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Interval Linear Equations

Interval Linear Equations

Ax = b, A ∈ A, b ∈ b,

where

A := [A,A] = [Ac − A∆,Ac + A∆],

b := [b, b] = [bc − b∆, bc + b∆]

are an interval matrix and an interval vector, respectively.
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b := [b, b] = [bc − b∆, bc + b∆]

are an interval matrix and an interval vector, respectively.

The Solution Set

Σ := {x ∈ R
n : ∃A ∈ A, ∃b ∈ b : Ax = b}.

Problem formulation

Find a tight interval vector enclosing Σ.
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Preconditioning

Preconditioning

Let C ∈ R
n×n. Preconditioning is a relaxation to

A′x = b′, A′ ∈ (CA), b′ ∈ (Cb),
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Preconditioning

usually we use C = (Ac)−1, theoretically justified by Neumaier (1984,
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optimal preconditioning for the interval Gauss–Seidel method by
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Preconditioning

usually we use C = (Ac)−1, theoretically justified by Neumaier (1984,
1990),

optimal preconditioning for the interval Gauss–Seidel method by
Kearfott et al. (1990, 1991, 2008).

The Interval Gauss–Seidel Method

zi :=
1

(CA)ii



(Cb)i −
∑

j 6=i

(CA)ijxj



 , xi := xi ∩ zi ,

for i = 1, . . . , n.
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Interval Parametric Systems

Interval Parametric System

A(p)x = b(p), p ∈ p,

where

A(p) =
K
∑

k=1

Akpk , b(p) =
K
∑

k=1

bkpk ,

and pk ∈ pk , k = 1, . . . ,K .
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K
∑

k=1

bkpk ,

and pk ∈ pk , k = 1, . . . ,K .

The Solution Set

Σp := {x ∈ R
n : ∃p ∈ p : A(p)x = b(p)}.

Preconditioning and Relaxation

Relaxation to Ax = b, where

A ∈ A :=

K
∑

k=1

(CAk)pk , b ∈ b :=

K
∑

k=1

(Cbk)pk .
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Optimal Preconditioner

Various criteria of optimality:

minimize the resulting width, that is, the objective is min 2z∆i ,

minimize the resulting upper bound, that is, the objective is min z i ,

maximize the resulting lower bound, that is, the objective is max z i .
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Minimal Width Preconditioner

Preliminaries

For simplicity assume that 0 ∈ x and 0 ∈ z

Denote by c the ith row of C ,

Normalize c such that the denominator has the form of [1, r ] for some
r ≥ 1.
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Minimal Width Preconditioner

minimize the width of

K
∑

k=1

(cbk)pk −
∑

j 6=i

(

K
∑

k=1

(cAk
∗j)pk

)

xj .

Denote

βk := |cbk |, k = 1, . . . ,K ,

αjk := |cAk
∗j |, j = 1, . . . , n, k = 1, . . . ,K ,

ηj :=
(

∑K
k=1(cA

k
∗j )pk

)

xj , j 6= i ,

ψj :=
(

∑K
k=1(cA

k
∗j )pk

)

xj , j 6= i .
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Minimal Width Preconditioner

Optimization problem.

Optimal preconditioner C found by n linear programming (LP)
problems.

each LP has Kn + K + 3n − 2 unknowns c , βk , αjk , ηj , and ψj , and
2Kn + 4n − 3 constraints

C needn’t be calculated in a verified way.

The problem is effectively solved in polynomial time.
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Optimization problem.

Optimal preconditioner C found by n linear programming (LP)
problems.

each LP has Kn + K + 3n − 2 unknowns c , βk , αjk , ηj , and ψj , and
2Kn + 4n − 3 constraints

C needn’t be calculated in a verified way.

The problem is effectively solved in polynomial time.

Practical Implementation

Call the standard version using midpoint inverse preconditioner (or
any other method),

and after that tighten the enclosure by using an optimal
preconditioner C .

In our examples: one iteration with minimization of the upper bound,
and one with maximization of the upper bound.
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Example I

Example (Popova, 2002)

A(p) =

(

1 p1
p1 p2

)

, b(p) =

(

p3
p3

)

, p ∈ p = ([0, 1],−[1, 4], [0, 2])T .
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Example I

Example (Popova, 2002)

A(p) =

(

1 p1
p1 p2

)

, b(p) =

(

p3
p3

)

, p ∈ p = ([0, 1],−[1, 4], [0, 2])T .

Initial enclosure by the Parametric Interval Gauss–Seidel Method with
midpoint inverse preconditioner:

direct version: 7.66% of the width on average reduced

residual form: 0% of the width on average reduced

Initial enclosure as the interval hull of the relaxed system:

direct version: 50% of the width on average reduced

residual form: 12.56% of the width on average reduced
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Example II

Example (Popova and Krämer, 2008)

A(p) =













30 −10 −10 −10 0
−10 10 + p1 + p2 −p1 0 0
−10 −p1 15 + p1 + p3 −5 0
−10 0 −5 15 + p4 0
0 0 −5 5 1













, b(p) =













1
0
0
0
0













,

where p ∈ p = [8, 12] × [4, 8] × [8, 12] × [8, 12].
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Example II

Example (Popova and Krämer, 2008)

A(p) =













30 −10 −10 −10 0
−10 10 + p1 + p2 −p1 0 0
−10 −p1 15 + p1 + p3 −5 0
−10 0 −5 15 + p4 0
0 0 −5 5 1













, b(p) =













1
0
0
0
0













,

where p ∈ p = [8, 12] × [4, 8] × [8, 12] × [8, 12].

Initial enclosure by the Parametric Interval Gauss–Seidel Method with
midpoint inverse preconditioner:

direct version: 15% of the width on average reduced

residual form: 0% of the width on average reduced
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Conclusion

Summary

Optimal preconditioning matrix for the parametric interval
Gauss–Seidel iterations.

It can be computed effectively by linear programming.

Preliminary results show that sometimes can reduce overestimation of
the standard enclosures.

11 / 13



Conclusion

Summary

Optimal preconditioning matrix for the parametric interval
Gauss–Seidel iterations.

It can be computed effectively by linear programming.

Preliminary results show that sometimes can reduce overestimation of
the standard enclosures.

Directions for Further Research

Other types of optimality of preconditioners (S-preconditioners,
pivoting preconditioners, etc.)

Optimal preconditioners for other methods than the parametric
interval Gauss–Seidel one.
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