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Motivation...

..for Calculating with Intervals in Control Tasks
@ Guaranteed enclosures for parameters and states

@ Dealing with uncertainty (caused by lack of knowledge about system
parameters, inaccurate measurements, manufacturing tolerances, not
exactly modeled effects, e.g. physical, mechanical)

@ Quantification of worst-case influence of uncertainty on the system
dynamics
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Motivation...

..for Calculating with Intervals in Control Tasks
@ Guaranteed enclosures for parameters and states

@ Dealing with uncertainty (caused by lack of knowledge about system
parameters, inaccurate measurements, manufacturing tolerances, not
exactly modeled effects, e.g. physical, mechanical)

@ Quantification of worst-case influence of uncertainty on the system
dynamics

..for Using Sliding Mode Techniques
@ Robustness despite uncertainty (unknown parameters, noise processes)
@ Stabilization of error dynamics

@ Guaranteed stability

L. Senkel et al.: Computation of Confidence Regions



Motivation
o] ]

This presentation...

...deals with

@ Extension of an interval-based sliding mode observer for online state
estimation and parameter identification

@ Computation of guaranteed confidence regions for system states and
parameters

e Matlab toolbox IntLab for interval computation

L. Senkel et al.: Computation of Confidence Regions
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Properties of Interval Arithmetics

General

o Interval definition [z] := [z, ] = [inf([z]), sup([z])]

@ Arithmetic operations +, —, -, / as for calculations with point-values
@ Division by an interval containing zero is not allowed
°

Inclusion monotonicity: split up interval boxes to reduce
overestimation

L. Senkel et al.: Computation of Confidence Regions
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Properties of Interval Arithmetics

General

o Interval definition [z] := [z, ] = [inf([z]), sup([z])]

@ Arithmetic operations +, —, -, / as for calculations with point-values
@ Division by an interval containing zero is not allowed
°

Inclusion monotonicity: split up interval boxes to reduce
overestimation

Problems
@ Overestimation due to dependency problem
@ Overestimation due to wrapping effect
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© Robust Sliding Mode Observer for State and Parameter Estimation
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Sliding Mode Techniques for State and Parameter
Estimation

ODEs of a Dynamic System
x(t) = £ (x(t),p,u(t)) = A-x(t) + B-u(t) + S - £ (x(t), u(t))
y(t) = C-x(t)
@ Nominal expressions of system, input and output matrices
A = A(x(t),p) € [A], B:=B(x(¢),p) € [B] and
C := C(x(t),p) € [C] (assumed to be included in interval
expressions)
@ State vector x(¢), incl. uncertain/bounded parameters p(¢) € [p]
@ Input vector u(t)
@ Representation of a-priori unknown and nonlinear terms
S - & (x(t),u(t)) with S € R™ 9 and ||€ (x,u)| < € (fixed upper
bound of the vector norm &)

L. Senkel et al.: Computation of Confidence Regions



Sliding Mode Techniques for State and Parameter
Estimation
Sliding Mode Observer ODEs Considering Uncertainty & .= ¥ (1), p}, u()
£ =f(x (1), [p], u(t) + PHEIT - H, - sign(em + [Aym])
]-%(t) + [B] - u(t) + Hy - [en] + PH[C]T - H; sign(en + [Aym])
] - %(t)
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Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty & .= ¥ (1), p}, u()
£=f(x (1), [p], u(t)) + P*[C]" - H, - sign(em + [Aym])

@ Combination of locally valid linear system model and variable
structure part that handles uncertainty and nonlinearities to stabilize
the error dynamics with certainty

@ Uncertainty in parameters and measurements — interval arithmetic

Senkel, Luise; Rauh, Andreas; Aschemann, Harald: Interval-Based Sliding Mode
Observer Design for Nonlinear Systems with Bounded Measurement and Parameter
Uncertainty, IEEE Intl. Conference on Methods and Models in Automation and Robotics
MMAR 2013, Miedzyzdroje, Poland, 2013.
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Sliding Mode Techniques for State and Parameter
Estimation

SIiding Mode Observer ODEs Considering Uncertainty
£(x (1), [p], u(t)

hv ||
I

£(%(t), [pl,u(t)) + PT[C]" - H - sign(en + [Aym])
=[ - ()+[ ] u(t) +H, - [en] + PT[C]" - H sign(em + [Aym)

@ Instead of nomjnal system, input and output matrices — interval
matrices [A], [B] and [C] denoting the interval evaluations of
A(x(t),[p]) € [A], B(x(t), [p]) € [B] and C(x(t),[p]) € [C]

@ Measurement error vector €,,(t) € [en] = Ym — Ym + [Aym]

L. Senkel et al.: Computation of Confidence Regions
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Sliding Mode Techniques for State and Parameter
Estimation

Sliding Mode Observer ODEs Considering Uncertainty

f:=1(x (1), [p,u(t)

>

£ =£(x (), [pl, u(t)) + P*[E]7 - H, - sign(em + [Ay])
:[ - ()+[B] u (t) + Hy - [en] + PF[C]" - H, sign(en + [Aym])

@ Underlying stabilization of the error dynamics by the observer gain
matrix H,, (pole assignment, minimizing a quadratic cost function)
@ Matrix P results from solving the Lyapunov equat|on
A P+P AT+Q=0withA=A— H, .Cand Q>0

@ Online evaluation of the switching amplltudes H; in each time step to
handle uncertainty

L. Senkel et al.: Computation of Confidence Regions
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Sliding Mode Techniques for State and Parameter
Estimation

[to Differential Operator for Consideration of Stochastic Disturbances

L(V($) = 9 +(35)" (£0x [p),w) — (%, [p], w)) + dtrace { GT2Y G }

@ Suitable candidate of a Lyapunov function V' (t) = %(x —x)TP(x - %)

e System f(x, [p],u) and observer parallel model f(x, [p], u)
o Estimation error e = x — %

@ Standard deviation of process and measurement noise
G =[G, —H,G,,] to simulate neglected nonlinear phenomena or
inaccurate sensor measurements

L. Senkel et al.: Computation of Confidence Regions
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Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitudes with L(V(¢)) < —q” |[en]]

poo o el [em]" em] 2
s sup (|[em]|Jr . ([Va] + £ - trace {GT%?VGD + qT) , else

Element-wise non-negative defined stability margin q > 0

Small interval [] to prevent a division by zero

el = Yn(t) = Funlt) + [Ayn]

Vo] = [e]P - ([f] — [f] — H, - ) (time arguments are omitted)
Matrix of switching amplitudes H; = diag(h) € R™*"™
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Sliding Mode Techniques for State and Parameter
Estimation

Calculation of the Switching Amplitudes with L(V (¢)) < —q” |[e,.]]

po_Jo ifele CARCH 2
# sup <|[em]|Jr . ([Va] + 1 - trace {GT %G‘Q/G}) + qT> , else

@ Absolute value of the difference between measured and estimated
states |[e,,]| (component-wise)

[—Cm.i 5 —€m.q for €, <0
lemill = S [emi 5 Em.i for e, ; >0
05 max{le,, ;|, [Eml}] else .

T

o Interval pseudo inverse |[e,, ]|t = <|[em]|T |[em]|>—1 - |lem]

L. Senkel et al.: Computation of Confidence Regions
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Sliding Mode Techniques for State and Parameter
Estimation

!

Calculation of the Switching Amplitudes with L(V (¢)) < —q* |[e,.]]

L]0 fllc [em]T e 2
) sup <|[em]|Jr . ([Va] + 1 - trace {GT %e‘{G}) + qT> else

@ Interval specifications for control, estimation and measurement errors
acc. to [e] = [x] — [X], [x] = x+ [Ax.], [X] =% + [Ax,]

e Stability proof (only in simulation) is successful, if L(V/(t)) <0,
corresponding to V' (t) < 0

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example

Dynamics of a drive-train test-rig (system order n = 2)

x(t) = £(x (t),[p],u(t)) = [@1(¢), i?g(t)]T according to
x(t) = A-x(t) + b-u(t) = [8 ;] [i;gg] 4 [g] u(t)
y(t)=cl-x=[1 0] =z1(t)

@ Not a-priori known parameters o = —% and 8 = % position x; measurable
@ Mass moment of inertia J, velocity-proportional friction coefficient d

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example

Dynamics of a drive-train test-rig (system order n = 2)

x(t) = £(x (t),[p],u(t)) = [@1(¢), i‘g(t)]T according to
%(t) = A - x(t) + b - u(t) = [8 ;] [ﬁ;gg] + [2] u(t)
y(t)=cl-x=[1 0] =z1(t)

@ Not a-priori known parameters o = —% and 8 = % position x; measurable
@ Mass moment of inertia J, velocity-proportional friction coefficient d
V.
Aim

@ Estimation of point-valued states x, x5 (for state feedback control)

@ Parameter identification of point-valued parameters & € [a] and & € [§]
([e], [B] — defined parameter intervals)

@ Calculation of confidence regions of states [#1] and [Z2] as well as

~

parameters [a] and [f]

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example: Cascaded Structure

Trajectory

Planning

System

X=X,

X,=ax,+Bu

Ym=X1

&(S.i

Reason for cascaded structure:
multiplicative coupling of states
and parameters in the system model

Estimation of system states

-’?(S‘]=[x1 %, );‘2 j;‘2 2|]T

Identification of system parameters

3(5:l=[5(2 5‘2 a 6 2217

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example: Cascaded Structure

Trajectory Model

a('x2+[Axc,xz,Sl])+Bu

" 1= o (xHAx o)) taputpi
ystem 3 2 N .
S=x o' (x,+[Ax,  g))+a Butapiu+pi
1~ 2 N
dy=ax,tpu a*(x,+H[Ax, o))+ Buto’Bi+api+Bii
U L y,=X y(S.l=xl

Original model, 3 derivatives, model error

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example: Cascaded Structure

N Model
Trajectory x+[Ax, gl
Planning
alx,+[Ax,  g)+Pu
f'S"= az(x2+[Ax(,,‘.ys,])ﬁlﬁu*ﬁf‘

& (x,+[Ax, o))+ Butapi+pi
a4(x2+[Ax(.‘.ys,])+a3[3u+az[3u+a[5il+[5'12

System
X =x,
X,=ax,+Pu

(s)_
yo=x

Original model, 3 derivatives, model error

Observer parallel model

5‘2+[Axc,.r,,51]
j1‘;:4'[Axe,‘,.,51]
FU=54Ax,, )
%l+[Axe.\‘.Xl]
0+[Axe,:.Sl]

Integrator chain

Estimation of states: position, velocity, acceleration, jerk, model error of subsystem 1

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example: Cascaded Structure

Trajectory Model

a(x2+[Axc,,\:,51])+ﬁ”
f'S"= az(x2+[Axcu‘_ys,])+a[5u+[5i4
o (x,+[Ax, o))+’ Butapi+pi
a4(x2+[Ax(.‘.ys,])+a3[3u+az[3u+a[5il+[5'12

System
X =x,
X,=ax,+Pu

(s))

yo=x
Original model, 3 derivatives, model error

Observer parallel model Interval-based
Sliding Mode Observer

5‘2+[Axc,.r,,51]

i+HAx, L g 01000 g
2s)_| = ) 00100
f= i‘z"‘[Axe,x;,sz] A%=100010 »S)=|o
LtAx 5] 00001 0
0+[Ax, . g 00000 0
h (s) s
Integrator chain =X =X

A(S)_ (S0 oS0, (50 L p(S) (S), - (S)Y 0T[50 (S,
X=AV b ut b)) e, +pinv (PY) € (hx sign(e;’)

Estimation of states: position, velocity, acceleration, jerk, model error of subsystem 1

L. Senkel et al.: Computation of Confidence Regions
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Simulation Example: Cascaded Structure
. . . A(Sz) _ ~ ~ ~ A ~ T
@ Similar procedure for subsystem S with X = [332 T3 Qe Be 22]
@ Model £(52), and observer parallel model £(52) with integrator disturbance
models for the parameters according to

a =0+ [Az. ], B=0+ Az g]

&=0+[Aaal, B=0+[AB4]
@ Observer ODE:
(52) _ A (82)5(52) 4 p(S2)y,
+H1()52)e£§2) + pinv(P(52))C(52).T . HﬁS”sign([eﬁf?)])

X

= significant influence of sign of 7. g on observability in

0 =z

02 2, 0 1 ﬁe

a3 0 0 ag O ae - Be 1 0 0 0 O
AS2) = | ¢ ¢ 0 0 of,b(52) = o [,cB2)=lo 1 0 0 o0

o 0 0 0 o 0 0 0 0 0 1

o 0 0 0 o 0

L. Senkel et al.: Computation of Confidence Regions
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© Calculation of Confidence Regions using Sliding Mode Techniques
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Calculation of Confidence Regions using Sliding Mode
Techniques
Goal

Estimation of confidence regions for system states and parameters that
represent all possible configurations in a guaranteed way

Possible Computational Strategies
@ (1) Miiller's Theorem (unstable solutions for S5)

@ (2) Calculation of enclosures for cooperative systems (unstable
solutions for S3)

@ (3) Extension of (1) and (2): quasi-linear system representation by
decoupling of system states = generates a state-space transformation
of the system into new coordinates = recursive evaluation

@ (4) Affine system representation

L. Senkel et al.: Computation of Confidence Regions
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S

010 0 0] [4;
sy |00 10 0f &
x 7=10 0 0 1 0| |Zs| +HE) . (4 — Gim + [Aym])
00 0 0 1| |d4
000 0 0|5
N——
ASD %(51)

+PEVTCEVH - sign(yp — Gim + [Aym])

L. Senkel et al.: Computation of Confidence Regions
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S

~

Substitution of output equations y,, = C(5Vx(5) g = C51)%(51)

01 0 0 0] [#
sy |00 1 0 0f i
x =10 0 0 1 0f [&|+HFICE) . (x5 — x50y L HED . [Ay,,]
000 0 1| |24
0000 0f |4
~——
ALY %(51)

+ PEITCEIHSED - sign(ynm — Gm + [Aym])

L. Senkel et al.: Computation of Confidence Regions
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S

Factor out the state vector
a0
T
:(Agl) _ Hésl) . C(Sl)) Za| + H;SI)C(SI) . (X(Sl)) 4 Hésl) . [Aym]
T4
Zn
—_—

*%(S1)

+PEITCEIHED - sign(ym — Gm + [Aym])

2 (S1)
X

L. Senkel et al.: Computation of Confidence Regions
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S
@ Extension by integrator disturbance model for measurement interval
o Assumption: Measurement error interval is constant: [Ay,,] = [0;0]

@ Reason: remove all additive interval offsets (6-D hyperbox of states )

[ -'?1 | Iy
T2 X9
T3 ASV] [P (s1) T3 (1) (51) . (x(S1)
504 = ox6 | 0 '[C O] &4 +H,, C (%)
él 21 ygl)
g (51)

_[Aym]_ A0 et [AYy]

405D =51

ext

+PEVTCEVHESY - sign(ym — im + [Aym))

point-value

L. Senkel et al.: Computation of Confidence Regions
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Preliminaries for Strategies (3) and (4)

Extension of Subsystem S,

Assumption: Measurement error interval is constant: [Ay,, ;] = [0;0]
o2 &2
Z;3 :23
P (S2) (S2) ¢
B _| A H B
Bl ) e o]
[Ayn,1] {ﬁym,l%
Ay, (S2) Ym,2
A A0.eat o
N— ——
(S
X5 o

+H(E2) c52) L (x(52)) 4 pEDTCEDHE) sign(ym — §m + [Aym])

S5

L. Senkel et al.: Computation of Confidence Regions
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(3) State-Space Transformation and Recursive Evaluation
Aim
Reformulation of system ODEs such that the state enclosures are

decoupled = Jordan matrices (real or complex eigenvalues at main
diagonal), Metzler matrices

Problem of Interval Arithmetics

@ Overestimation due to
dependency problem: [x1=[1:2]
Occurrence of one interval 7 ([x])=[x]-[x]=[-1,1]%[0,0]
several times in the same
equation

Figure: Dependency problem

L. Senkel et al.: Computation of Confidence Regions
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(3) State-Space Transformation and Recursive Evaluation

Transformation x.,; = Wz and x.,; = Wz

2 = inv(W)kees

z = inv(W) (A0 cxtXext + Pexttt + Hy cxr€n + pinv(Pey)CL, - Hsign([e,]))
z = inv(W)(A0 et Wz + begiu + Hy, cpiep, + pinv(Pezt)CZ;t - Hsign([en]))
z =Jz +inv(W)(begiu + Hp ezren, + pinv(P..;)CL , - Hsign([e,]))

Definitions (i = 1,...,n)
e Diagonal Matrix J = diag(\;) = inv(W)Ap et W
@ Matrix of eigenvectors W
o (real or complex) eigenvalues \; = o; £ j - w;
e Matlab command [W, J] = eig(Aezt — Hp eot - CL,)
® Ao crts bext, Hp eat, Pert, J, W separately for S1 and Sy

L. Senkel et al.: Computation of Confidence Regions
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(3) State-Space Transformation and Recursive Evaluation

Algorithm: Euler Method
o [zi] = inv(Wy)Wy_; - [z5_1] (only for S5)
e z, = inf([zx]) and z; = sup([zx])
o Lower bound: z; . =z, + T - (Jp 'Zk+b'“+H£k'ym
+pinv(Px)CT - sign(ym — ¥m + [Aym]))
e Upper bound: Zy 1 =2 + T - (Jj - 2, +b'“+Hg,k "Ym
+pinv(P)CT - sign(ym — ¥m + [Aym]))

— 4 cases because: Wy, = W (sign(dy))

— Method results for S5 in unstable solutions due to wrapping effect
caused by rotation of interval boxes (necessary because of switchings
depending on % < 0 or @ > 0)

— good results for Sy

L. Senkel et al.: Computation of Confidence Regions



Mode O

tion Properties of IA Slidi

Simulation Example Confidence Regions Simulation Results

[o]e]e]e]e] lele]

(4) Affine System Representation

Aim

Recursion of state enclosures according to their constant initial values to

reduce overestimation

Problems

@ Overestimation due to
wrapping effect: standard
interval arithmetics only
operate with axis-parallel boxes
— wrapping of non-axis-parallel
boxes by axis parallel ones

L. Senkel et al.: Computation of Confidence Regions

axis-parallel
box including
unphysical regions

non-axis-parallel
enclosure in the
solution space

X

Xy e !

Figure: Wrapping effect
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(4) Affine System Representation

Algorithm (dim(A(OS;lt) =n =06, dim(Agilt) =n=_8)
Initialization Mg := I"*", py := 0"*!

New system matrix of the discretized system M

[X0,ext] is the constant interval of initial values

For both subsystems separately:

M =T 4T - Ao car(t = ty)

Sk - Pext : Cth : diag(hs,k) : Sign(Ym,k - ym,k + [Aym])
My 1 = M- My

Prr1 =My pr + T - (HL - Yoo + Sk + brear - ur)

Update-Step:
[Xk—l-l,e;rt] = Mk—l—l . [XO,eact] + Pk+1

L. Senkel et al.: Computation of Confidence Regions




Confidence Regions

0000000e

Summary
Trajectory
Planning
SYStem _
X=X,
X, =ox,+Pu
u .
y o M'ks') M(ks+)1 J
N .
o(s) (s, s, P ) [% ] unit N N
X hok V[xﬁ)l,m]=M&i)1'[x51f;,]+p£i)1 ‘A;)l’ e delay -[xew,l.k]’[xm,z.k]
) Pri1
o) o[ ]
£
(s2)
M, J
unit N A
delay- [C‘-k]»[ﬁk]
[on ], [Be]
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@ Simulation Results
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Results: State Estimation (Subsystem 1)

T 20 T 40
1 1 e
= () £ %/
T
o
O, — . ..
5 inf([z,])
0" —20
-5 1nf([£1]) —40
o 1 2 3 4 5 o 1 2 3 4 5
tins— tms—
(a) Confidence region of 2;. (b) Confidence region of #».

— Measurement error interval [Ay,,] = [—0.05;0.05]

L. Senkel et al.: Computation of Confidence Regions
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Results: Parameter Identification (Subsystem 2)

-1 sup([a]) - ﬁp([a])
<3 ~ <3 Sup([&]>
. 2 -
- > s/up([a]) = B /
— o — «
T -3 inf([a]) = -3 N
A inf([a]) , inf([o])  inf([a])
- / - /
-5 -5
0 500 1000 1500 0 500 1000 1500
tins— tins—

(c) Confidence region of &. (d) Confidence region of &.

left: [Aypma] = [=0.150.1], [Aym.a] = [~0.1;0.1], [Agp.s] = [0.01;0.01]
h e = 400

right: [Aym,] = [-1;1] with i = 1,2,3, hy 100 = 400

[, [B] - defined intervals for stabilization of estimation error dynamics

L. Senkel et al.: Computation of Confidence Regions
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Results: Parameter Identification (Subsystem 2)

sup([5]) sup([8])
T 100 o T 100 o
oY Q.
- 80 N - 80 o
=, sup([5]) &, sup([A])
= o 2w A
N S nf([4]) " Y inf([5])
—_inf([s]) - _inf([8])
20 : : ‘ 20 : : ‘
0 500 1000 1500 0 500 1000 1500
tins— tins—
(e) Confidence region of /. (f) Confidence region of £.
left: [Aym, 1] = [0.1;0.1], [Aym 2] = [-0.1;0.1], [Aysm, 3] = [—0.01;0.01]
hg maz = 400

right: [Aym.] = [—1;1] with ¢ = {1, 2,3}, hy ;500 = 400
— Smaller confidence region of 5 with multi-section strategy

L. Senkel et al.: Computation of Confidence Regions
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@ Conclusions and Outlook on Further Work
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Conclusions and Outlook

Conclusions
o Calculation of confidence regions by affine system representation

o Parallel estimation of point-values by interval-based Sliding Mode
Observer
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Conclusions and Outlook

Conclusions
o Calculation of confidence regions by affine system representation

o Parallel estimation of point-values by interval-based Sliding Mode
Observer

Outlook

@ Achievement of faster convergence for confidence regions by
optimizing the system input (Pontrjagin’'s maximum principle,
observability Gramian)

o Find automatized strategy to determine switching amplitude

@ Application to other nonlinear systems
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Thank you for your attention!
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(1) Miiller's Theorem
Aim
@ Find lower and upper functions to bound the right-hand side of the

system ODEs x = f(x(t), [p], u(t)) that is affected by uncertain
(interval) parameters p € [p]

Lower function v(t), upper function w(t)
@ Worst-case enclosure by component-wise bounding system
vi(t) < zi(t) < wji(t) foralli=1,...,n
@ Determine differential inequalities
0;(t) < &;(t) < w;(t) for all possible states and parameters
@ Solve a system of order 2n

Solution unstable, too conservative enclosures (unphysical combinations),
overestimation

v
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(2) Calculation of Enclosures for Cooperative Systems
Definition

A given system f(x(¢), [p], u(t)) is monotone concerning its initial values.

v

Extension of (1): Sufficient Conditions for a Cooperative System
@ All states for all times are non-negative
& = fi(x1, 0 51,0, %541, 5, ) 2 0
@ All entries of the Jacobian fulfill ng >0foralli,j={1,...,n.} (i #5)
o Calculation of guaranteed lower and upper bounds by evaluating the
ODEs at all corner points instead of whole range of x;(t)
= minimum and maximum value for all states for all time steps

Solution unstable, many configurations (26 - 6 for TS1), also unphysical
combinations possible, overestimation

v
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Guaranteed enclosures

consistent with:
state equations XA
X measurements _
24 X,
uncertainty | T
backward- —//\/
N transformation X,
-
—
transformation
matrix W 2
A
_j/\

I

2

ym xl,k

Figure: Principle of the State-Space-Transformation
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