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Global optimization methods Interval methods

Interval branch and bound framework (IB&B)

Computation of guaranteed lower bounds in B&B
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Global optimization methods Interval methods

Interval branch and bound framework (IB&B)

Non-uniform search

I best upper bound f̃ = F (x̃) of global minimum x∗

I If f̃ ≤ F (X), discard X

I otherwise store in priority queue L
I exploration strategy: breadth first, best first, depth first

In n dimensions

I dichotomy variable after variable

I iterate until required precision ε on image

I exponential complexity ⇒ n small
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Global optimization methods Evolutionary algorithms

Metaheuristics

Metaheuristics combine memory, greedy search and/or stochastic search
I do not require specific properties on f (black box)
I single (pattern search, simulated annealing) or multiple solutions (EA)
I costly methods, no guarantee of optimality

Greedy

Stochastic

Memory

Diversification Intensification
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Global optimization methods Evolutionary algorithms

Evolutionary algorithms

Evolutionary algorithms are random walks guided by heuristics

I stochastic sampling of the search-space

I based on the theory of evolution (selection, crossover, mutation operators)

I iterative improvement of a population of individuals xi
I adaptation criterion (fitness) f(xi)

x

f(x)

discontinuity

global

local
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Global optimization methods Evolutionary algorithms

Evolutionary algorithms

Genetic algorithm [Holland, 1975], differential evolution [Storn and Price, 1997]

Initial population After 50 iterations

Figure: DE on Griewank function (n = 2), 50 individuals
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Charibde: a cooperative hybrid solver Hybrid metaheuristics

Hybrid metaheuristics

Hierarchical classification of hybrid methods (metaheuristic + exact method)

I integrative (low-level) approaches
I metaheuristic is master

memetic algorithms
I metaheuristic is slave

GA in IB&B [Zhang and Liu, 2007]

I cooperative (high-level) approaches
I sequential execution (preprocessing)

IB&B + GA [Sotiropoulos et al., 1997]
I parallel execution

BB // memetic algorithm [Gallardo et al., 2007]
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Charibde: a cooperative hybrid solver Architecture of Charibde

Charibde: a new cooperative solver [Vanaret et al., 2013]

I cooperative (6= integrative) parallel hybridization, inspired by
[Alliot et al., 2012]

I fully reliable > complete (BARON, Couenne)

Differential
evolution

xw

(xb, F (xb)) (x̃, f̃)

(m(X), F (m(X)))

Interval branch &
contractMPI SendIB&B

MPI SendDE
�(L)domain

I differential evolution: efficient on continuous problems, few hyperparameters

I interval branch and contract: interleaves branching and filtering (constraint
propagation)

I independent processes exchange bounds and solutions (MPI)
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Charibde: a cooperative hybrid solver Architecture of Charibde

An advanced cooperation

IB&C exploration strategy

I extract from L the farthest box from x̃ (
∑

of componentwise distances)
I either x̃ close to x∗: fast local exploration by DE
I or x̃ far from x∗: might as well search in area not reachable by DE

I postpone tedious interval search around x∗, waiting for the best possible f̃

I adaptive heuristic: recompute priorities when x̃ updated

DE domain reduction operator

I restart of DE in smaller search-space

I IB&C maintains remaining boxes → take the hull!
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Charibde: a cooperative hybrid solver Architecture of Charibde

(P) min
(x,y)∈[0,10]2

− (x+ y − 10)2

30
− (x− y + 10)2

120

s.c.
20

x2
− y ≤ 0

x2 + 8y − 75 ≤ 0

Initial domain Initial domain (contracted)
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Charibde: a cooperative hybrid solver Architecture of Charibde

Sporadically trigger MPI communication to send L to DE

After 10 generations After 20 generations

Why does it work? The exploration strategy

I “peels off” domain from outside → boosts hull reduction

I maintains a low (≤ 200) number of boxes in L
I cheap MPI communication and hull operation (O(|L|))
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Experimental results Benchmark of difficult constrained problems

Benchmark of difficult constrained problems

Comparison of interval solvers

I difficult COCONUT problems selected by [Araya et al., 2012]
I ex2 1 7, ex2 1 9, ex6 2 6, ex6 2 8, ex6 2 9, ex6 2 11, ex6 2 12, ex7 2 3,

ex7 3 5, ex14 1 7, ex14 2 7

I GlobSol [Kearfott, 1996], IBBA [Ninin et al., 2010] and
Ibex [Chabert and Jaulin, 2009]

Cumulative CPU time

I GlobSol and IBBA time out (> 3600s on several problems)

I Ibex: 1312.32s

I Charibde: 94.85s
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Experimental results Benchmark of difficult constrained problems

Benchmark of difficult constrained problems
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Experimental results New optimality results for multimodal functions

New optimality results for multimodal functions

Multimodal functions, few approximate solutions known

Function Type Domain Best known Charibde
Michalewicz unconst [0, π]n up to 50 70
Sine Envelope unconst [−100, 100]n 2 5
Egg Holder unconst [−512, 512]n 2 10
Keane inequality const [0, 10]n up to 100 5
Rana unconst [−512, 512]n 2 7
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Experimental results Molecular dynamics: an open problem

Lennard-Jones clusters [Jones, 1924]

Find the most stable configuration of a cluster of n atoms

I potential describes pairwise interactions between atoms

f(x) =

n∑
i<j

v(rij) = 4

n∑
i<j

(
1

r12ij
− 1

r6ij

)
= 4

n∑
i<j

( 1

r6ij
− 1

2

)2

− 1


where r2ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2

I non-convex and highly combinatorial (O(en) local minima)

I open problem for n ≥ 5

I putative minimum for n = 5: −9.103852415708 (triangular bipyramid)

BARON Couenne Charibde

Minimum -9.10385346444055 -9.103870325603582 -9.103852415707552
Search time (s) 0.23 41.94 0.11
Overall total (s) 0.23 61.7 1436
Given status locally optimal optimal certified (ε = 10−9)
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Experimental results Aeronautical application: conflict resolution

Conflict resolution between aircraft

En-route traffic

I guarantee separation (S = 5NM) between aircraft at any moment

I if separation lost on trajectory forecast, maneuver the aircraft

Conflict resolution using lateral maneuvers

I modeled as constrained optimization problem with separation constraints

I smallest possible maneuvers

I existing approaches: MINLP [Pallottino et al., 2002] and
EA [Durand et al., 1996]

initial trajectory

maneuver

di

li

αi
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Experimental results Aeronautical application: conflict resolution

Conflict resolution between aircraft

Vector of variables x = (d1, α1, l1, . . . , dn, αn, ln)

(P) min
x

N∑
i=1

(
(1− di

di
)2 + (

αi

αi
)2 + (

li

li
)2
)

s.c. di ∈ [di, di]

αi ∈ [αi, αi]

li ∈ [li, li]

∀i < j, ∀t ∈ [0, tf ], S2 ≤ ‖~pi(t)− ~pj(t)‖2

Universally quantified constraints

I violated if ∃t ∈ [0, tf ], S2 > ‖~pi(t)− ~pj(t)‖2

I handled by specific interval contractors [Goldsztejn et al., 2009]
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Experimental results Aeronautical application: conflict resolution

Conflict resolution between aircraft
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Experimental results Aeronautical application: conflict resolution

Conclusion

Our hybrid solver Charibde

I combines an EA and interval-based methods in a cooperative way

I exploits EA’s feasible points to update f̃

I prevents premature convergence toward local minima by injecting solutions
into EA population

I proves the optimality of the solution

Perspectives

I affine arithmetic (alternative enclosure method)

I parallel IB&C
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HC4Revise algorithm (w.r.t. 2x = z − y2)

I bottom-up: evaluate each node using IA

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 20]

[0, 40]

[-10, 10]

[0, 100][0, 16]

[-100, 16]

I top-down: constraint propagation using inverse functions

=

×

2 x

−

z ˆ

y 2
2

[2, 2] [0, 8] [0, 20]

[0, 40][0, 16]

[-4, 4] [-10, 10]

[-100, 16][0, 16]

[0, 100][0, 16] [0, 16] [0, 16]

step 3

step 1

step 2

step 4

step 5

step 6
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Interval Newton algorithm

Equality constraint f = 0

I Newton operator: N(X, c) = c− F (c)
F ′(X)

I Any zero of f in X lies in X ∩N(X, c)

I If N(X, c) ⊂ int(X), then existence of a unique zero in X

X

5

c

-1

20

F(c) + U(x - c)

F(c) + L(x - c) 

f(x)

f(x) = x2 − 2, x ∈ X = [− 1
2 ,

9
2 ], c = 2

N(X, c) = 2− 22 − 2

2[− 1
2 ,

9
2 ]

= [−∞, 16
9
] ∪ [4,+∞]

(separation of possible zeros)

X ∩N(X,x) = [−1

2
,
16

9
] ∪ [4,

9

2
]
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