}, and

{ (f(u), )2 — (un, 00)p, +0(— A7  f(u);05) [ueU} Cdy
(i=1,...,Nnpo),

where b( - ; ;) are boundary-integrations

b(v; ;) = /01{- %gpi ds (ve H*(Q) N HY(Q)).

Then, (B') holds if V, € Uy,.
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Idea’
Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’

Numerical examples

Boundary-integration terms

Conforming case

m A FE function is an element of H} ().
Therefore, the boundary-integration vanishes.

m Nakao's Theory implicitly assumes this property
[6, 11, 12, 10]O
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Idea’
Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’

Numerical examples

Boundary-integration terms

Conforming case

m A FE function is an element of H} ().
Therefore, the boundary-integration vanishes.

m Nakao's Theory implicitly assumes this property
[6, 11, 12, 10]O

Nonconforming case

m A FE function does not vanish on the boundary of its support.
Therefore, the boundary-integration does not vanish.

m Using Bramble-Hilbert Lemma, we get a constructive upper
bound estimate of O(h) of |b(— A7 f(u); ¢;)|.
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Idea’
Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’

Numerical examples

Lemma. Bramble-Hilbert

For every v € H?(1Q),

inf < Cgu(f2
pellg(ﬂ)ﬂv +pllg2 < CBu(D) V]2

where

diam
Cp(Q) := 0

Con(®) = /C3 (C3 +1) +1.
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condition for infinite dimensional part’
condition for finite dimensional part’

Numerical examples

Theorem. Estimates of boundary-integrations
For every v € H?(Q) N H (),

1b(v; 0:)| < Cou(Kr) hH@k(i)HHl(f(k(i)) 1A vl p2() -

¥ ¥
! T
~ | A~
K, 0 : K 1
|
0 1 2 ~1 9] 1 @

Figure: Kk(i) ~ K; = supp ¢;
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Idea’

Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms

Numerical example with type-|

u =712 sin(rzx) sin(7y)
) A = 0.0017%u 4 1.999 sin(7z) sin(7y) in 0,
u=0 on 9Q.
# of ite- candidate set U next candidate set V' | verifi-
rations || [Unll, |« [Villo | 8 cation
1 1.0002e-5 | 0.1309620 | 11.1799 | 0.0795412
2 11.1811 0.0796412 | 11.2103 | 0.0797180
3 11.2114 0.0798180 | 11.2104 | 0.0797184 OK

Table: Verification with mesh size h = 1/8 and type-| candidate sets
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fficient condition for infinite dimensional part’
condition for finite dimensional part’

y-integration terms

m The interval vector U}, becomes too large.

m It is difficult to use for numerical validated computations.
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condition for infinite dimensional part’
ndition for finite dimensional part’

Boundary-integration terms

m The interval vector U}, becomes too large.

m It is difficult to use for numerical validated computations.

= Using type-ll candidate sets, we improved numerical results! )
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Idea’

Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms

Sufficient condition for finite dimensional part’ (type-1)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let D;j := (¢;, i), Suppose interval vectors d = t(di)i e IRV and
V,, € IRNwo satisfy D~'d C V}, and

{ (f(u), )2 — (un, 00)p, +0(— A7  f(u);05) [ueU} Cdy
(i=1,...,Nnpo),

where b( - ; ;) are boundary-integrations

b(v; ;) = /01{- %gpi ds (ve H*(Q) N HY(Q)).

Then, (B') holds if V, € Uy,.
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Idea’

Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms

Sufficient condition for finite dimensional part’ (type-II)

Theorem. Sufficient condition for finite dimensional part’ (type-Il)

Let D;; := (95, %), Suppose interval vector d = *(d;), satisfies

{ (F()s i)z — (un, @)y, +0(= A7 f(u);93) |[ueU} Cd
(i=1,...,Nno),

where b(-; ;) are boundary-integrations

b(v; ;) = —p;ds (ve H*(Q) N Hy(Q)).

Then, (B') holds if d C Uy,.

We need NOT solve a linear system here!
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Idea’

Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms

Numerical example with type-|

u =712 sin(rzx) sin(7y)
) A = 0.0017%u 4 1.999 sin(7z) sin(7y) in 0,
u=0 on 9Q.
# of ite- candidate set U next candidate set V' | verifi-
rations || [Unll, |« [Villo | 8 cation
1 1.0002e-5 | 0.1309620 | 11.1799 | 0.0795412
2 11.1811 0.0796412 | 11.2103 | 0.0797180
3 11.2114 0.0798180 | 11.2104 | 0.0797184 OK

Table: Verification with mesh size h = 1/8 and type-| candidate sets
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Idea’

Sufficient condition for infinite dimensional part’
Sufficient condition for finite dimensional part’
Boundary-integration terms

Numerical example with type-II

u =712 sin(rzx) sin(7y)
) A = 0.0017%u + 1.999 sin(7z) sin(7y) in Q,
u=0 on 9Q.
# of ite- candidate set U next candidate set V' | verifi-
rations || [Upll, |« [dl, |8 cation

1 0.00101012 | 0.02 0.89045 | 0.0795599

2 0.899354 0.0895599 | 0.91856 | 0.0820849

3 0.927745 0.0920849 | 0.919445 | 0.0821645 | OK

Table: Verification with mesh size h = 1/8 and type-ll candidate sets
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nt condition for infinite dim
nt condition for finite dimer
Boundary-integration terms

Asymptotic behavior of a-posteriori error estimates

10 T T T T T T
r HUhHoo + 1

L . 1
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.

1 t, B
. + 4

[ + ]

L - 1
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Figure: A-posteriori error esitimate of finite dimensional part
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Boundary-integration terms

Asymptotic behavior of a-posteriori error estimates
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Figure: A-posteriori error esitimate of infinite-dimensional part
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Summary

Our works

m generalized Nakao's method for nonconforming P; FEM

B got constructive inequalities for boundary-integrations
m introduced type-ll candidate sets

m showed numerically validated results for approximated solution
to some elliptic BVP with nonconforming P; FEM
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Summary

m use other FEMs (e.g. P2 FEM)
m try on “non-classical” Nakao's methods

m apply our proposal method to other elliptic BVPs (e.g. 2D
elasticity problem, free-boundary problem of vortex patch,
etc.)
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More precise fixpoint formulation

Let f: L2(Q2) — L%*(Q) be a map.

Assume, for any h > 0, f|Xho+Hé(Q) is a continuous bounded map.

2D elliptic BVP

Find u € H?(Q) s.t.
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More precise fixpoint formulation

Equivalent fixpoint problem

(*) Find u € H}(Q) s.t.

u=—NA"1f(u).

v

Equivalent fixpoint problem on Xjo + H}

(**) Find u € X0 + H(Q) s.t.

u=—A"1 f(u) .
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More precise fixpoint formulation

f‘Xh,oJrHé

A1
12 —2 5 B2 N HL < HE < Xpo + H} 2.

m (Equiv.) If u € X + H; is a solution to (**), u is an
element of H}. Therefore, u € H{} is also a solution to (*).

m (Error) In general, a solution u is not an element of Xp.
However, we can measure an error between u and wuy, in the
Xno + H& framework.
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With type-ll, do you really solve no linear systems?

In fact, one has to solve linear systems in other places. )

Recall.

{(F(w), i) 12 — (un, i), +0(— A7 f(u)593) |[ueU} Cds,

I = IR°[| sup|| f ()| 2 < .
uelU
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Sufficient condition for infinite dimensional part’

Theorem. Sufficient condition for infinite dimensional part’

Let I} be the nonconforming P; interpolator from
H?(Q) N HE(Q) onto Xj0. Then, (A') holds if,

I = 11|l Stelgllf(U)lle <. (3)

Remark.

m If we know an explicit upper bound C(h) of ||I — II;¢|| and
one of sup||f(u)||, we can check (3) rigorously in computers.

An explicit upper bound of ||I — I1}°|| is shown by [4, Liu "09].
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Proof. Sufficient condition for infinite dimensional part’

Assume [|I — II}°|| sup eyl f(w)|[ 2 < a. Let u be an element of
the candidate set U. Then,

H_I Ph)A flu Hh
< =G| |AAT F(w)] . (by [4])

= [T = IS f (@)l 2
<« (by assumption).

Consequently, —(I — P,) A~ f(u) € U, holds.
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Sufficient condition for finite dimensional part’ (type-1)

Theorem. Sufficient condition for finite dimensional part’ (type-I)

Let D;j := (¢;, i), Suppose interval vectors d = t(di)i e IRV and
V,, € IRNwo satisfy D~'d C V}, and

{ (f(u), )2 — (un, 00)p, +0(— A7  f(u);05) [ueU} Cdy
(i=1,...,Nnpo),

where b( - ; ;) are boundary-integrations

b(v; ;) = /01{- %gpi ds (ve H*(Q) N HY(Q)).

Then, (B') holds if V, € Uy,.
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Proof. Sufficient condition for finite dimensional part’

Assume Vj, C Uy. Let u be an arbitrary element of the candidate
set U. Then, by definition of P, we get —P, A~ f(u) = uy, + vy,
(Jup, € Xpo). We denote v by the coefficient vector of vy,.

(h, 03)p, = (—Pu A7 F(u) — un, i),
= (= A7 f(u), i), — (un, @)y,
= (f(u),ps)r2 + (= A1 F(u);05) — (un, @i)y,
€ d;,
~.Dved.

Therefore, by the assumption, it follows that v, € Up,.
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Theorem. Estimates of boundary-integrations
For every v € H?(Q) N H (),

1b(v; 0:)| < Cou(Kr) hH@k(i)HHl(f(k(i)) 1A vl p2() -

¥ ¥
! T
A | A
Ky : K,
0 1 —ll 0 1

Figure: Kk(i) ~ K; = supp ¢;
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Proof. Estimates of boundary-integrations

Using change of variables by (the restriction of) the affine map

11 2 . o .
®,: K; — K, it follows from integration by parts:

[6(v; 0a)| < N0l g2y - 19l b ()
SO (C) 0@ i)l < N@kll iy -

Note that b((-) o ®;; ¢;) vanishes on P;. Then, applying
Bramble-Hilbert lemma to b((-) o ®;; ¢;), we get:

[6(v; @i)| < Cru(K) [kl 1 (&) 19112 ()

= Cpu(K4) HskaHl(f(k) hMH?(Ki) :

Tomoki UDA



	Introduction
	Motive
	Table of Contents

	Preliminaries
	Notations
	FEM

	Nakao's method
	Configuration
	Idea
	Sufficient condition for infinite dimensional part
	Sufficient condition for finite dimensional part
	Algorithm

	Nakao's method with nonconforming elements
	Idea'
	Sufficient condition for infinite dimensional part'
	Sufficient condition for finite dimensional part'
	Boundary-integration terms
	Numerical examples

	Summary
	References


