

Some remarks on the rigorous estimation of inverse linear elliptic operators

Takehiko Kinoshita^{1,2}, Yoshitaka Watanabe³, and Mitsuhiro T. Nakao⁴

¹Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan

²Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

³Research Institute for Information Technology, Kyushu University, Fukuoka 812-8581, Japan

⁴Sasebo National College of Technology, Nagasaki 857-1193, Japan

SCAN, Department of Computer Science, University of Würzburg, Germany

September 23, 2014

Aim

To verify the **invertibility** of a elliptic operator

$$\mathcal{L} := -\Delta + b \cdot \nabla + c : D(-\Delta) \rightarrow L^2(\Omega)$$

and **compute** $M > 0$ satisfying

$$\|\mathcal{L}^{-1}\|_{\mathcal{L}(L^2(\Omega), H_0^1(\Omega))} \leq M.$$

- $\Omega \subset \mathbb{R}^d$, ($d \in \{1, 2, 3\}$) bounded polygonal or polyhedral domain.
- $b \in L^\infty(\Omega)^d$, $c \in L^\infty(\Omega)$ are complex valued functions with norms:

$$\|b\|_{L^\infty(\Omega)^d} := \operatorname{ess\,sup}_{x \in \Omega} \sqrt{|b_1(x)|^2 + \cdots + |b_d(x)|^2}, \quad \|c\|_{L^\infty(\Omega)} := \operatorname{ess\,sup}_{x \in \Omega} |c(x)|.$$

- $D(-\Delta) := \{u \in H_0^1(\Omega) ; -\Delta u \in L^2(\Omega)\}$ is a Banach space w.r.t. graph norm.
- The bilinear form related to \mathcal{L} will not assume corecivity.

In this talk, we propose a numerical method to verify the invertibility of \mathcal{L} to be based on the Fredholm operator theory.

Contents

1 Introduction

2 Previous works

3 Main theorem

4 Verification examples

5 Conclusion

Previous works

- The Plum method

- The invertibility of \mathcal{L} is based on the Homotopy method.

[1] M. Plum; Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method, *J. Appl. Math. Phys. (ZAMP)*, **41** (1990), 205–226.

- The Oishi method

- The invertibility of \mathcal{L} is based on the Fredholm operator theory.

[2] S. Oishi; Numerical verification of existence and inclusion of solutions for nonlinear operator equations, *Journal of Computational and Applied Mathematics*, **60**, no. 1-2 (1995), 171–185.

- The Nakao method

- M not converge to $\|\mathcal{L}^{-1}\|$.

[3] M. T. Nakao, K. Hashimoto, and Y. Watanabe; A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems, *Computing*, **75** (2005), 1–14.

- **This talk:** we consider the method using the Fredholm operator theory to this.

- The Watanabe method

- M is expected to converge to $\|\mathcal{L}^{-1}\|$.

[4] Y. Watanabe, T. Kinoshita, and M. T. Nakao; A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations, *Mathematics of Computation*, **82** (2013), 1543–1557.

Note: The Watanabe method is not necessarily superior to The Nakao method.

Projection and constants

- $S_h(\Omega)$: finite dimensional approximation subspace of $H_0^1(\Omega)$ dependent on the parameter $h > 0$.
- $n := \dim S_h(\Omega)$. $S_h(\Omega) = \text{span} \{ \phi_1, \dots, \phi_n \}$.
- $L_\phi \in \mathbb{C}^{n \times n}$, $L_{\phi,i,j} := (\phi_j, \phi_i)_{L^2(\Omega)}$, $\forall i, j \in \{1, \dots, n\}$.
- $D_\phi \in \mathbb{C}^{n \times n}$, $D_{\phi,i,j} := (\phi_j, \phi_i)_{H_0^1(\Omega)}$, $\forall i, j \in \{1, \dots, n\}$.
- $G_\phi \in \mathbb{C}^{n \times n}$, $G_{\phi,i,j} := (\nabla \phi_j, \nabla \phi_i)_{L^2} + ((b \cdot \nabla) \phi_j + c \phi_j, \phi_i)_{L^2}$, $\forall i, j \in \{1, \dots, n\}$.
- $\rho := \left\| D_\phi^{H/2} G_\phi^{-1} D_\phi^{1/2} \right\|_2$, $\hat{\rho} := \left\| D_\phi^{H/2} G_\phi^{-1} L_\phi^{1/2} \right\|_2$.
- $P_h : H_0^1(\Omega) \rightarrow S_h(\Omega)$ denote the H_0^1 -projection defined by

$$(u - P_h u, v_h)_{H_0^1(\Omega)} = 0, \quad \forall v_h \in S_h.$$

- Suppose that P_h has the following approximation properties.

$$\|u - P_h u\|_{H_0^1(\Omega)} \leq C(h) \|\Delta u\|_{L^2(\Omega)}, \quad \forall u \in D(-\Delta)$$

$C(h) > 0$ is *numerically* determined with $C(h) \rightarrow 0$ as $h \rightarrow 0$.

Previous result [Computing, 2005]

Theorem 1 ([3, Theorem 2.1. & Theorem 2.2.])

If $\kappa := C(h)(\rho K(h)C_1 + C_2) < 1$ then \mathcal{L} is invertible and M is obtained by

$$M = \frac{C_p}{1 - \kappa} \left\| \begin{pmatrix} \rho(1 - C_2 C(h)) & \rho K(h) \\ \rho C_1 C(h) & 1 \end{pmatrix} \right\|_2 \quad (1)$$

$$C_1 := \|b\|_{L^\infty} + C_p \|c\|_{L^\infty} \quad C_2 := \|b\|_{L^\infty} + C(h) \|c\|_{L^\infty} \quad \rho = \left\| D_\phi^{H/2} G_\phi^{-1} D_\phi^{1/2} \right\|_2$$

$$K(h) := \begin{cases} C(h) (C_p \|\nabla \cdot b\|_{L^\infty(\Omega)} + C_1), & \text{if } b \in W^{1,\infty}(\Omega)^d \\ C_p C_2, & \text{if } b \in L^\infty(\Omega)^d \end{cases}$$

$$\text{It is expected } M \rightarrow \begin{cases} C_p \left\| \begin{pmatrix} \rho & 0 \\ 0 & 1 \end{pmatrix} \right\|_2 = C_p \max\{\rho, 1\}, & \text{if } b \in W^{1,\infty}(\Omega)^d \\ C_p \left\| \begin{pmatrix} \rho & \rho C_p \|b\|_{L^\infty} \\ 0 & 1 \end{pmatrix} \right\|_2, & \text{if } b \in L^\infty(\Omega)^d \end{cases} \quad \text{as } h \rightarrow 0.$$

$$\text{It is expected } M \rightarrow \begin{cases} C_p \left\| \begin{pmatrix} \rho & 0 \\ 0 & 1 \end{pmatrix} \right\|_2 = C_p \max\{\rho, 1\}, & \text{if } b \in W^{1,\infty}(\Omega)^d \\ C_p \left\| \begin{pmatrix} \rho & \rho C_p \|b\|_{L^\infty} \\ 0 & 1 \end{pmatrix} \right\|_2, & \text{if } b \in L^\infty(\Omega)^d \end{cases} \quad \text{as } h \rightarrow 0.$$

Previous result [Math. Comp., 2013]

Theorem 2

If $\hat{\kappa} := C(h)C_2(\hat{\rho}C_1 + 1) < 1$ then \mathcal{L} is invertible and M is obtained by

$$M = \frac{\sqrt{\hat{\rho}^2 + C(h)^2(1 + \hat{\rho}C_1)^2}}{1 - \hat{\kappa}} \quad (2)$$

It is expected $M \rightarrow \hat{\rho}$ as $h \rightarrow 0$.

$$C_1 := \|b\|_{L^\infty} + C_p \|c\|_{L^\infty}$$

$$C_2 := \|b\|_{L^\infty} + C(h) \|c\|_{L^\infty}$$

$$\hat{\rho} = \left\| D_\phi^{H/2} G_\phi^{-1} L_\phi^{1/2} \right\|_2$$

Therefore, $\hat{\rho} = \left\| \mathcal{L}_h^{-1} \right\|_{\mathcal{L}(L^2(\Omega), H_0^1(\Omega))} \rightarrow \left\| \mathcal{L}^{-1} \right\|_{\mathcal{L}(L^2(\Omega), H_0^1(\Omega))}$ as $h \rightarrow 0$.

Remark: Let $\mathcal{L}_h^{-1} : L^2(\Omega) \rightarrow S_h(\Omega)$ be defined by $u_h := \mathcal{L}_h^{-1}f$ satisfying

$$\begin{aligned} & (\nabla u_h, \nabla v_h)_{L^2} + ((b \cdot \nabla) u_h + c u_h, v_h)_{L^2} \\ &= (f, v_h)_{L^2}, \quad \forall v_h \in S_h(\Omega). \end{aligned}$$

$$\implies \left\| \mathcal{L}_h^{-1} \right\|_{\mathcal{L}(L^2(\Omega), H_0^1(\Omega))} = \hat{\rho}.$$

A consideration of these theorems

- It is expected that, as $h \rightarrow 0$,
 - Theorem 1: $M \rightarrow C_p \max\{\rho, 1\}$, (b :smooth)
 - Theorem 2: $M \rightarrow \hat{\rho}$
- which shows M by Theorem 2 could converge to the exact operator norm for \mathcal{L}^{-1} .
- In fact, $\hat{\rho} \leq C_p \rho$ holds.
- Therefore, Theorem 2 looks more effective than Theorem 1.
- However, from the [actual computation](#), since the criterion $\hat{\kappa} < 1$ is sometimes harder than $\kappa < 1$ for fixed h experimentally.

One-dimensional operator

$$\mathcal{L} := -\frac{d^2}{dx^2} + b \frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

- INTLAB Version 7 with MATLAB 8.0.0.783 (R2012b)
- $b(x) = r \sin(\pi x)$, $r, c \in \mathbb{R}$, $\Omega := (0, 1)$
- $S_h(\Omega)$ is hull of piecewise linear functions on equal partition $h > 0$
- $C(h) = h/\pi$, $C_p = 1/\pi$

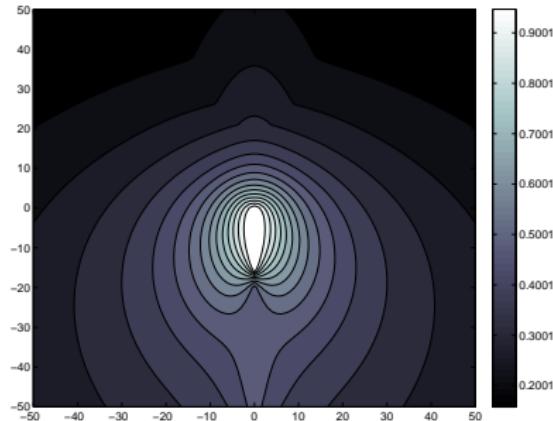


Figure : Distribution of $\hat{\rho}/(C_p \rho)$ for r (horizontal) and c (vertical)

One-dimensional operator

$$\mathcal{L} := -\frac{d^2}{dx^2} + b \frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

$$b = 2.5 \sin(\pi x), \quad c = -10$$

$$b = -20 \sin(\pi x), \quad c = -20$$

$1/h$	ρ	$\hat{\rho}$	κ	$\hat{\kappa}$
10	12.6637	3.6970	0.6865	1.9761
30	12.9669	3.8003	0.0956	0.6249
50	12.9916	3.8084	0.0409	0.3696
100	13.0020	3.8119	0.0142	0.1827
200	13.0047	3.8128	0.0056	0.0908
500	13.0054	3.8130	0.0019	0.0362
1000	13.0055	3.8131	0.0009	0.0181

$1/h$	ρ	$\hat{\rho}$	κ	$\hat{\kappa}$
10	2.6420	0.3552	3.9293	6.8074
30	2.5044	0.3542	0.5592	2.2167
50	2.4950	0.3542	0.2518	1.3246
100	2.4911	0.3542	0.0948	0.6603
200	2.4911	0.3542	0.0396	0.3296
500	2.4899	0.3542	0.0140	0.1318
1000	2.4899	0.3542	0.0067	0.0659

- The criterions of invertibility of \mathcal{L} , $\hat{\kappa} < 1$, is harder than $\kappa < 1$ in this example.
- The Nakao method [computing, 2005] has a meaning developed.

In this talk, we propose an alternative approach of Nakao's method.

Main result

Theorem 3

If $\kappa < 1$ then \mathcal{L} is invertible and M is obtained by

$$M = \frac{\sqrt{\rho^2(C_p + C(h)(K(h) - C_p C_2))^2 + C(h)^2(1 + \rho C_p C_1)^2}}{1 - \kappa} \quad (3)$$

It is expected $M \rightarrow C_p \rho$ as $h \rightarrow 0$.

$$C_1 = \|b\|_{L^\infty(\Omega)^d} + C_p \|c\|_{L^\infty(\Omega)}$$

$$C_2 = \|b\|_{L^\infty(\Omega)^d} + C(h) \|c\|_{L^\infty(\Omega)}$$

$$K(h) = \begin{cases} C(h) (C_p \|\nabla \cdot b\|_{L^\infty(\Omega)} + C_1), & \text{if } b \in W^{1,\infty}(\Omega)^d \\ C_p C_2, & \text{if } b \in L^\infty(\Omega)^d \end{cases}$$

$$\rho = \left\| D_\phi^{H/2} G_\phi^{-1} D_\phi^{1/2} \right\|_2$$

Note: The estimates of Theorem 1 is expected $M \rightarrow C_p \max\{\rho, 1\}$ as $h \rightarrow 0$.
 Therefore, (3) succeeded removing $\max\{\cdot, 1\}$.

One-dimensional operator (1/5)

$$\mathcal{L} := -\frac{d^2}{dx^2} + b \frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

- INTLAB Version 7 with MATLAB 8.0.0.783 (R2012b)
- $b(x) = r \sin(\pi x)$, $r, c \in \mathbb{R}$, $\Omega := (0, 1)$
- $S_h(\Omega)$ is hull of piecewise linear functions on equal partition $h > 0$
- $C(h) = h/\pi$, $C_p = 1/\pi$

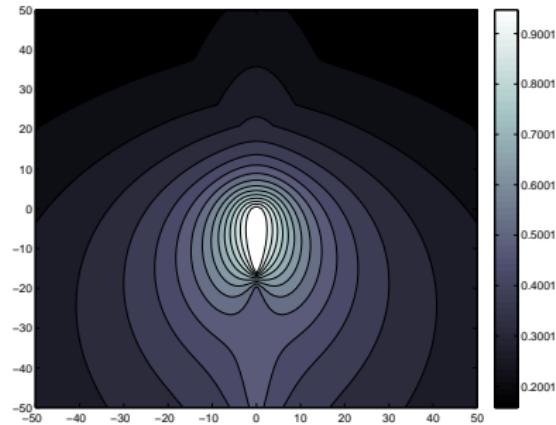


Figure : Distribution of $\hat{\rho}/(C_p \rho)$ for r (horizontal) and c (vertical)

One-dimensional operator (2/5)

$$\mathcal{L} := -\frac{d^2}{dx^2} + b\frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

$$b = 2.5 \sin(\pi x), \quad c = -10$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	12.6637	3.6970	0.6865	12.4285	12.2786	1.9761	—	—
30	12.9669	3.8003	0.0956	4.4655	4.4598	0.6249	10.1500	
50	12.9916	3.8084	0.0409	4.2504	4.2485	0.3696	6.0452	
100	13.0020	3.8119	0.0142	4.1667	4.1663	0.1827	4.6645	
200	13.0047	3.8128	0.0056	4.1465	4.1464	0.0908	4.1936	
500	13.0054	3.8130	0.0019	4.1409	4.1409	0.0362	3.9561	
1000	13.0055	3.8131	0.0009	4.1401	4.1401	0.0181	3.8832	

One-dimensional operator (3/5)

$$\mathcal{L} := -\frac{d^2}{dx^2} + b\frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

$$b = -20 \sin(\pi x), \quad c = -20$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	2.6420	0.3552	3.9293	—	—	6.8074	—	
30	2.5044	0.3542	0.5592	1.8684	1.5439	2.2167	—	
50	2.4950	0.3542	0.2518	1.0293	0.9502	1.3246	—	
100	2.4911	0.3542	0.0948	0.8417	0.8249	0.6603	1.0469	
200	2.4911	0.3542	0.0396	0.8040	0.8002	0.3296	0.5289	
500	2.4899	0.3542	0.0140	0.7943	0.7938	0.1318	0.4080	
1000	2.4899	0.3542	0.0067	0.7930	0.7929	0.0659	0.3792	

One-dimensional operator (4/5)

$$\mathcal{L} := -\frac{d^2}{dx^2} + b\frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

$$b = \sin(\pi x), \quad c = 100$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	0.9183	0.0500	1.1665	—	—	0.3516	0.1508	
30	0.9911	0.0499	0.1458	0.4977	0.3920	0.0577	0.0608	
50	0.9969	0.0499	0.0553	0.4060	0.3426	0.0275	0.0542	
100	0.9992	0.0499	0.0155	0.3568	0.3242	0.0111	0.0512	
200	0.9998	0.0499	0.0047	0.3365	0.3198	0.0049	0.0504	
500	1.0000	0.0499	0.0012	0.3254	0.3186	0.0018	0.0501	
1000	1.0000	0.0499	0.0005	0.3218	0.3184	0.0009	0.0500	

One-dimensional operator (5/5)

$$\mathcal{L} := -\frac{d^2}{dx^2} + b\frac{d}{dx} + c : D(d^2/dx^2) \rightarrow L^2(\Omega)$$

$$b = \sin(\pi x), \quad c = -10$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	94.9621	29.6261	2.1281	—	—	5.2424	—	—
30	231.4257	72.4346	0.5767	172.3900	172.4427	3.5678	—	—
50	261.5470	81.8835	0.2366	108.4156	108.4277	2.3262	—	—
100	276.7469	86.6517	0.0641	93.8348	93.8375	1.1938	—	—
200	280.8268	87.9316	0.0171	90.7977	90.7983	0.5964	217.8445	—
500	281.9909	88.2967	0.0032	89.9844	89.9846	0.2373	115.7653	—
1000	282.1580	88.3491	0.0010	89.8696	89.8697	0.1184	100.2071	—

Two-dimensional non-self-adjoint operator (1/3)

$$\mathcal{L} := -\Delta + b \cdot \nabla + c : D(-\Delta) \rightarrow L^2(\Omega)$$

$$b = R \begin{pmatrix} -y + 1/2 \\ x - 1/2 \end{pmatrix}, \quad R \in \mathbb{R}, \quad c \in \mathbb{C}, \quad \Omega := (0, 1) \times (0, 1)$$

- linear and uniform triangular meshes on Ω with the element side length $h > 0$ for a given finite element mesh
- $C(h) = 0.493h$ and $C_p = 1/(\pi\sqrt{2})$

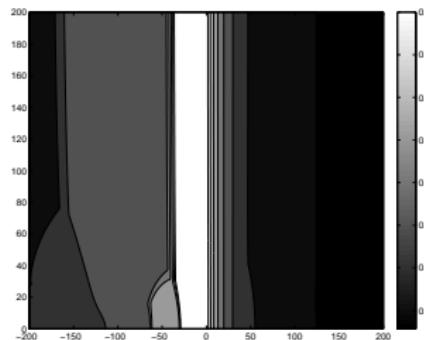


Figure : Distribution of $\hat{\rho}/(C_p \rho)$ for R (horizontal) and c (vertical)

Two-dimensional non-self-adjoint operator (2/3)

$$\mathcal{L} := -\Delta + b \cdot \nabla + c : D(-\Delta) \rightarrow L^2(\Omega)$$

$$b = R \begin{pmatrix} -y + 1/2 \\ x - 1/2 \end{pmatrix}, \quad R \in \mathbb{R}, \quad c \in \mathbb{C}, \quad \Omega := (0, 1) \times (0, 1)$$

$$R = 10, \quad c = -10 - 5i$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	M	$\hat{\kappa}$	M
5	1.7039	0.3656	2.3287	—	—	—	3.6305	—
10	1.7751	0.3946	0.7724	1.8734	1.6510	1.7974	—	—
20	1.7941	0.4025	0.2814	0.5384	0.5033	0.8798	3.4926	—
50	1.7995	0.4047	0.0869	0.4222	0.4174	0.3456	0.6227	—
100	1.8001	0.4050	0.0392	0.4092	0.4082	0.1716	0.4897	—
130	1.8004	0.4051	0.0294	0.4076	0.4070	0.1318	0.4670	—

Two-dimensional non-self-adjoint operator (3/3)

$$\mathcal{L} := -\Delta + b \cdot \nabla + c : D(-\Delta) \rightarrow L^2(\Omega)$$

$$b = R \begin{pmatrix} -y + 1/2 \\ x - 1/2 \end{pmatrix}, \quad R \in \mathbb{R}, \quad c \in \mathbb{C}, \quad \Omega := (0, 1) \times (0, 1)$$

$$R = 10, \quad c = 15$$

1/h	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
5	0.9732	0.1270	1.8758	—	—	1.9610	—	
8	0.9903	0.1276	0.9032	3.3368	2.6387	1.1493	—	
10	0.9939	0.1277	0.6488	0.8671	0.6589	0.8987	1.6951	
20	0.9986	0.1279	0.2497	0.3543	0.2760	0.4284	0.2453	
50	0.9999	0.1279	0.0818	0.2632	0.2316	0.1663	0.1559	
100	1.0001	0.1279	0.0379	0.2426	0.2267	0.0823	0.1400	

Linearized operator (1/2)

$$\mathcal{L} := -\Delta - 1 - 2u_h + 3au_h^2 : D(-\Delta) \rightarrow L^2(\Omega)$$

\mathcal{L} is a linearized operator:

$$\begin{cases} -\Delta u &= 1 + u + u^2 - au^3 & \text{in } \Omega := (0, 1) \times (0, 1), \\ u &= 0 & \text{on } \partial\Omega, \end{cases}$$

at finite element solutions $u_h \in S_h(\Omega)$.

Lower approximate solution u_h for $a = 0.001$

$1/h$	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	1.0586	0.2356	0.0030	0.2391	0.2447	0.0030	0.2421	
20	1.0599	0.2379	0.0008	0.2388	0.2402	0.0008	0.2395	
30	1.0601	0.2383	0.0004	0.2387	0.2394	0.0004	0.2391	
40	1.0602	0.2385	0.0002	0.2387	0.2391	0.0002	0.2389	
50	1.0603	0.2386	0.0002	0.2387	0.2389	0.0002	0.2388	

$$\hat{\rho}/(C_p \rho) \sim 0.9995 \ (1/h = 50)$$

Linearized operator (2/2)

$$\mathcal{L} := -\Delta - 1 - 2u_h + 3au_h^2 : D(-\Delta) \rightarrow L^2(\Omega)$$

Upper approximate solution u_h for $a = 0.001$

$1/h$	ρ	$\hat{\rho}$	Theorem 1		Theorem 3		Theorem 2	
			κ	M	M	$\hat{\kappa}$	M	
10	2.5948	0.3545	1.1823	—	—	0.7722	1.9668	
20	2.6622	0.3624	0.2856	0.9204	0.8883	0.1861	0.4756	
30	2.6758	0.3640	0.1262	0.7216	0.7074	0.0822	0.4087	
40	2.6807	0.3645	0.0709	0.6671	0.6590	0.0461	0.3887	
50	2.6830	0.3648	0.0453	0.6438	0.6386	0.0295	0.3800	

$$\hat{\rho} / (C_p \rho) \sim 0.6040 \ (1/h = 50)$$

Conclusion

$$\mathcal{L} := -\Delta + b \cdot \nabla + c : D(-\Delta) \rightarrow L^2(\Omega)$$

- We propose a new computer-assisted procedure to compute a rigorous bound of the norm for \mathcal{L}^{-1} .
- The criterion for the invertibility of \mathcal{L} is the same as Theorem 1, it has no limitation such that the lower bound of M is not less than 1.
- Although the proposed procedure would not converge to its exact operator norm, some verification examples show that it has a better bound than the approach in Theorem 2.
- We conclude that our proposed method should be a bridge the gap between the two previous approaches, and one may choice an appropriate procedure taking into consideration given problem or computational cost, and so on.