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1. Introduction and remark
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Problem

Let Ω be a bounded and convex polygonal domain. We
consider existence and uniqueness of the solution in the
following Dirichlet type heat equations:

∂tu − ∆u = f(u) in (0,∞) × Ω,

u|∂Ω = 0 on (0,∞) × ∂Ω,

u(0, x) = u0(x) in Ω.

(1)

I ∆ is represented Laplace operator.

I u0 ∈ H1
0 (Ω) ∩ H2(Ω).
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Assumption

I f : H1
0 (Ω) → L2(Ω) is a twice Fréchet differentiable

nonlinear mapping

I There exists a non decreasing function Lρ > 0 such that

‖f(u) − f(v)‖L2(Ω) ≤ Lρρ u, v ∈ Uρ,

where for given ρ > 0, let

Uρ := {w ∈ H1
0 (Ω) : ‖w‖H1

0
≤ ρ}.
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Remark

My abstruct is written in Scan2014, Book of Abstructs, p.119.

⇓

We will talk shaper estimation of contents of the abstruct.
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Essential estimate to obtain absolute error

According to the previous talk, to get rigorous estimate
absolute error ‖ · ‖L∞(T1;H1

0 (Ω)), we need to obtain sharp
estimates:


δ :=

∥∥∥∫ t

t0
e−(t−s)A(∂sω(s) + Aω(s) − f(ω))ds

∥∥∥
L∞(T1;H1

0 (Ω))
,

ε := ‖u(t0) − û0‖H1
0
.

We talk about a shaper estimations of δ by changing operator
A and the semigroup e−tA generated by −A.
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Difference form the previous talk

I Differential operator A (in this talk, A is represented −∆)

A : H1
0 (Ω) → H−1(Ω) (Weak solution)

⇓

A : H1
0 (Ω) ∩ H2(Ω) → L2(Ω) (Strong solution)

I Semigroup

e−tA : H−1(Ω) → H−1(Ω)

⇓

e−tA : L2(Ω) → L2(Ω)
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In the case of A (Weak solutions)

For fixed time t, from ∂te
−tA = Ae−tA holds, it sees that∥∥∥∥∫ t

0

e−(t−s)A(∂sω(s) + Aω(s) − f(ω(s)))ds

∥∥∥∥
H1

0

=

∥∥∥∥∫ t

0

Ae−(t−s)A(∂sω(s) + Aω(s) − f(ω(s)))ds

∥∥∥∥
H−1

=

∥∥∥∥∫ t

0

∂se
−(t−s)A(∂sω(s) + Aω(s) − f(ω(s)))ds

∥∥∥∥
H−1

(2)

(2) becomes a rough bound of δ.
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In the case of A (Strong solutions)

For fixed time t, it sees that∫ t

0

‖e−(t−s)A(∂sω(s) + Aω(s) − f(ω(s)))‖H1
0
ds

≤
∫ t

0

‖A1/2e−(t−s)A(∂sω(s) + Aω(s) − f(ω(s)))‖L2ds

≤
∫ t

0

e−1/2(t − s)−1/2‖(∂sω(s) + Aω(s) − f(ω(s)))‖L2ds

≤ 2e−1/2t1/2‖(∂sω + Aω − f(ω))‖L∞(T1;L2)ds

≈ O(
√

τ). (3)
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2. Sharper estimation (Main theme)
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Setting of approximate solutions

Let Vh be a finite dimensional subspace of D(A) and fix
θ = 0, 1/2 or 11 and û0,θ ∈ Vh.
We employ the following full discretization schemes to obtain
u1,θ ∈ Vh such that for all vh ∈ Vh,(

uh
1,θ − ûh

0,θ

τ
, vh

)
L2

+ ((1 − θ)Aûh
0,θ + θAuh

1 , vh)L2

= ((1 − θ)f(ûh
0) + θf(uh

1), vh)L2 . (4)

We create ω0,θ ∈ L∞((t0, t1];D(A)) by

ω0,θ(t) := û0,θφ0(t) + û1,θφ1(t), t ∈ (t0, t1],

where let û1,θ ∈ Vh be an approximation of uh
1 .

1Forward Euler (θ = 0), Crank Nicolson (θ = 1/2), Backward Euler (θ = 1).
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Main theme in this talk

For ω0,θ (θ = 0, 1 or 1/2), we give the following estimation δ
defined by∥∥∥∥∫ t

t0

e−(t−s)A(∂sω0,θ(s) + Aω0,θ(s) − f(ω0,θ(s)))ds

∥∥∥∥
L∞(T1;H1

0 (Ω))
.

(5)
By estimating δ, we consider that which scheme gives shaper
estimation of absolute error ‖u − ω0,θ‖L∞(T1;H1

0 ) in the case
θ = 0, 1 and 1/2.
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Estimation of δ
For given 0 ≤ θ ≤ 1, Cθ ∈ L2(Ω) is defined by

Cθ :=
û1,θ − û0,θ

τ
+(1−θ)Aû0,θ+θAû1,θ−(1−θ)f(û0,θ)−θf(û1,θ).

Let g(t) := f(û1,θ)φ1(t) + f(û0,θ)φ0(t). We decompose∥∥∥∥∫ t

t0

e−(t−s)A(∂sω0,θ(s) + Aω0,θ(s) − f(ω0,θ(s)))ds

∥∥∥∥
L∞(T1;H1

0 (Ω))

into ∥∥∥∥∫ t

t0

A
1
2 e−(t−s)A(f(ω0,θ(s)) − g(s))ds

∥∥∥∥
L∞(J ;L2(Ω))

(6)

+

∥∥∥∥∫ t

t0

A
1
2 e−(t−s)A(C1φ1(s) + C0φ0(s))ds

∥∥∥∥
L∞(T1;L2(Ω))

.(7)
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Estimation of δ

Since û0,θ and û1,θ ∈ Vh ⊂ L∞(Ω), an upper bound of a
classical linear interpolation is given for fixed x ∈ Ω:

|f(ω0,θ)(t) − g(t)| ≤ τ 2

8
max
t∈T1

∣∣∣∣d2f(ω(t))

dt2

∣∣∣∣
=

τ 2

8
max
t∈T1

∣∣∣∣∣f ′′[ω(t)]

(
dω0,θ

dt

)2
∣∣∣∣∣

=
1

8
max
t∈T1

|f ′′[ω(t)]|
∣∣(û1,θ − û0,θ)

2
∣∣ ,

where we denote f ′′[ω(t)] be the twice Fréchet derivative of f
at ω(t) for fixed t ∈ T1
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Estimation of δ
It follows

‖f(ω0,θ) − g(t)‖L2

≤ M2

8
‖f ′′[ω0,θ]‖L∞(T1;L∞(Ω))‖û1,θ − û0,θ‖2

H1
0
,

where M2 is a computable constant such that

‖u2‖L2 ≤ M2‖u‖2
H1

0
, for u ∈ H1

0 (Ω).

Let λmin be the minimum eigenvalue of −∆ and
erf(x) := 2√

π

∫ x

0
e−x2

dx. From the spectrum mapping

theorem implies that∫ t

t0

‖A
1
2 e−(t−s)A(f(ω0,θ(s)) − p(s))‖L2ds

is bounded by

≤
√

2π

λmine
erf

(√
λmint

2

)
‖f(ω0,θ) − g‖L∞(T1;L2(Ω)) .
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Estimation of δ

Therefore, we have∥∥∥∥∫ t

t0

A
1
2 e−(t−s)A(f(ω0,θ(s)) − g(s))ds

∥∥∥∥
L∞(J ;L2(Ω))

≤ Cpα
2

√
2π

eλmin

erf

(√
λminτ

2

)
,

where

Cp :=
M2

8
‖f ′′[ω0,θ]‖L∞(T1;L∞(Ω)) and α := ‖û1,θ − û0,θ‖H1

0
.
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Estimation of δ

We consider the estimation of∥∥∥∥∫ t

t0

A
1
2 e−(t−s)A(C1φ1(s) + C0φ0(s))ds

∥∥∥∥
L∞(T1;L2(Ω))

.

For s ∈ T1, since φ0(s) + φ1(s) = 1, it sees that

C1φ1(s) + C0φ0(s) = (C1 − Cθ)φ1(s) + (C0 − Cθ)φ0(s) + Cθ

= Cθ + τ−1(1 − θ)(C1 − C0) (s − t0)

+ τ−1θ(C1 − C0) (t1 − s) .
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Estimation of δ

Therefore, an upper bound of∥∥∥∥∫ t

t0

A
1
2 e−(t−s)A(C1φ1(s) + C0φ0(s))ds

∥∥∥∥
L∞(T1;L2(Ω))

is given as follows:

e−
1
2‖Cθ‖L2

∫ t

t0

(t − s)−
1
2 e−(t−s)

λmin
2 ds

+d

∫ t

t0

(t − s)−
1
2 e−(t−s)

λmin
2 ((1 − θ)φ1(s) + θφ0(s))ds,

where let d = e−
1
2‖C1 − C0‖L2 .
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Estimation of δ
Let r = t − s. Then, we have

e−
1
2‖Cθ‖L2

∫ t−t0

0

r−
1
2 e−r

λmin
2 dr

+
1 − θ

τ
√

e
‖C1 − C0‖L2

∫ t−t0

0

r−
1
2 e−r

λmin
2 (t − t0 − r)dr

+
θ

τ
√

e
‖C1 − C0‖L2

∫ t−t0

0

r−
1
2 e−r

λmin
2 (t1 − t + r)dr

= e−
1
2‖Cθ‖L2

∫ t−t0

0

r−
1
2 e−r

λmin
2 dr

+
(1 − θ)φ1(t) + θφ0(t)

τ
√

e
‖C1 − C0‖L2

∫ t−t0

0

r−
1
2 e−r

λmin
2 dr

+
2θ − 1

τ
√

e
‖C1 − C0‖L2

∫ t−t0

0

r
1
2 e−r

λmin
2 dr.
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Estimation of δ

From∫ t−t0

0

r
1
2 e−rλmin/2dr = −2

√
t − t0λ

−1
mine

−λmin(t−t0)/2

+λ−1
min

∫ t−t0

0

r−1/2e−rλmin/2dr,

the upper bound is given

d1‖Cθ‖L2 + d1

(
2θ − 1

τλmin

+ ((1 − θ)φ1(t) + θφ0(t))

)
‖C1 − C0‖L2

+
2(1 − 2θ)

τ
√

eλmin

‖C1 − C0‖L2

√
t − t0e

−λmin(t−t0)/2,

where d1 =
√

2π
eλmin

erf

(√
λmin(t−t0)

2

)
.
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Summation of estimation of δ
Let I(t) : T1 → R
I(t) : = d1‖Cθ‖L2

+d1

(
2θ − 1

τλmin

+ ((1 − θ)φ1(t) + θφ0(t))‖C1 − C0‖L2

)
+

2(1 − 2θ)

τ
√

eλmin

‖C1 − C0‖L2

√
t − t0e

−λmin(t−t0)/2,

where d1 =
√

2π
eλmin

erf

(√
λmin(t−t0)

2

)
. Let

Cp := M2

8
‖f ′′[ω0,θ]‖L∞(T1;L∞(Ω)) and α := ‖û1,θ − û0,θ‖H1

0
. δ is

bounded as follows:� �
δ ≤ Cpα

2

√
2π

eλmin

erf

(√
λminτ

2

)
+ max

t∈T1

I(t).

� �
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3. Numerical example
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Numerical example

Let Ω be an unit square domain. We consider existence and
uniqueness of the solution in the following heat equations:

∂tu − ∆u = u2 in (0,∞) × Ω,

u|∂Ω = 0 on (0,∞) × ∂Ω,

u(0, x) = sin(πx) sin(πy) in Ω.

(8)

to consider which scheme gives a shaper absolute error
estimate (θ = 0, 1 and 1/2).
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Setting for numerical computation

I Windows 7 Professional, Intel(R) Core(TM) i7 CPU 860
2.80GHz

I 16 GB Memory

I MATLAB 2012a (toolbox INTLAB ver7 [1])

I For N ∈ N, let a finite dimensional space VN ⊂ D(A) by

VN =

{
uh =

N∑
k,l=1

ak,l sin(kπx) sin(lπy) : ak,l ∈ R

}
.

I We set N = 7 and τ = 2−10 equally.

[1] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor
Csendes, editor, Developments in Reliable Computing, pages
77-104. Kluwer Academic Publishers, Dordrecht, 1999.

25/30



Verification of δ
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Verification of ‖u − ω‖L∞(Tk;H1
0 )
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Essential estimate to obtain absolute error

To get rigorous estimate absolute error ‖ · ‖L∞(T1;H1
0 (Ω)), we

need to obtain sharp estimates:


δ :=

∥∥∥∫ t

t0
e−(t−s)A(∂sω0(s) + Aω0(s) − f(ω0(s)))ds

∥∥∥
L∞(T1;H1

0 (Ω))
,

ε := ‖u(t0) − û0‖H1
0
.
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Verification of ‖u(tk) − ûk‖H1
0
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Conclusion

I The scheme with θ = 1/2 gives a sharper estimate of δ .
(Crank-Nicolson scheme )

I The scheme with θ = 1 gives a sharper estimate of the
absolute error: ‖u − ω‖L∞(T1;H1

0 (Ω))

(Backward Euler scheme)

I The reason is that the value of the absolute error is
dependent not only δ but also ε

⇓

The scheme with θ = 1 has an effective estimate in this
numerical example.

(Backward Euler scheme)
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