Towards High Performance Stochastic Arithmetic

Pacéme Eberhart
Julien Brajard Pierre Fortin Fabienne Jézéquel

Université Pierre et Marie Curie, LIP6 & LOCEAN - France

SCAN2014
September 23, 2014
Wirzburg, Germany

e @ip

Pacéme Eberhart SCAN2014 September 23, 2014 1/24

Estimation of rounding error propagation

Evaluating the accuracy of numerical results

@ Accumulation of rounding errors = numerical results different from
mathematical results

@ Measure of the reliability and reproducibility of the computation

@ Particularly important in HPC environments and future exascale
supercomputers

Some methods

@ Backward error analysis: low oberhead, but not suited to every type
of code

@ Interval arithmetic: 100% accurate but usually needs code rewriting

@ Stochastic arithmetic: probabilistic approach easy to use in real-life
applications

Pacéme Eberhart SCAN2014 September 23, 2014 2 /24

Stochastic arithmetic and HPC

High performance numerical validation
@ New hardware architectures
@ More computing resources available for scientific computing

@ Need for high performance numerical validation

SIMD (Single Instruction Multiple Data)

@ Instruction executed over different data at the same time
@ Instruction set extensions for CPUs

SSE (128-bit wide vector)

AVX (256-bit wide vector)
@ Dedicated hardware

Intel Xeon Phi (512-bit wide vector)
GPUs

Pacéme Eberhart SCAN2014 September 23, 2014 3/24

@ Stochastic arithmetic and the CADNA library
© Overhead of the CADNA library

© Towards a high performance CADNA library
@ Scalar performance

© SIMD performance

@ Conclusion

Pacéme Eberhart SCAN2014

Stochastic arithmetic

CESTAC method

@ Each arithmetic operation is performed N times

@ Randomly rounded towards +o0o or —oo with probability 0.5
@ Computed result R is the set of N samples R;

o Value R of the computed result is the mean of {R;}

@ Number of exact significant digits, Cg, estimated within a 95%
confidence interval

Validity of G5

@ Compromised if both operands in a multiplication are not significant

o Likewise if a divisor is not significant

Pacéme Eberhart SCAN2014 September 23, 2014 5/ 24

The CADNA library

Implementation
@ Implementation of stochastic arithmetic in C/C++

o Classes and operator overloading for ease of use

Data types
@ Classes float_st and double_st for single and double precision

e Contain N = 3 floating-point values ({R;}) of the corresponding type

@ Arithmetic and relational operators overloaded with stochastic ones

v

Pacéme Eberhart SCAN2014 September 23, 2014 6 /24

The CADNA library: self-validation and anomaly detection

Anomaly detection
o Self-validation to ensure validity of stochastic arithmetic

@ Anomaly detection for numerical analysis of the code

Warning types
o Self-validation: both operands in a multiplication or a divisor not
significant
@ Cancellation detection: sudden loss in accuracy on addition or
subtraction
e Mathematical instability: instability in a mathematical function

e Branching instability: undeterminism in a branching test

Pacéme Eberhart SCAN2014 September 23, 2014 7/ 24

© Overhead of the CADNA library

Pacéme Eberhart SCAN2014

Overhead

Computation time
@ Depends on the program and the level of detection
@ Is usually one order of magnitude higher on real-life applications

@ Even higher on highly optimised routines

Causes
@ Cost of anomaly detection

@ Cost of stochastic operations

Pacéme Eberhart SCAN2014 September 23, 2014 9 /24

Cost of anomaly detection

Detection types
@ Self-validation and branching instability: relatively low cost test
(G <0)
@ Mathematical instability: inexpensive compared to the cost of
mathematical function calls
@ Cancellation detection: computing the number of exact significant
digits of both operands and the result

Calculating the number of exact significant digits
@ Uses the mean value and the standard deviation of {R;}

@ Relies on a costly logarithmic evaluation

Pacéme Eberhart SCAN2014 September 23, 2014

10 / 24

Cost of stochastic operations

FPU (Floating Point Unit) rounding modes

@ Stochastic operations frequently change the rounding mode of the
FPU

@ Pipeline flushed when rounding mode changed, hence hindering
performance

@ Prevents vectorisation as rounding mode is the same for all lanes

Overloaded operators
@ Operators replaced by functions, compiled in the library

@ FPU instructions replaced by function calls, causing performance
overhead, especially in arithmetic intensive codes

Pacéme Eberhart SCAN2014 September 23, 2014 11 /24

9 Towards a high performance CADNA library

Pacéme Eberhart SCAN2014

Cancellation detection

Logarithm approximation

@ Cancellation detection: number of exact significant digits computed
with logig

@ Using the base 2 exponent (multiplied by logip(2)) as a fast
approximation for logarithm

o Easily obtained from binary representation of floating point numbers

Difference with the previous evaluation
o Estimated number of exact significant digits can vary
@ However, since logig(2) < 0.31, at most a 1 digit difference

@ Approximation gives a more pessimistic estimation for number of
digits

Pacéme Eberhart SCAN2014 September 23, 2014 13 /24

Stochastic operations

Sign handling
@ As X + Y = —(—X 4+ —Y) (likewise for subtraction),
@ And X x Y = —(X x —Y) (likewise for division),

@ Obtain rounded up value from rounded down operations (or
conversely) by changing signs

Efficient implementation for random sign change

e Multiplying operands and result by —1 creates branching (from the
0.5 random probability), possibly inefficient to vectorise

@ Random flip of the bit sign of the IEEE binary representation removes
branching

v

Inlining the functions
@ Minimise the cost of function calls

@ Recompile CADNA library with application

v

Pacéme Eberhart SCAN2014 September 23, 2014 14 / 24

Vectorising CADNA

Prerequisites
e FPU rounding mode changes not necessary anymore
@ Sequential random generator changed to support vectorisation

@ Some variables duplicated for each lane (anomaly counters, ...)

Vectorising methods
@ Using intrinsics: tedious and difficult to use due to data types

@ icc automatic vectorisation and OpenMP 4.0 problematic due to
random generator

SPMD (Single Program Multiple Data)
@ Scalar programming with simple C-like syntax
@ Compiler generates SIMD instructions

o ispc (Intel SPMC Program Compiler) supports operator overloading,
chosen over OpenCL

v

Pacéme Eberhart SCAN2014 September 23, 2014 15 / 24

@ Scalar performance

Pacéme Eberhart SCAN2014

Performance setup

Hardware
o Intel Xeon E3-1275 (with AVX)
@ 3.5GHz, 1 core used only

Example of test code: term by term addition

for(i = 0; i < size; i++){
for(j = 0; j < intensity; j++){
ali] = al[i] + bl[il
}
}

Pacdéme Eberhart SCAN2014 September 23, 2014 17 / 24

Performance setup

Hardware
o Intel Xeon E3-1275 (with AVX)
@ 3.5GHz, 1 core used only

Test programs
@ Arrays chosen large enough to not fit inside CPU cache

Single precision floating point and stochastic numbers

°
o Compiled with gcc -02
°

Execution time measured by wall-clock

Pacéme Eberhart SCAN2014 September 23, 2014 17 / 24

Cancellation detection

250
= |EEE
mms CADNA 1.1.9
oo | — Logarithm Overhead |
approximation x 180
2
£ 150 .
=
2 Overhead
3 100 x 89 b
I
w
50 B
0
Addition
Analysis

@ Addition only, cancellation only applies to addition
@ All detections activated
@ Overhead divided by 2

Pacéme Eberhart SCAN2014 September 23, 2014 18 / 24

Stochastic operations

40
|EEE n—
35 Overhead Overhead CADNA mwm |
31 x 24 Sign —
30 Sign + m—

Inline

Execution time (s)
n
o

Addition Multiplication

Analysis
@ No detection activated

@ Overhead reduced by more than 3

Pacéme Eberhart SCAN2014 September 23, 2014 19 / 24

© SIMD performance

Pacéme Eberhart SCAN2014

Stochastic operations on AVX

-
o

mmmm |EEE/scal
mmmmm |[EEE/AVX
I
L

Inline/scal
Inline/AVX

Speedup
Wz

Addition Multiplication

Execution time (s)
o = N W A~ OO N 00 ©

Analysis
@ No detection activated
@ AVX instruction set extension

@ Vectorisation achieved (was impossible with original CADNA)
o CADNA speedup lower than |IEEE speedup

probably due to inefficient scatter/gather implementation

v

Pacéme Eberhart SCAN2014 September 23, 2014 21 /24

Stochastic operations on Xeon Phi

180
160
140
120
100
80
60
40
20
0

= |EEE/scal
s |[EEE/MIC
mmmm |nline/scal
= |nline/MIC

Execution time (s)

I
Addition Multiplication

Analysis
@ No detection activated
@ Compiled for Xeon Phi with icc -O2

o CADNA speedup similar to |IEEE speedup
due to better scatter/gather implementation

Pacéme Eberhart SCAN2014 September 23, 2014 22 /24

@ Conclusion

Pacéme Eberhart SCAN2014

Conclusion

Scalar improvements

@ Logarithm approximation enables considerable gain when detecting
cancellations

@ Sign manipulations and inlining achieve large performance
improvements on arithmetic operations

Vectorising
@ Enabling SIMD computing with stochastic aritmetic
@ Higher overhead than scalar

@ However, faster execution

Future prospects
o Integrating these improvements in a new CADNA version

@ Testing performance for real-life applications

Pacéme Eberhart SCAN2014 September 23, 2014 24 / 24

	Stochastic arithmetic and the CADNA library
	Overhead of the CADNA library
	Towards a high performance CADNA library
	Scalar performance
	SIMD performance
	Conclusion

