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Estimation of rounding error propagation

Evaluating the accuracy of numerical results

@ Accumulation of rounding errors = numerical results different from
mathematical results

@ Measure of the reliability and reproducibility of the computation

@ Particularly important in HPC environments and future exascale
supercomputers

Some methods

@ Backward error analysis: low oberhead, but not suited to every type
of code

@ Interval arithmetic: 100% accurate but usually needs code rewriting

@ Stochastic arithmetic: probabilistic approach easy to use in real-life
applications
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Stochastic arithmetic and HPC

High performance numerical validation
@ New hardware architectures
@ More computing resources available for scientific computing

@ Need for high performance numerical validation

SIMD (Single Instruction Multiple Data)

@ Instruction executed over different data at the same time
@ Instruction set extensions for CPUs

SSE (128-bit wide vector)

AVX (256-bit wide vector)
@ Dedicated hardware

Intel Xeon Phi (512-bit wide vector)
GPUs
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@ Stochastic arithmetic and the CADNA library
© Overhead of the CADNA library

© Towards a high performance CADNA library
@ Scalar performance

© SIMD performance

@ Conclusion
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Stochastic arithmetic

CESTAC method

@ Each arithmetic operation is performed N times

@ Randomly rounded towards +o0o or —oo with probability 0.5
@ Computed result R is the set of N samples R;

o Value R of the computed result is the mean of {R;}

@ Number of exact significant digits, Cg, estimated within a 95%
confidence interval

Validity of G5

@ Compromised if both operands in a multiplication are not significant

o Likewise if a divisor is not significant
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The CADNA library

Implementation
@ Implementation of stochastic arithmetic in C/C++

o Classes and operator overloading for ease of use

Data types
@ Classes float_st and double_st for single and double precision

e Contain N = 3 floating-point values ({R;}) of the corresponding type

@ Arithmetic and relational operators overloaded with stochastic ones

v

Pacéme Eberhart SCAN2014 September 23, 2014 6 /24



The CADNA library: self-validation and anomaly detection

Anomaly detection
o Self-validation to ensure validity of stochastic arithmetic

@ Anomaly detection for numerical analysis of the code

Warning types
o Self-validation: both operands in a multiplication or a divisor not
significant
@ Cancellation detection: sudden loss in accuracy on addition or
subtraction
e Mathematical instability: instability in a mathematical function

e Branching instability: undeterminism in a branching test
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© Overhead of the CADNA library
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Overhead

Computation time
@ Depends on the program and the level of detection
@ Is usually one order of magnitude higher on real-life applications

@ Even higher on highly optimised routines

Causes
@ Cost of anomaly detection

@ Cost of stochastic operations
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Cost of anomaly detection

Detection types
@ Self-validation and branching instability: relatively low cost test
(G <0)
@ Mathematical instability: inexpensive compared to the cost of
mathematical function calls
@ Cancellation detection: computing the number of exact significant
digits of both operands and the result

Calculating the number of exact significant digits
@ Uses the mean value and the standard deviation of {R;}

@ Relies on a costly logarithmic evaluation
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Cost of stochastic operations

FPU (Floating Point Unit) rounding modes

@ Stochastic operations frequently change the rounding mode of the
FPU

@ Pipeline flushed when rounding mode changed, hence hindering
performance

@ Prevents vectorisation as rounding mode is the same for all lanes

Overloaded operators
@ Operators replaced by functions, compiled in the library

@ FPU instructions replaced by function calls, causing performance
overhead, especially in arithmetic intensive codes
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9 Towards a high performance CADNA library

Pacéme Eberhart SCAN2014



Cancellation detection

Logarithm approximation

@ Cancellation detection: number of exact significant digits computed
with logig

@ Using the base 2 exponent (multiplied by logip(2)) as a fast
approximation for logarithm

o Easily obtained from binary representation of floating point numbers

Difference with the previous evaluation
o Estimated number of exact significant digits can vary
@ However, since logig(2) < 0.31, at most a 1 digit difference

@ Approximation gives a more pessimistic estimation for number of
digits
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Stochastic operations

Sign handling
@ As X + Y = —(—X 4+ —Y) (likewise for subtraction),
@ And X x Y = —(X x —Y) (likewise for division),

@ Obtain rounded up value from rounded down operations (or
conversely) by changing signs

Efficient implementation for random sign change

e Multiplying operands and result by —1 creates branching (from the
0.5 random probability), possibly inefficient to vectorise

@ Random flip of the bit sign of the IEEE binary representation removes
branching

v

Inlining the functions
@ Minimise the cost of function calls

@ Recompile CADNA library with application

v
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Vectorising CADNA

Prerequisites
e FPU rounding mode changes not necessary anymore
@ Sequential random generator changed to support vectorisation

@ Some variables duplicated for each lane (anomaly counters, ...)

Vectorising methods
@ Using intrinsics: tedious and difficult to use due to data types

@ icc automatic vectorisation and OpenMP 4.0 problematic due to
random generator

SPMD (Single Program Multiple Data)
@ Scalar programming with simple C-like syntax
@ Compiler generates SIMD instructions

o ispc (Intel SPMC Program Compiler) supports operator overloading,
chosen over OpenCL

v
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@ Scalar performance
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Performance setup

Hardware
o Intel Xeon E3-1275 (with AVX)
@ 3.5GHz, 1 core used only

Example of test code: term by term addition

for(i = 0; i < size; i++){
for(j = 0; j < intensity; j++){
ali] = al[i] + bl[il
}
}
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Performance setup

Hardware
o Intel Xeon E3-1275 (with AVX)
@ 3.5GHz, 1 core used only

Test programs
@ Arrays chosen large enough to not fit inside CPU cache

Single precision floating point and stochastic numbers

°
o Compiled with gcc -02
°

Execution time measured by wall-clock
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Cancellation detection
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@ Addition only, cancellation only applies to addition
@ All detections activated
@ Overhead divided by 2
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Stochastic operations
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@ No detection activated

@ Overhead reduced by more than 3
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© SIMD performance
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Stochastic operations on AVX
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Analysis
@ No detection activated
@ AVX instruction set extension

@ Vectorisation achieved (was impossible with original CADNA)
o CADNA speedup lower than |IEEE speedup

probably due to inefficient scatter/gather implementation

v
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Stochastic operations on Xeon Phi
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@ No detection activated
@ Compiled for Xeon Phi with icc -O2

o CADNA speedup similar to |IEEE speedup
due to better scatter/gather implementation
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@ Conclusion
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Conclusion

Scalar improvements

@ Logarithm approximation enables considerable gain when detecting
cancellations

@ Sign manipulations and inlining achieve large performance
improvements on arithmetic operations

Vectorising
@ Enabling SIMD computing with stochastic aritmetic
@ Higher overhead than scalar

@ However, faster execution

Future prospects
o Integrating these improvements in a new CADNA version

@ Testing performance for real-life applications
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