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Motivation...

...for Calculating with Intervals in Control Tasks

Guaranteed enclosures for parameters and states

Dealing with uncertainty (caused by lack of knowledge about system
parameters, inaccurate measurements, manufacturing tolerances, not
exactly modeled effects, e.g. physical, mechanical)

Quantification of worst-case influence of uncertainty on the system
dynamics

...for Using Sliding Mode Techniques

Robustness despite uncertainty (unknown parameters, noise processes)

Stabilization of error dynamics

Guaranteed stability

L. Senkel et al.: Computation of Confidence Regions 2/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

Motivation...

...for Calculating with Intervals in Control Tasks

Guaranteed enclosures for parameters and states

Dealing with uncertainty (caused by lack of knowledge about system
parameters, inaccurate measurements, manufacturing tolerances, not
exactly modeled effects, e.g. physical, mechanical)

Quantification of worst-case influence of uncertainty on the system
dynamics

...for Using Sliding Mode Techniques

Robustness despite uncertainty (unknown parameters, noise processes)

Stabilization of error dynamics

Guaranteed stability

L. Senkel et al.: Computation of Confidence Regions 2/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

This presentation...

...deals with

Extension of an interval-based sliding mode observer for online state
estimation and parameter identification

Computation of guaranteed confidence regions for system states and
parameters

Matlab toolbox IntLab for interval computation
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Properties of Interval Arithmetics

General

Interval definition [x] := [x, x] = [inf([x]), sup([x])]

Arithmetic operations +, −, ·, / as for calculations with point-values

Division by an interval containing zero is not allowed

Inclusion monotonicity: split up interval boxes to reduce
overestimation

Problems

Overestimation due to dependency problem

Overestimation due to wrapping effect
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Sliding Mode Techniques for State and Parameter
Estimation

ODEs of a Dynamic System
ẋ(t) = f (x(t),p,u(t)) = A · x (t) +B · u(t) + S · ξ (x(t),u(t))
y(t) = C · x (t)

Nominal expressions of system, input and output matrices
A := A(x(t),p) ∈ [A], B := B(x(t),p) ∈ [B] and
C := C(x(t),p) ∈ [C] (assumed to be included in interval
expressions)

State vector x(t), incl. uncertain/bounded parameters p(t) ∈ [p]

Input vector u(t)

Representation of a-priori unknown and nonlinear terms
S · ξ (x(t),u(t)) with S ∈ Rn×q and ‖ξ (x,u)‖ ≤ ξ (fixed upper
bound of the vector norm ξ)
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Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty ˆ̃
f :=

ˆ̃
f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x̂ (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Combination of locally valid linear system model and variable
structure part that handles uncertainty and nonlinearities to stabilize
the error dynamics with certainty
Uncertainty in parameters and measurements → interval arithmetic

Senkel, Luise; Rauh, Andreas; Aschemann, Harald: Interval-Based Sliding Mode

Observer Design for Nonlinear Systems with Bounded Measurement and Parameter

Uncertainty , IEEE Intl. Conference on Methods and Models in Automation and Robotics

MMAR 2013, Miedzyzdroje, Poland, 2013.
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Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty
ˆ̃f := ˆ̃f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x̂ (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Instead of nominal system, input and output matrices → interval
matrices [Â], [B̂] and [Ĉ] denoting the interval evaluations of
Â(x̂ (t) , [p]) ∈ [Â], B̂(x̂ (t) , [p]) ∈ [B̂] and Ĉ(x̂ (t) , [p]) ∈ [Ĉ]

Measurement error vector em(t) ∈ [em] = ym − ŷm + [∆ym]
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Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty
ˆ̃f := ˆ̃f(x̂ (t) , [p],u(t))

ˆ̃
f =f̂(x (t) , [p],u(t)) + P+[Ĉ]T ·Hs · sign(em + [∆ym])

:=[Â] · x̂ (t) + [B̂] · u (t) + Hp · [em] + P+[Ĉ]T ·Hs sign(em + [∆ym])

ŷm :=[Ĉ] · x̂ (t)

Underlying stabilization of the error dynamics by the observer gain
matrix Hp (pole assignment, minimizing a quadratic cost function)

Matrix P results from solving the Lyapunov equation
Ã ·P + P · ÃT + Q = 0 with Ã = Â−Hp · Ĉ and Q > 0

Online evaluation of the switching amplitudes Hs in each time step to
handle uncertainty
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Sliding Mode Techniques for State and Parameter
Estimation

Itô Differential Operator for Consideration of Stochastic Disturbances

L(V (t)) = ∂V
∂t +

(
∂V
∂e

)T ·(f(x, [p],u)− ˆ̃
f(x̂, [p],u)

)
+ 1

2 trace
{
GT ∂2V

∂e2 G
}

Suitable candidate of a Lyapunov function V (t) = 1
2(x− x̂)TP(x− x̂)

System f(x, [p],u) and observer parallel model ˆ̃
f(x̂, [p],u)

Estimation error e = x− x̂

Standard deviation of process and measurement noise
G = [Gp −HpGm] to simulate neglected nonlinear phenomena or
inaccurate sensor measurements
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Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitudes with L(V (t))
!
< −qT |[em]|

hs =

{
0, if [δ] ⊆ [em]

T
[em]

sup
(
|[em]|+ ·

(
[V̇a] + 1

2 · trace
{
GT ∂2V

∂e2 G
})

+ qT
)
, else

Element-wise non-negative defined stability margin q ≥ 0

Small interval [δ] to prevent a division by zero

[em] = ym(t)− ŷm(t) + [∆ym]

[V̇a] = [e]TP · ([f ]− [f̂ ]−Hp · em) (time arguments are omitted)

Matrix of switching amplitudes Hs = diag(hs) ∈ Rny×ny
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Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitudes with L(V (t))
!
< −qT |[em]|

hs =

{
0, if [δ] ⊆ [em]

T
[em]

sup
(
|[em]|+ ·

(
[V̇a] + 1

2 · trace
{
GT ∂2V

∂e2 G
})

+ qT
)
, else

Absolute value of the difference between measured and estimated
states |[em]| (component-wise)

|[em,i]| =


[
−em,i ; −em,i

]
for em,i ≤ 0[

em,i ; em,i
]

for em,i ≥ 0[
0 ; max{|em,i|, |em,i|}

]
else .

Interval pseudo inverse |[em]|+ =
(
|[em]|T |[em]|

)−1
· |[em]|T

L. Senkel et al.: Computation of Confidence Regions 9/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitudes with L(V (t))
!
< −qT |[em]|

hs =

{
0, if [δ] ⊆ [em]

T
[em]

sup
(
|[em]|+ ·

(
[V̇a] + 1

2 · trace
{
GT ∂2V

∂e2 G
})

+ qT
)
, else

Interval specifications for control, estimation and measurement errors
acc. to [e] = [x]− [x̂], [x] = x + [∆xc], [x̂] = x̂ + [∆xe]

Stability proof (only in simulation) is successful, if L(V (t)) < 0,
corresponding to V̇ (t) < 0
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Simulation Example

Dynamics of a drive-train test-rig (system order n = 2)

ẋ(t) = f(x (t) , [p],u(t)) =
[
ẋ1(t), ẋ2(t)

]T
according to

ẋ(t) = A · x(t) + b · u(t) =

[
0 1
0 α

] [
x1(t)
x2(t)

]
+

[
0
β

]
u(t)

y(t) = cT · x = [1 0] = x1(t)

Not a-priori known parameters α = − d
J and β = 1

J , position x1 measurable
Mass moment of inertia J , velocity-proportional friction coefficient d

Aim

Estimation of point-valued states x1, x2 (for state feedback control)
Parameter identification of point-valued parameters α̂ ∈ [α] and α̂ ∈ [β]
([α], [β] — defined parameter intervals)
Calculation of confidence regions of states [x̂1] and [x̂2] as well as

parameters [α̂] and [β̂]
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ẋ1(t), ẋ2(t)
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Simulation Example: Cascaded Structure

System 

ẋ1=x2
ẋ2=α x2+βu

u

ym=x1

Subsystem S1

Subsystem S2

x̂ (S 1)

Trajectory
Planning 

u

Estimation of system states

Identification of system parameters

x̂ (S 1)=[ x̂1 x̂2 ˙̂x2 ¨̂x2 ẑ1]
T

x̂ (S 2)=[ x̂2 ˙̂x2 α̂ β̂ ẑ2]
T

Reason for cascaded structure:
multiplicative coupling of states
and parameters in the system model 
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Simulation Example: Cascaded Structure

y(S1)=x1

Model

Original model, 3 derivatives, model error

f (S1)=[
x2+[Δ xc , x 2 , S1]

α( x2+[Δ xc , x2 , S1])+βu

α2(x2+[Δ xc , x2 , S1])+αβu+β u̇

α
3
( x2+[Δ xc , x2 , S1])+α

2
βu+αβ u̇+β ü

α4( x2+[Δ xc , x2 , S1])+α3βu+α2β u̇+αβ ü+β u⃛
]System 

ẋ1=x2
ẋ2=α x2+βu

u

ym=x1

Subsystem S1

Subsystem S2

x̂ S1

Trajectory
Planning 

u
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Simulation Example: Cascaded Structure

Observer parallel model

f̂ (S1)=[
x̂2+[Δ xe , x1 , S1]
˙̂x2+[Δ xe , x2 , S1]
¨̂x2+[Δ xe , x3 , S 1]

ẑ1+[Δ xe , x4 , S1]

0+[Δ xe , z , S1]
]

Integrator chain

Estimation of states: position, velocity, acceleration, jerk, model error of subsystem 1

y(S1)=x1

Model

Original model, 3 derivatives, model error

f (S1)=[
x2+[Δ x c , x2 , S1]

α( x2+[Δ xc , x2 , S1])+βu

α2(x2+[Δ xc , x2 , S1])+αβu+β u̇

α
3
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2
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u
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α2(x2+[Δ xc , x2 , S1])+αβu+β u̇

α
3
( x2+[Δ xc , x2 , S1])+α

2
βu+αβ u̇+β ü

α4(x2+[Δ xc , x2 , S1])+α3βu+α2β u̇+αβ ü+β u⃛
]System 

ẋ1=x2
ẋ2=α x2+βu

u

ym=x1

Subsystem S1

Subsystem S2

x̂ (S 1)

Trajectory
Planning 

u

˙̂x (S 1)=A(S 1) x̂ (S 1)+b(S 1)u+hp
(S1)em

(S 1)+pinv(P (S1)) C (S 1) ,T (hs
(S 1)sign (em

S1))

Interval-based 
Sliding Mode Observer

A(S1)=[
01000
00100
00010
00001
00000

] b(S1)=[
0
0
0
0
0
]

em
(S1)=x1− x̂1
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Simulation Example: Cascaded Structure

Similar procedure for subsystem S2 with x̂(S2) =
[
x̂2 x̂3 α̂e β̂e ẑ2

]T
Model f (S2), and observer parallel model f̂ (S2) with integrator disturbance
models for the parameters according to

α̇ = 0 + [∆xc,α], β̇ = 0 + [∆xc,β ]

˙̂α = 0 + [∆α∆],
˙̂
β = 0 + [∆β∆]

Observer ODE:

˙̂x
(S2)

= A(S2)x̂(S2) + b(S2)u

+H
(S2)
p e

(S2)
m + pinv(P(S2))C(S2),T ·H(S2)

s sign([e
(S2)
m ])

⇒ significant influence of sign of u̇S on observability in

A(S2) =


0 0 x2,S 0 1

α2
S 0 0 u̇S 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, b(S2) =


βe

αe · βe
0
0
0

, C(S2) =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



L. Senkel et al.: Computation of Confidence Regions 11/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

1 Motivation

2 Properties of Interval Arithmetics

3 Robust Sliding Mode Observer for State and Parameter Estimation

4 Simulation Example

5 Calculation of Confidence Regions using Sliding Mode Techniques

6 Simulation Results

7 Conclusions and Outlook on Further Work
L. Senkel et al.: Computation of Confidence Regions 12/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

Calculation of Confidence Regions using Sliding Mode
Techniques

Goal

Estimation of confidence regions for system states and parameters that
represent all possible configurations in a guaranteed way

Possible Computational Strategies

(1) Müller’s Theorem (unstable solutions for S2)

(2) Calculation of enclosures for cooperative systems (unstable
solutions for S2)

(3) Extension of (1) and (2): quasi-linear system representation by
decoupling of system states ⇒ generates a state-space transformation
of the system into new coordinates ⇒ recursive evaluation

(4) Affine system representation
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S1

˙̂x
(S1)

=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

A
(S1)

O


x̂1

x̂2

x̂3

x̂4

ẑ1


︸ ︷︷ ︸
x̂(S1)

+H(S1)
p · (ym − ŷm + [∆ym])

+ P
(S1)+
O C

(S1)
O H(S1)

s · sign(ym − ŷm + [∆ym])
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S1

Substitution of output equations ym = C(S1)x(S1), ŷm = C(S1)x̂(S1)

˙̂x
(S1)

=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

A
(S1)

O


x̂1

x̂2

x̂3

x̂4

ẑ1


︸ ︷︷ ︸
x̂(S1)

+H(S1)
p C(S1) · (x(S1) − x̂(S1)) + H(S1)

p · [∆ym]

+ P
(S1)+
O C

(S1)
O H(S1)

s · sign(ym − ŷm + [∆ym])
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S1

Factor out the state vector

˙̂x
(S1)

=(A
(S1)
O −H(S1)

p ·C(S1))


x̂1

x̂2

x̂3

x̂4

ẑ1


︸ ︷︷ ︸
x̂(S1)

+ H(S1)
p C(S1) · (x(S1)) + H(S1)

p · [∆ym]

+ P
(S1)+
O C

(S1)
O H(S1)

s · sign(ym − ŷm + [∆ym])
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S1

Extension by integrator disturbance model for measurement interval

Assumption: Measurement error interval is constant: ˙[∆ym] ≡ [0; 0]

Reason: remove all additive interval offsets (6-D hyperbox of states )

˙̂x1

˙̂x2

x̂3

˙̂x4

˙̂z1

˙[∆ym]


︸ ︷︷ ︸

˙̂x
(S1)
ext

=


[
A

(S1)
O

01×6

]
−
[
H

(S1)
p

0

]
·
[
C(S1) 0

]
︸ ︷︷ ︸

A
(S1)

O,ext




x̂1

x̂2

x̂3

x̂4

ẑ1

[∆ym]


︸ ︷︷ ︸

x̂
(S1)
ext

+H(S1)
p C(S1) · (x(S1))︸ ︷︷ ︸

y
(S1)
m

+ P
(S1)+
O C

(S1)
O H(S1)

s · sign(ym − ŷm + [∆ym])︸ ︷︷ ︸
point-value
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S2

Assumption: Measurement error interval is constant: ˙[∆ym,i] ≡ [0; 0]



˙̂x2
˙̂x3
α̂
˙̂
β
˙̂z2
˙[∆ym,1]
˙[∆ym,2]
˙[∆ym,1]


︸ ︷︷ ︸

˙̂x
(S2)
ext

=


[
A

(S2)
O

03×8

]
−

[
H

(S2)
p

03×3

]
·
[
C(S2) 03×3

]
︸ ︷︷ ︸

A
(S2)
O,ext





x̂2
x̂3
α̂

β̂
ẑ2

[∆ym,1]
[∆ym,2]
[∆ym,3]


︸ ︷︷ ︸

x̂
(S2)
ext

+ H
(S2)
p C

(S2) · (x(S2)
)︸ ︷︷ ︸

y
(S2)
m

+P
(S2)+
O

C
(S2)
O

H
(S2)
s · sign(ym − ŷm + [∆ym])
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(3) State-Space Transformation and Recursive Evaluation

Aim

Reformulation of system ODEs such that the state enclosures are
decoupled ⇒ Jordan matrices (real or complex eigenvalues at main
diagonal), Metzler matrices

Problem of Interval Arithmetics

Overestimation due to
dependency problem:
Occurrence of one interval
several times in the same
equation

[ x ]=[1 ;2]

f ([ x ])=[ x ]−[ x ]=[−1 ;1]≠[0 ;0]

Figure: Dependency problem

L. Senkel et al.: Computation of Confidence Regions 14/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

(3) State-Space Transformation and Recursive Evaluation

Transformation xext = Wz and ẋext = Wż

ż = inv(W)ẋext
ż = inv(W)(AO,extx̂ext + bextu+ Hp,extem + pinv(Pext)C

T
ext ·Hssign([em]))

ż = inv(W)(AO,extWz + bextu+ Hp,extem + pinv(Pext)C
T
ext ·Hssign([em]))

ż = Jz + inv(W)(bextu+ Hp,extem + pinv(Pext)C
T
ext ·Hssign([em]))

Definitions (i = 1, ..., n)

Diagonal Matrix J = diag(λi) = inv(W)AO,extW

Matrix of eigenvectors W

(real or complex) eigenvalues λi = σi ± j · ωi

Matlab command [W,J] = eig(Aext −Hp,ext ·CT
ext)

AO,ext, bext, Hp,ext, Pext, J, W separately for S1 and S2

L. Senkel et al.: Computation of Confidence Regions 15/23



Motivation Properties of IA Sliding Mode Observer Simulation Example Confidence Regions Simulation Results Conclusions

(3) State-Space Transformation and Recursive Evaluation

Algorithm: Euler Method

[zk] = inv(Wk)Wk−1 · [zk−1] (only for S2)

zk = inf([zk]) and zk = sup([zk])

Lower bound: zk+1 = zk + T · (Jk · zk + b · u+ HT
p,k · ym

+pinv(Pk)CT · sign(ym − ŷm + [∆ym]))

Upper bound: zk+1 = zk + T · (Jk · zk + b · u+ HT
p,k · ym

+pinv(Pk)CT · sign(ym − ŷm + [∆ym]))

→ 4 cases because: Wk = Wk(sign(u̇k))
→ Method results for S2 in unstable solutions due to wrapping effect
caused by rotation of interval boxes (necessary because of switchings
depending on u̇ < 0 or u̇ > 0)
→ good results for S1
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(4) Affine System Representation

Aim

Recursion of state enclosures according to their constant initial values to
reduce overestimation

Problems

Overestimation due to
wrapping effect: standard
interval arithmetics only
operate with axis-parallel boxes
— wrapping of non-axis-parallel
boxes by axis parallel ones

axis-parallel
box including 
unphysical regions

non-axis-parallel
enclosure in the 
solution space

x1 x1
x1

x2

x2

x2

Figure: Wrapping effect
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(4) Affine System Representation

Algorithm (dim(A
(S1)
O,ext) := n = 6, dim(A

(S2)
O,ext) := n = 8)

Initialization M0 := In×n, ρ0 := 0n×1

New system matrix of the discretized system M
[x0,ext] is the constant interval of initial values
For both subsystems separately:

M = In×n + T ·AO,ext(t = tk)

Sk = Pext ·CT
ext · diag(hs,k) · sign(ym,k − ŷm,k + [∆ym])

Mk+1 = M ·Mk

ρk+1 = Mk · ρk + T · (HT
ext · ym,k + Sk + bk,ext · uk)

Update-Step:
[xk+1,ext] = Mk+1 · [x0,ext] + ρk+1
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Summary

System 

ẋ1=x2
ẋ2=α x2+βu

u

x1

Subsystem S1

Subsystem S2

x̂ (S 1)

Trajectory
Planning 

u

x̂ k
(S 1) , hs , k

(S1)

x̂ k
(S 2) ,hs , k

(S 2)

Goal: Estimation of guaranteed 
enclosures of states and parameters

[ x̂ k+1,ext
(S 1) ]=M k+1

(S 1)⋅[ x̂0,ext
(S 1) ]+ρk+1

(S1)

M k+1
(S 1)

ρk+1
(S1)

[ x̂ext ,1 , k ] ,[ x̂ext ,2 , k ]

[α̂k ] , [β̂k ]

[αk ] , [βk ]

[ x̂ k+1,ext
(S 1) ] unit

delay

M k
(S 1)

ρk
(S1)

M k+1
(S 2)

ρk+1
(S2)

[ x̂ k+1,ext
(S 2) ] unit

delay

M k
(S 2)

ρk
(S2)

Âk
(S 2) , b̂k

(S2)

[ x̂ k+1,ext
(S 2) ]=M k+1

(S 2)⋅[ x̂0,ext
(S 2) ]+ρk+1

(S2)
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Results: State Estimation (Subsystem 1)

t in s

[x
1]

−5
0

inf([x̂1])
0

5

10

15

20

1 2 3 4 5

sup([x̂1])

(a) Confidence region of x̂1.

t in s

[x
2]

−40
0

40
sup([x̂2])

inf([x̂2])

20

0

−20

1 2 3 4 5

(b) Confidence region of x̂2.

→ Measurement error interval [∆ym] = [−0.05; 0.05]
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Results: Parameter Identification (Subsystem 2)

t in s

[α
],
[α̂
],
α̂

−5
150010005000

sup([α])

−4

−3

−2

−1

α̂

inf([α])
inf([α̂])

sup([α̂])

(c) Confidence region of α̂.

t in s

[α
],
[α̂
],
α̂

−5
150010005000

sup([α])

−4

−3

−2

−1

α̂

inf([α]) inf([α̂])

sup([α̂])

(d) Confidence region of α̂.

left: [∆ym,1] = [−0.1; 0.1], [∆ym,2] = [−0.1; 0.1], [∆ym,3] = [−0.01; 0.01]
hs,max = 400

right: [∆ym,i] = [−1; 1] with i = 1, 2, 3, hs,max = 400

[α], [β] - defined intervals for stabilization of estimation error dynamics
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Results: Parameter Identification (Subsystem 2)

t in s

[β
],
[β̂
],
β̂

20
150010005000

40

60

80

100
sup([β])

sup([β̂])

inf([β̂])

inf([β])

β̂

(e) Confidence region of β̂.

t in s

[β
],
[β̂
],
β̂

20
150010005000

40

60

80

100
sup([β])

sup([β̂])

inf([β̂])

inf([β])

β̂

(f) Confidence region of β̂.

left: [∆ym,1] = [−0.1; 0.1], [∆ym,2] = [−0.1; 0.1], [∆ym,3] = [−0.01; 0.01]
hs,max = 400

right: [∆ym,i] = [−1; 1] with i = {1, 2, 3}, hs,max = 400

→ Smaller confidence region of β with multi-section strategy
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Conclusions and Outlook

Conclusions

Calculation of confidence regions by affine system representation

Parallel estimation of point-values by interval-based Sliding Mode
Observer

Outlook

Achievement of faster convergence for confidence regions by
optimizing the system input (Pontrjagin’s maximum principle,
observability Gramian)

Find automatized strategy to determine switching amplitude

Application to other nonlinear systems
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Conclusions and Outlook

Conclusions

Calculation of confidence regions by affine system representation

Parallel estimation of point-values by interval-based Sliding Mode
Observer

Outlook

Achievement of faster convergence for confidence regions by
optimizing the system input (Pontrjagin’s maximum principle,
observability Gramian)

Find automatized strategy to determine switching amplitude

Application to other nonlinear systems
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Thank you for your attention!
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(1) Müller’s Theorem

Aim

Find lower and upper functions to bound the right-hand side of the
system ODEs ẋ = f(x(t), [p],u(t)) that is affected by uncertain
(interval) parameters p ∈ [p]

Lower function v(t), upper function w(t)

Worst-case enclosure by component-wise bounding system
vi(t) ≤ xi(t) ≤ wi(t) for all i = 1, ..., n

Determine differential inequalities
v̇i(t) ≤ ẋi(t) ≤ ẇi(t) for all possible states and parameters

Solve a system of order 2n

Solution unstable, too conservative enclosures (unphysical combinations),
overestimation
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(2) Calculation of Enclosures for Cooperative Systems

Definition

A given system f(x(t), [p],u(t)) is monotone concerning its initial values.

Extension of (1): Sufficient Conditions for a Cooperative System

All states for all times are non-negative
ẋi = fi(x1, ..., xi−1, 0, xi+1,...,xnx

) ≥ 0

All entries of the Jacobian fulfill ∂fi
∂xj
≥ 0 for all i, j = {1, ..., nx} (i 6= j)

Calculation of guaranteed lower and upper bounds by evaluating the
ODEs at all corner points instead of whole range of xi(t)
⇒ minimum and maximum value for all states for all time steps

Solution unstable, many configurations (26 · 6 for TS1), also unphysical
combinations possible, overestimation
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x1

x2

z1
z2

[Δ ym ]

t

x2

x2

x2

Guaranteed enclosures 

ym=x1, k

consistent with:

state equations 

measurements

uncertainty
backward-
transformationt

ż=
f (
z 1,
z 2

)

x=W−1 z t

x1

x1

x1

transformation
matrixW

Figure: Principle of the State-Space-Transformation
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