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Initial Value Problem with Interval Uncertainty

Definition of the initial value problem (IVP)

Given set of ordinary differential equations (ODEs)

ẋ (t) = f (x (t))

with smooth right-hand sides

Uncertain initial conditions

x (0) ∈ [x0] := [x (0)] = [x (0) ; x (0)]

Component-wise definition of interval vectors [x] =
[
[x1] . . . [xn]

]T
with the vector entries [xi] = [xi ; xi], xi ≤ xi ≤ xi, i = 1, . . . , n

A. Rauh et al.: Exponential Enclosure Techniques for Initial Value Problems with Multiple Conjugate Complex Eigenvalues 3/22



Problem Statement Fund. Approach Exponential Enclosures Application 1 Mult. Eigenvalues Conclusions

Initial Value Problem with Interval Uncertainty

Definition of the initial value problem (IVP)

Given set of ordinary differential equations (ODEs)

ẋ (t) = f (x (t))

with smooth right-hand sides

Uncertain initial conditions

x (0) ∈ [x0] := [x (0)] = [x (0) ; x (0)]

Uncertainty in parameters pj , j = 1, . . . , np, and control (input)
signals u(t) are assumed to be included in the expression for f (x (t)),
e.g. ṗj = 0 or u(t) = u(x (t) ,p)
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Fundamental Solution Approach

Definition of the state enclosure

x∗(t) ∈ [x] (t) := x̃(t) + [R] (t)

Constituents of the solution

Approximate solution (non-verified) x̃(t)

Verified error bound [R] (t)

Computation of the error bound by a suitable iteration scheme

Note

Without suitable counter-measures, solution enclosures may not converge,
even for asymptotically stable systems
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x∗(t) ∈ [x] (t) := x̃(t) + [R] (t)

Constituents of the solution

Approximate solution (non-verified) x̃(t)

Verified error bound [R] (t)

Computation of the error bound by a suitable iteration scheme

Reference
Rauh, Andreas; Westphal, Ramona; Auer, Ekaterina; Aschemann, Harald:
Exponential Enclosure Techniques for the Computation of Guaranteed State
Enclosures in ValEncIA-IVP, Reliable Computing: Special volume devoted to
material presented at SCAN 2012, Novosibirsk, Russia, Vol. 19, Issue 1,
pp. 66-90, 2013.
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Exponential Enclosure Technique

Definition of the state enclosure

Representation of contracting state enclosures by using

x∗(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0)

with 0 6∈ [xe,i] (0), [xe] (0) = [x0] for the diagonal matrix

[Λ] := diag {[λi]} , i = 1, . . . , n

with element-wise negative real entries λi

Definition of the interval matrix exponential

exp ([Λ] · t) := diag {exp ([λ1] · t) , . . . , exp ([λn] · t)}
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Exponential Enclosure Technique

Derivation of the iteration scheme

Picard iteration

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

t∫
0

f
(

[xe]
(κ) (s)

)
ds

Reformulation by the time-dependent expression

x∗(t) ∈ exp
(

[Λ](κ+1) · t
)
· [xe] (0) = [xe]

(κ+1) (t)

=: [x0] +

t∫
0

f
(

exp
(

[Λ](κ) · s
)
· [xe] (0)

)
ds
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Exponential Enclosure Technique

Derivation of the iteration scheme

Picard iteration

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

t∫
0

f
(

[xe]
(κ) (s)

)
ds

Differentiation with respect to time and evaluation for t ∈ [0 ; T ]

ẋ∗ ([0 ; T ]) ∈ diag
{

[λi]
(κ+1)

}
· exp

(
[Λ](κ+1) · [0 ; T ]

)
· [xe] (0)

⊆ f
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
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Exponential Enclosure Technique

Derivation of the iteration scheme

Picard iteration

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

t∫
0

f
(

[xe]
(κ) (s)

)
ds

Convergence of the iteration process for

exp
(

[Λ](κ+1) · t
)
· [xe] (0) ⊆ exp

(
[Λ](κ) · t

)
· [xe] (0)

equivalent to

[λi]
(κ+1) ⊆ [λi]

(κ) and [Λ](κ+1) ⊆ [Λ](κ)
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Exponential Enclosure Technique

Derivation of the iteration scheme

Picard iteration

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

t∫
0

f
(

[xe]
(κ) (s)

)
ds

Resulting iteration formula

[λi]
(κ+1) :=

fi

(
exp

(
[Λ](κ) · [0 ; T ]

)
· [xe] (0)

)
exp

(
[λi]

(κ) · [0 ; T ]
)
· [xe,i] (0)

, i = 1, . . . , n

with the guaranteed state enclosure at the point t = T

x∗(T ) ∈ [xe] (T ) := exp ([Λ] · T ) · [xe] (0)
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Exponential Enclosure Technique: Special Case

Application to linear system models

Simplified state equations

fi (x) =
n∑
j=1

aij · xj

Simplification of the iteration formula

[λi]
(κ+1) :=

n∑
j=1,i 6=j

{
aij · exp

((
[λj ]

(κ) − [λi]
(κ)
)
· [0 ; T ]

)
· [xe,j ] (0)

[xe,i] (0)

}
+ aii with aij ∈ [aij ]

Note

Free of overestimation if the equations are decoupled with aij = 0, i 6= j
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Exponential Enclosure Technique: Special Case

Application to linear system models

Simplified state equations

fi (x) =

n∑
j=1

aij · xj

Simplification of the iteration formula

[λi]
(κ+1) :=

n∑
j=1,i 6=j

{
aij · exp

((
[λj ]

(κ) − [λi]
(κ)
)
· [0 ; T ]

)
· [xe,j ] (0)

[xe,i] (0)

}
+ aii with aij ∈ [aij ]

Solution

Transformation of the state equations (decoupling) into real-valued Jordan
canonical form (assumption of pairwise different eigenvalues)
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Exponential Enclosure Technique: Special Case

Application to linear system models

Simplified state equations

fi (x) =

n∑
j=1

aij · xj

Simplification of the iteration formula

[λi]
(κ+1) :=

n∑
j=1,i 6=j

{
aij · exp

((
[λj ]

(κ) − [λi]
(κ)
)
· [0 ; T ]

)
· [xe,j ] (0)

[xe,i] (0)

}
+ aii with aij ∈ [aij ]

Computation of state transformation matrices

Use of approximately computed (floating point) eigenvector matrix with a
verified inverse and a verified transformation of the initial states
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Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

ż(t) = Σ · z(t) with Σ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 and z(0) ∈ [z(0)]

Applicability of the iteration scheme

The value zero must not be included in the true solution set
=⇒ Oscillating systems with complex eigenvalues are problematic

Σ = blkdiag{. . . , Σ̄i, . . .} , Σ̄i =

[
σi ωi
−ωi σi

]
A. Rauh et al.: Exponential Enclosure Techniques for Initial Value Problems with Multiple Conjugate Complex Eigenvalues 8/22



Problem Statement Fund. Approach Exponential Enclosures Application 1 Mult. Eigenvalues Conclusions

Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

ż(t) = Σ · z(t) with Σ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 and z(0) ∈ [z(0)]

Solution: Use of complex valued Jordan canonical form

Complex-valued IVP ż(t) = Σ · z(t) with z(0) ∈ Cn, z(0) ∈ [z(0)]

Σ = blkdiag{. . . ,Σi, . . .} , Σi =

[
σi + ωi 0

0 σi − ωi

]
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Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

ż(t) = Σ · z(t) with Σ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 and z(0) ∈ [z(0)]

Analysis of the applicability: Eigenvalues of the multiplicity δi = 1

Exact solution zi(t) = e(σi+ωi)·t · zi(0), zi+1(t) = e(σi−ωi)·t · zi+1(0)

Iteration procedure is always applicable for zi(0) 6= 0 due to

|zi(t)|2 =
(
e(σi+ωi)·t · e(σi−ωi)·t

)
· |zi(0)|2 = e2σit · |zi(0)|2 6= 0
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Exponential Enclosures: State-Space Transformation

Decoupling of the state equations

ż(t) = Σ · z(t) with Σ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 and z(0) ∈ [z(0)]

Analysis of the applicability: Eigenvalues of the multiplicity δi = 1

Solution remains asymptotically stable for decoupled (oscillatory)
linear systems

(Limited) Overestimation in the initial conditions

Multiple eigenvalues lead to a non-negligible wrapping effect
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Simulation of the Dynamics of a Controlled High-Speed
Rack Feeder System

Test rig at the Chair of Mechatronics, University of Rostock

Elastic multibody model
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Simulation of the Dynamics of a Controlled High-Speed
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Linear, time-invariant system
model for κ = const

Nonlinear (resp. linear,
time-varying) model for
κ 6= const

System order 6 with real as well
as complex eigenvalues of
multiplicity 1

Asymptotically stable after
design of a suitable state
feedback controller
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Representative Simulation Results

Complex-valued exponential
enclosure technique

x
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Increased diameters of the exponential state enclosures due to the
wrapping effect in initial conditions: complex intervals are represented
in midpoint/ radius form provided by IntLab
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Similar results can be obtained for the case of time-varying
parameters κ with sufficiently small integration step sizes

A. Rauh et al.: Exponential Enclosure Techniques for Initial Value Problems with Multiple Conjugate Complex Eigenvalues 10/22



Problem Statement Fund. Approach Exponential Enclosures Application 1 Mult. Eigenvalues Conclusions

Representative Simulation Results

Complex-valued exponential
enclosure technique

x
5
(t
)
in

m
/s

0 0.05 0.10 0.15 0.20 0.25

t in s

interval diameter

interval enclosure

−10

20

15

10

0

−5

5

VNODE-LP

x
5
(t
)
in

m
/s

0 0.05 0.10 0.15 0.20 0.25

t in s

interval diameter

interval enclosure

−10

20

15

10

0

−5

5

A. Rauh, R. Westphal, H. Aschemann, Harald: Verified Simulation of
Control Systems with Interval Parameters Using an Exponential State
Enclosure Technique, Proc. of IEEE Intl. Conf. on Methods and Models in
Automation and Robotics MMAR 2013, Miedzyzdroje, Poland, 2013.
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Extension to Systems with Multiple (Complex) Eigenvalues

Canonical form with real eigenvalues

ż(t) = Σ · z(t) with Σ = blkdiag{λ1, λ2 . . . ,Σi, . . . λn} ,

Σi =


λi 1 . . . 0

0 λi
. . .

...
...

. . .
. . . 1

0 . . . 0 λi

 ∈ Rδi×δi and z(0) ∈ [z(0)]

Solve decoupled equations independently

Jordan block with δi > 1 =⇒ solve “from bottom to top”
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Extension to Systems with Multiple (Complex) Eigenvalues

Canonical form with conjugate complex eigenvalues

Σ = blkdiag{. . . ,Σ+
i ,Σ

−
i , . . .}

with Σ+
i =


σi + ωi 1 . . . 0

0 σi + ωi
. . .

...
...

. . .
. . . 1

0 . . . 0 σi + ωi

 ∈ Cδi×δi

and Σ−i =


σi − ωi 1 . . . 0

0 σi − ωi
. . .

...
...

. . .
. . . 1

0 . . . 0 σi − ωi

 ∈ Cδi×δi

for each eigenvalue pair σi ± ωi with δi > 1
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Extension to Systems with Multiple (Complex) Eigenvalues

Analytic representation of the solutions zi+j(t), j = 0, . . . , δi − 1

z∗i+j(t) = e(σi+ωi)·t ·

δi−1∑
ζ=j

tζ−j

(ζ − j)!
· zi+ζ(0)


Applicability of the standard exponential enclosure technique

Computation of the square of its absolute value

|z∗i+j(t)|2 = e2σi·t ·

∣∣∣∣∣∣
δi−1∑
ζ=j

tζ−j

(ζ − j)!
· zi+ζ(0)

∣∣∣∣∣∣
2

= e2σi·t · |χj |2

Exponential enclosure technique of ValEncIA-IVP is applicable if

0 6∈
{
χj

∣∣∣χj = <{χj}+ ={χj}, zi+ζ(0) ∈ [zi+ζ(0)] , t ∈ [0 ; T ]
}

holds for any j = 0, . . . , δi − 1
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Extension to Systems with Multiple (Complex) Eigenvalues

Modification of the iteration scheme

Definition of the enclosure and its time derivative

zi+j =

δi−1∑
ζ=j

tζ−j

(ζ − j)!
zi+ζ(0)

 · eλi+jt
żi+j = λi+j ·

δi−1∑
ζ=j

tζ−j

(ζ − j)!
zi+ζ(0)

 · eλi+jt
+

 δi−1∑
ζ=j+1

tζ−(j+1)

(ζ − (j + 1))!
zi+ζ(0)

 · eλi+jt
Evaluation for j = 0, . . . , δi − 1, zζ(0) ∈ [zζ(0)], t ∈ [0 ; T ]

Compute enclosures [λi], . . . , [λi+δi−1]
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Extension to Systems with Multiple (Complex) Eigenvalues

Modification of the iteration scheme

Subsystem model (eigenvalue λ∗i with multiplicity δi > 1)

żi = λ∗i · zi + zi+1

żi+1 = λ∗i · zi+1 + zi+2

...

żi+δi−1 = λ∗i · zi+δi−1

One-sided decoupling of equations

Solutions can be computed in the order zi+δi−1, zi+δi−2, . . . , zi+1, zi
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Extension to Systems with Multiple (Complex) Eigenvalues

Iteration scheme

Iteration procedure

[λi+j ]
(κ+1) :=

λ∗i ·

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ]

(κ)t

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ](κ)t

+

(
δi−1∑
ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)
·
(
e[λi+j+1]t − e[λi+j ]

(κ)t
)

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ](κ)t

One-sided decoupling: [λi+j ] depends on result for [λi+j+1]
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Extension to Systems with Multiple (Complex) Eigenvalues

Iteration scheme

Iteration procedure

[λi+j ]
(κ+1) :=

λ∗i ·

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ]

(κ)t

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ](κ)t

+

(
δi−1∑
ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)
·
(
e[λi+j+1]t − e[λi+j ]

(κ)t
)

(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)
· e[λi+j ](κ)t

Evaluation for λ∗i ∈ [λ∗i ], zζ(0) ∈ [zζ(0)], t ∈ [0 ; T ]
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Extension to Systems with Multiple (Complex) Eigenvalues

Iteration scheme

Iteration procedure – simplified

[λi+j ]
(κ+1) :=

λ∗i +

(
δi−1∑
ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)
·
(
e([λi+j+1]−[λi+j ](κ))t − 1

)
(
δi−1∑
ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)

Evaluation for λ∗i ∈ [λ∗i ], zζ(0) ∈ [zζ(0)], t ∈ [0 ; T ]
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Extension to Systems with Multiple (Complex) Eigenvalues

Practically important generalization

If additional terms are included in the system model

żi = λ∗i · zi + zi+1+fi(z)

żi+1 = λ∗i · zi+1 + zi+2+fi+1(z)

...

żi+δi−1 = λ∗i · zi+δi−1+fi+δi−1(z) ,

a vector-valued iteration has to be performed
[λi]

(κ+1)

[λi+1]
(κ+1)

...

[λi+δi−1]
(κ+1)

 !
⊂


[λi]

(κ)

[λi+1]
(κ)

...

[λi+δi−1]
(κ)


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Extension to Systems with Multiple (Complex) Eigenvalues

Simplified enclosure

Definition of the enclosure and its time derivative

zi+j = (zi+j(0) + t · zi+j+1(0)) · eλi+jt

żi+j = λi+j (zi+j(0) + t · zi+j+1(0)) · eλi+jt + zi+j+1(0) · eλi+jt

Simplified iteration procedure

[λi+j ]
(κ+1) :=

λ∗i · (zi+j(0) + t · zi+j+1(0)) · e[λi+j ]
(κ)t

(zi+j(0) + t · zi+j+1(0)) · e[λi+j ](κ)t

+
zi+j+1(0) ·

(
e[λi+j+1]t − e[λi+j ]

(κ)t
)

(zi+j(0) + t · zi+j+1(0)) · e[λi+j ](κ)t

A. Rauh et al.: Exponential Enclosure Techniques for Initial Value Problems with Multiple Conjugate Complex Eigenvalues 19/22



Problem Statement Fund. Approach Exponential Enclosures Application 1 Mult. Eigenvalues Conclusions

Extension to Systems with Multiple (Complex) Eigenvalues

Simplified enclosure

Definition of the enclosure and its time derivative

zi+j = (zi+j(0) + t · zi+j+1(0)) · eλi+jt

żi+j = λi+j (zi+j(0) + t · zi+j+1(0)) · eλi+jt + zi+j+1(0) · eλi+jt

Simplified iteration procedure

[λi+j ]
(κ+1) := λ∗i +

e([λi+j+1]−[λi+j ](κ))t − 1
zi+j(0)
zi+j+1(0)

+ t

Evaluation for j = 0, . . . , δi − 1, zζ(0) ∈ [zζ(0)], t ∈ [0 ; T ]

Decoupled/ coupled evaluation as before
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Illustrative Example

Complex IVP with δi = 2

z(0) ∈
[
〈−5, 0.1〉
〈−2, 0.1〉

]
, λ∗ ∈ 〈−2 + 3, 0.1〉

<
{[
z 1
(t
)]
}
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t

0.5 1.0 1.5 2.0 2.5 3.0
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−2.0

0

2.0

=
{[
z 1
(t
)]
}

0

t

0.5 1.0 1.5 2.0 2.5 3.0

0

1.0

−1.0

−2.0

−3.0
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Illustrative Example

Complex IVP with δi = 2

z(0) ∈
[
〈−5, 0.1〉
〈−2, 0.1〉

]
, λ∗ ∈ 〈−2 + 3, 0.1〉

<
{[
z 2
(t
)]
}

0

t

0.5 1.0 1.5 2.0 2.5 3.0

−2.0

0

−4.0

−5.0

−3.0

−1.0

1.0

=
{[
z 2
(t
)]
}

0
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0.5 1.0 1.5 2.0 2.5 3.0
−2.0

0.5

0

−0.5

−1.0
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Conclusions and Outlook on Future Work

Computationally efficient verified state enclosures for continuous-time
dynamic systems with dominating linear dynamics

Handling of uncertainty in initial conditions and parameters

Iteration scheme based on complex-valued interval arithmetic

Extensions to systems with multiple conjugate complex eigenvalues

Verified, real-time capable safety analysis of control strategies:
Verification of compatibility with state constraints

Online sensitivity analysis in predictive control frameworks

Online sensitivity analysis for state and parameter estimation

Analysis of feedback linearizing control procedures

Verification of interval-based sliding mode techniques
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Dziękuję bardzo za uwagę!

Thank you for your attention!

Спасибо за Ваше внимание!

Merci beaucoup pour votre attention!

¡Muchas gracias por su atención! 

Grazie mille per la vostra attenzione! 

Vielen Dank für Ihre Aufmerksamkeit!
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