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Overall Context

I In branch and bound (B&B) algorithms for
constrained global optimization, an acceleration
technique is to construct regions x∗ around local
optimizing points x̌ , then delete these exclusion
regions from further search.

I x∗ too small =⇒
adjacent regions not easily rejected. In this case,

the B&B algorithm may produce a large cluster of
small boxes sharing a boundary with x∗.

I x∗ too large =⇒
solution bounds are not accurate.
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History
(selected work)

I Rump (1994 and probably earlier) proposes using
interval slopes to construct a small box in which a
unique solution exists and, with epsilon-inflation, a
large box in which no other solutions can exist.

I Kearfott (Math. Comp., 1987) analyzes an abstract
B&B algorithm for nonlinear systems, proving
under certain conditions that if the diameter of x∗

is proportional to
√
ε, where ε is the smallest box

diameter produced in branch and bound, then
clustering of boxes will not occur.

I Mayer (1995) surveys epsilon-inflation techniques.
I van Iwaarden (1996, Ph.D. dissertation)

independently discovers a technique he calls
backboxing to construct exclusion regions

I Schichl and Neumaier (2004, SINUM) study using
higher-order information for constructing exclusion
regions to avoid clustering.

4 / 17
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History
(continued)

I Schichl and Neumaier (2013, accepted), study
exclusion regions for optimization problems.

I Domes and Neumaier (March, 2014) propose a
new technique for verification of feasibility, for
construction of exclusion regions.
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Scope of This Work
Contrast with Previous Work

I Previous work depended on uniqueness
verification using Kuhn–Tucker conditions and
interval Newton methods, or more sophisticated
higher-order methods (in the case of pure
nonlinear systems, especially.

I Motivation for this work is to imagine what
conditions are necessary in a branch and bound
algorithm for boxes adjacent to a small
solution-containing box to be verified feasible, then
construct the solution-containing box in such a way
that adjacent boxes are sure to be verified
infeasible. The exclusion region is then
constructed to fit exactly this imagined set of
adjacent boxes, eliminating the need for them to be
created and processed by branch-and-bound.
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The Present Work
Similarities with Other Ongoing Work

I This work involves taking a linear combination of
the constraints that is likely to be easy to prove
infeasible.

I Work in progress by Domes and Neumaier also
takes linear combinations of constraints, but a
different linear combination related to approximate
Lagrange multipliers.

I The Domes / Neumaier work provides a rejection
criterion, while this work provides an exclusion
region construction criterion.

I We are also working on use of a third linear
combination, for use in a rejection criterion.

I None of these is a catch-all to work on all
problems.
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The Construction

K ε

x̌

y̌ ỹ
ε

direction ux

y

direction v

For fixed ε, K is chosen so boxes y will certainly be
rejected.
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Overall Analysis

I The problem is assumed to have been converted
to one with equality constraints only∗.

I We expand an equality constraint in a Taylor
series, and look at increments in a constraint
proceeding from the center x̌ to the boundary of
the central box in a direction u orthogonal to the
box face.

I We subtract from that possible decrements in
directions parallel to the box face.

I We bound the increments and decrements with
interval evaluations, to prove the constraint is
infeasible on a shell abutting the box.

∗ Inequality constraints may also be included later,
at some additional complication.
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Problem Notation
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Problem Notation

minimize ϕ(x)

subject to:
C(x) = (c1(x), . . . cm1(x)) = 0,

where ϕ : Rn → R and
ci : Rn → R, i = 1, . . .m1.

The technique will work best if ϕ is simple, such as
if ϕ consists of a single independent variable.

11 / 17
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Selecting the Constraint

I A separate constraint combination is used for each
coordinate direction u.

I The idea is to maximize the rate of change in the
direction u and minimize the rate of change in
orthogonal directions.

I The heuristic we use here to achieve this is to
choose that constraint combination

c̃i =

m1∑
j=1

αjcj(x) which minimizes ‖(∇C(x̌))α−ei‖2

over the parameters α = (α1, . . . , αm1), where
∇C(x̌) is the n by m1 matrix whose i-th column is
the gradient of ci at x̌ and where ei ∈ Rn is the i-th
coordinate vector.
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Computing the Optimal Constraint
Combination
Observations

I Minimizing ‖(∇C(x̌))α− ei‖2 is a floating point
linear least squares problem, that can be done
approximately.

I High-quality library software for efficiently doing
this is available.

I Once the optimal c̃i is obtain, we use it to compute
an expansion factor Ki (depending on ε) for the i-th
coordinate direction.
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Computing an Overall Expansion Factor K

I It is in general not possible to compute box width
factors Ki for each coordinate direction, even with
optimal c̃i .

I The boundary-box rejection criterion depends on
each coordinate width, not just the i-th.

I We combine the expansion factors Ki of
reasonable width to an overall expansion factor,
used for every coordinate:

K =


max

1≤i≤n,p∈{−1,1}
Ki,p<Kmax

Ki,p if ∃Ki,p < Kmax,

Kmax otherwise.

K ε will be the radius of the central box in each
coordinate direction.

14 / 17
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Experimental Setup

I We implemented the techniques using libraries
from GlobSol.

I We tried the techniques on a subset of the
COCONUT Lib-1 test set.

I We automatically converted the inequality
constraints to equality constraints with bound
constraints, for these problems.

I For each problem, we measured the number of
faces of the central box upon which adjacent small
boxes can be eliminated.
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Experimental Results

I Of 26 problems tried, 15 had faces upon which
adjacent small boxes could be eliminated.

I Of the problems with box faces upon which
adjacent small boxes could be eliminated, the
number of faces ranged from 1/34 to 32/44.
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Additional Observations

I The use of interval-valued partial derivatives in a
Taylor expansion is similar to what is done in the
interval Gauss–Seidel method.

I The linear combination of constraints is a kind of
preconditioner for the system of constraints.

I We are presently investigating an alternate linear
combination, motivated by the same ideas, for
filtering boxes during the branch and bound
algorithm.

I We are comparing the techniques, theoretically
and in practice, to our optimally preconditioned
interval Gauss–Seidel method.
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