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1. Introduction and remark
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Problem

Let 2 be a bounded and convex polygonal domain. We
consider existence and uniqueness of the solution in the
following Dirichlet type heat equations:

Ou — Au = f(u) in (0,00) x Q,
ulog =0 on (0,00) x 09,
u(0,2) = up(x)  in €

» A is represented Laplace operator.
> Ug € H&(Q) N HQ(Q)
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Assumption

» [ H}(Q) — L*(Q) is a twice Fréchet differentiable
nonlinear mapping

» There exists a non decreasing function L, > 0 such that

| f(u) = f()llz2@) < Lpp u,v € U,

where for given p > 0, let

Up = {w € Hy(Q) : wllmy < p}-
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Remark

My abstruct is written in Scan2014, Book of Abstructs, p.119.

4

We will talk shaper estimation of contents of the abstruct.
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Essential estimate to obtain absolute error

According to the previous talk, to get rigorous estimate

absolute error || - || o 7y, (), We need to obtain sharp
estimates:
=9)A(9,w(s) + Aw(s dsH ,
(Osw(s) (s) — P——
e = |u(to) — tol| -

We talk about a shaper estimations of ¢ by changing operator
A and the semigroup e ** generated by —A.
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Difference form the previous talk

» Differential operator A (in this talk, A is represented —A)
A HNQ) — H Q) (Weak solution)
4
A HY Q)N H*(Q) — L*(Q) (Strong solution)
» Semigroup
et H Y Q) — HH(Q)
4
—ni L2“)>—%IP<Q)
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In the case of A (Weak solutions)

For fixed time ¢, from d,e "4 = Ae™* holds, it sees that

/0 e~ (D,00(s) + Aw(s) — (w(s)))ds

Hg

_ /O Ae==94(D,0(s) + Aw(s) — f(w(s)))ds

H-1

()

H*l

_ /0 ase—(t—s)A(asw(S) + Aw(s) — f(w(s)))ds

(2) becomes a rough bound of 4.
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In the case of A (Strong solutions)

For fixed time ¢, it sees that
/O e 94 (B(s) + Aw(s) — Fw())]lmds
< / Y269 D00(s) + Aus(s) — £((s)))] ods
0

< /0 ™2t — 5) 72| (Osw(s) + Aw(s) — f(w(s)))]|rds

< 2722 (Ow + Aw — f(w)) | oo (misL2yds
~ O(\/T1). (3)
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2. Sharper estimation (Main theme)
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Setting of approximate solutions

Let V), be a finite dimensional subspace of D(A) and fix

6 =0,1/2 or 1* and 1y € V.

We employ the following full discretization schemes to obtain
u1,9 € Vj, such that for all v, € V},,

~h

ul, — 1
<M7 Up, —+ ((1 — G)A'ﬂg’g + QA'U,?, Uh)L2
L2

-
= ((1—0)f(ig) +0f(ur), vn)r2.  (4)
We create wy g € L>((to, t1]; D(A)) by
wo,p(t) = toe¢o(t) + U edi(t), t € (to, ta],

where let 1, o € V}, be an approximation of u!.

'Forward Euler (§ = 0), Crank Nicolson (6 = 1/2), Backward Euler (9§ = 1).
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Main theme in this talk

For wpp (0 =0,1or 1/2), we give the following estimation §
defined by

/ =094 w0 0(5) + Awos(s) — F(woo(s)))ds

to

L= (T1;H ()
(5)

By estimating §, we consider that which scheme gives shaper

estimation of absolute error ||u — w [ Loo(zy;1) in the case

6 =0,1and 1/2.
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Estimation of )

For given 0 < 0 < 1, Cyp € L*(Q) is defined by

Urg — U

Cp = 00 4 (1-6) Adlg g+0 Aty g— (1—0) f (tig.0)—0 f (i1 6).

T

Let g(t) := f(t1,0)01(t) + f(to,0)Po(t). We decompose

/ eI D,w00(s) + Awo(s) — flwos(s)))ds

to Lo (T HY())
into
t
| 4ttt ~ ot ©)
to Lo (J;L2(82))
t
#| [ Ak o) + coontonas )
to L°°(T1;L2(Q))
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Estimation of )

Since g9 and 119 € V3, C L>(€2), an upper bound of a
classical linear interpolation is given for fixed = € Q:

ii&ﬁ%

7.2

Flena)(®) = g(t)] < T max

dt?

et (Lae)
1

~ ~ 2
= gumax| /(O] (oo — doe)’]

where we denote f”[w(t)] be the twice Fréchet derivative of f
at w(t) for fixed t € T
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Estimation of )
It follows

1f (wo.0) — g(t)| 2
My X .
< ?Hf"[wo,o]HL°°(T1;L°°(Q))HU1,9 - Uo,o”ﬁg?
where M, is a computable constant such that
[u?[[z2 < Ma|lull. for u € Hy(€).

Let A,in be the minimum eigenvalue of —A and
erf(z):= \/%7 Iy e **dz. From the spectrum mapping
theorem implies that

J 143 na(s) = pls)nds

is bounded by

2 )\mint
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Estimation of )

Therefore, we have

/ AZe=U=94( F(wy(s)) — g(s))ds

to

Lo (J;L2(9))

where

M N ~
Cp = ?2||f”[wo,e]||L°°(T1;L°°(m> and a:= [|inp = dop -
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Estimation of )

We consider the estimation of

For s € T}, since ¢o(s) + ¢1(s) = 1, it sees that
Ci¢1(s) + Codo(s) = (Ci —Co)p1(s) + (Co — Cp)o(s) + Co

== CQ -+ 7'_1<1 — 0)(61 — C()) (S — to)
+7719(C, — Co) (1 — 5).

/ Aé@f(tiS)A(Cl%(S) + Cogo(s))ds

to

Leo(T1;L2(Q)) '
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Estimation of )

Therefore, an upper bound of

is given as follows:

/ Aée_(t_s)A(C@l(s) + Copo(s))ds

to

Lo (T3 L2(92))

t N
HCalze [ (=) e

to

+d / (t = 5) e (1 )y (5) + 60(s))ds,

to

where let d = e~z ||C; — Co|| 2.
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Estimation of )

Let r =t — s. Then, we have

1 t=to 1 Amin
e_2||C9||L2/ r-2e "2 dr
0

1 t_to 1 ’\mln
||Cl C0||L2 / 7’_56_7"
\/_ 0

e Gl [ e
1 — Lol|lL2
\/_ 0
t=to 1 Amin
= el [ e
0

L (1= 0)61(2) + 060(1
Ve

20 — t=to 1 A
+—F HC1 COHL2/ rze " "2 dr.
TVe 0

(t —to—r)dr

(tl —t+T)d

dr

t=to 1 Amin
Cy — Col| 2 r-2e "2 dr
I ollz

0
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Estimation of )

From

t—to
1oy
/ rae Mmin/2q,  — —QH)\mm Amin (t=t0)/2
0
t—to
+)\m11n/ 7’_1/26_”\"“‘“/2617“,
0

the upper bound is given

20 —
7_)\min

2(1 — 26)
- = C — C t — t _)‘min(t—to)/Q
+ 22216, - Colla T |

27 )\min(t_t())
Py erf ( s

0 [Coll = + d ( (- 0)pu0) + 9¢0(t))) G, — Coll e

where d; =
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Summation of estimation of §
Let I(t) N Tl — R
I(t) . = d1||CQHL2

i, (29 “L (1= 0)nt) + 060(0)]Cr — coan)

TAmin

2(1 — 20)
- = C — C t — t _>\min(t—t0)/2
" Tv/€Amin Iy oll 22 v 0€ ,

where d; = ,/ef”‘ erf (\/M) Let

Op = %“f”[u}()’g]||Loo(Tl;Loo(Q)) and o := ||1A6179 — QALO’@HH&. 0 is
bounded as follows:
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3. Numerical example
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Numerical example

Let €2 be an unit square domain. We consider existence and
uniqueness of the solution in the following heat equations:

ou — Au = u? in (0,00) x €,
ulon =0 on (0,00) x 01, (8)
u(0,z) = sin(7z) sin(7y) in Q.

to consider which scheme gives a shaper absolute error
estimate (¢ = 0,1 and 1/2).
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Setting for numerical computation

» Windows 7 Professional, Intel(R) Core(TM) i7 CPU 860
2.80GHz

» 16 GB Memory
» MATLAB 2012a (toolbox INTLAB ver7 [1])
» For N € N, let a finite dimensional space Viy C D(A) by

k=1

N
Vv = {uh = Z apsin(kmzx)sin(lry) @ axy € R} )

» Weset N =7 and 7 = 2710 equally.

[1] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor
Csendes, editor, Developments in Reliable Computing, pages
77-104. Kluwer Academic Publishers, Dordrecht, 1999.
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Verification of )

x10°

s -

asi—

25—

The values of delta

001 00z 003 008 008 006 007 3 008 ol
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Verification of ||u — wl|(7.m1)

The values of absolute error
|
!

1
002 3 oor 005 3 007 3 008 0
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Essential estimate to obtain absolute error

To get rigorous estimate absolute error || - || oo (7,11 (c2)), We
need to obtain sharp estimates:

-

Ji e E4(D,w0(s) + Awo(s) — f(wo dSH

Lo Tl,Hl(Q))

e = |lu(to) — doll ;-
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Verification of [Ju(ty) — | g

The error stimate for fixed time

1 1 1
o1 002 3 oor 005 3 007 3 008 0
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Conclusion
» The scheme with § = 1/2 gives a sharper estimate of ¢ .
(Crank-Nicolson scheme )

» The scheme with § = 1 gives a sharper estimate of the
absolute error: |[u — wl| poo (13,13 (0)
(Backward Euler scheme)

» The reason is that the value of the absolute error is
dependent not only 9 but also ¢

4

The scheme with # = 1 has an effective estimate in this
numerical example.
(Backward Euler scheme)
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