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Interval Linear Equations

Interval Linear Equations

Ax=b, A€A, beb,
where
A= [AA] = [A°— AR AC + AR,
b := [b, b] = [b° — b™, b° + b"]

are an interval matrix and an interval vector, respectively.
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where
A= [AA] = [A°— AR AC + AR,
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are an interval matrix and an interval vector, respectively.

The Solution Set

Y ={xeR":3JAc A, Fbeb: Ax = b}.

Problem formulation

Find a tight interval vector enclosing .
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Preconditioning
Let C € R™". Preconditioning is a relaxation to
Ax=1b, A €(CA), b € (Cb),

Preconditioning

@ usually we use C = (A°)~!, theoretically justified by Neumaier (1984,
1990),

@ optimal preconditioning for the interval Gauss—Seidel method by
Kearfott et al. (1990, 1991, 2008).




Preconditioning

Preconditioning
Let C € R™". Preconditioning is a relaxation to
Ax=1+b, A €(CA), b e (Cb),

Preconditioning

@ usually we use C = (A°)~!, theoretically justified by Neumaier (1984,
1990),

@ optimal preconditioning for the interval Gauss—Seidel method by
Kearfott et al. (1990, 1991, 2008).

The Interval Gauss—Seidel Method

1
Zj .

= Teay; | (P)im D (CA)x; |, xi:=x Nz,
ii i

fori=1,...,n.
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Interval Parametric Systems

Interval Parametric System

A(p)x = b(p), pPEDP,

where
K

Alp) =Y Apr, blp)=>_ brps,

k=1 k=1
and pr €pi, k=1,... K.
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The Solution Set
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Interval Parametric System

A(p)x = b(p), pEP,

where

X
X

Alp) =Y Apr, blp)=>_ brps,

k=1 k=1
and pr €pi, k=1,... K.

The Solution Set

Y, ={xeR":Ipep:A(p)x = b(p)}.

Preconditioning and Relaxation
Relaxation to Ax = b, where

K

K
AcA:=) (CAp,, beb:=) (Cb)p,.
k=1 k=1




The Parametric Interval Gauss—Seidel Method

The Parametric Interval Gauss—Seidel Method

K

K
z; = ! (Z(Cbk)ipk - (Z(CAk)iij> Xj) )

(Zszl(CAk)iipk) k=1 i\l

X; = X; N z;,

fori=1,...,n.
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The Parametric Interval Gauss—Seidel Method

K K
1
z; = S (i - (Z(CAk)Upk> X |,
(ZkK=1(CAk)iiPk) k=1 J#i \k=1
X; = X; N z;,
fori=1,...,n.

Optimal Preconditioner
Various criteria of optimality:
@ minimize the resulting width, that is, the objective is min 22,.A,
@ minimize the resulting upper bound, that is, the objective is minZ;,

@ maximize the resulting lower bound, that is, the objective is max z;.
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Minimal Width Preconditioner

Preliminaries
@ For simplicity assume that 0 € x and 0 € z
@ Denote by ¢ the ith row of C,

@ Normalize ¢ such that the denominator has the form of [1, r] for some
r>1.
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Interval Gauss—Seidel Step

Then the operation of the ith step of the Interval Gauss—Seidel iteration is
simplified to
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Preliminaries
@ For simplicity assume that 0 € x and 0 € z
@ Denote by ¢ the ith row of C,

@ Normalize ¢ such that the denominator has the form of [1, r] for some
r>1.

v

Interval Gauss—Seidel Step

Then the operation of the ith step of the Interval Gauss—Seidel iteration is
simplified to

K K
o Yo 3 (S leatm ) s
k=1 j#i \k=1

A

The objective is min z:~.




Minimal Width Preconditioner
K K
minimize the width of Z(cbk)pk - Z (Z(cAfj)pk> X;.
k=1 J#i \k=1
Denote
Bi:=lcbX|, k=1,... K,
@ = |cAffJ-|, j=1,....n, k=1,....K,

W= (Zszl(CAifj)pk) Xj, J#I,
bj = (Zszl(CAfj)Pk) Xj, JF#I.
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Minimal Width Preconditioner

K
min Y " 2pR B+ Y (n — ¥y),
k=1 J#i
subject to
Bi:=lcbX|, k=1,... K,
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Minimal Width Preconditioner
mmzzpk B+

J#i
subject to
Bk = cb*, B > —cb*, k=1,...,K,

|CA*_]| .j:]'?"'ynak:l,-..,K’

nj = (Zk:l(CAf:j)pk) Xj, J#I,
Y= (Zszl(CAfj)Pk) Xj, JFI
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Minimal Width Preconditioner
mmzzpk B+

JFi
subject to
B > cbX, B > —cb*, k=1,....K,

aij—cAk- j=1...,n k=1... K,

Qjk > CA %1

*j)

nj = (Zk:l(CAf:j)pk) Xj, J#I,
Y= (Zszl(CAfj)Pk) Xj, JFI
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Minimal Width Preconditioner
mmzzpk B+

JFi
subject to
B > cbX, B > —cb*, k=1,....K,
aijCA*J, ajk>—AifJ-, j=1...,n k=1... K,

nj = Czk:1 PkX + Zk 1 Pk Qs J# i,
K o

N =€ e A *ijXj + Yy PR Xjuk, J# 1,
K o

Yj = (Zk:l(CAfj)Pk) Xj, JFI

7/13



Minimal Width Preconditioner
mmzzpk B+

JFi
subject to
B > cbX, B > —cb*, k=1,....K,

ajk>cA aij—cAk- j=1...,n k=1... K,

*j) *J)

> ¢ Yoy AKpEx; £ S0 pPxjouk,  J#
nj = CZ/}(( 1 ij/ij"‘Zl;f 1PkAYjajk7 J#i
0y cszlA PRXj + 3 PR Qs J 7
¥ < ¢ Yeq ANPER) — Yhcy PERjak,  J # i,

IN




Minimal Width Preconditioner
mmzzpk B+ 30

JFi
subject to

Br > cb, B> —cb*, k=1,...,K,

% aij—cAf:J-, j=1...,n k=1... K,
> YRy ARpEx; £ S 1 PR, #

nj > € Ypoy ASPER) + Y PRXja,  J # )
ijSCZkKlA PiX; iZk 1 PeX [k, J 7

Yj SCZ/T 1A*_/kaJ Zk:l pRXj, J# i,

and the condition that the denominator is has the form of [1, r]

K K
€ k-1 Afiplf — > k=1 PkAaik = 1.

Qjk > cAk




Minimal Width Preconditioner

Optimization problem.

@ Optimal preconditioner C found by n linear programming (LP)
problems.

@ each LP has Kn+ K + 3n — 2 unknowns ¢, B, aj, nj, and ¢, and
2Kn + 4n — 3 constraints

@ C needn't be calculated in a verified way.

@ The problem is effectively solved in polynomial time.
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Optimization problem.

@ Optimal preconditioner C found by n linear programming (LP)
problems.

@ each LP has Kn + K + 3n — 2 unknowns ¢, Bk, ajk, 1j, and 1;, and
2Kn + 4n — 3 constraints

@ C needn't be calculated in a verified way.

@ The problem is effectively solved in polynomial time.

Practical Implementation

@ Call the standard version using midpoint inverse preconditioner (or
any other method),

@ and after that tighten the enclosure by using an optimal
preconditioner C.

@ In our examples: one iteration with minimization of the upper bound,
and one with maximization of the upper bound.
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Example (Popova, 2002)

ap) = (5 7). b= (7). pep=(u-La0.2)

p1 p2 P3
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Example (Popova, 2002)

ap)= (5 7). s = (%), pep=(@U-RaL02)T.

Initial enclosure by the Parametric Interval Gauss—Seidel Method with
midpoint inverse preconditioner:

@ direct version: 7.66% of the width on average reduced

@ residual form: 0% of the width on average reduced




Example |

Example (Popova, 2002)

ap)= (5 7). s = (%), pep=(@U-RaL02)T.

Initial enclosure by the Parametric Interval Gauss—Seidel Method with
midpoint inverse preconditioner:

@ direct version: 7.66% of the width on average reduced

@ residual form: 0% of the width on average reduced

Initial enclosure as the interval hull of the relaxed system:
@ direct version: 50% of the width on average reduced

@ residual form: 12.56% of the width on average reduced
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Example (Popova and Kramer, 2008)

30 —10 —10 —-10 O 1
—10 10+ p1 + p2 —p1 0 0 0
A(p) = | —10 —p1 15+ p1 + p3 -5 0}, b(p)=101,
—10 0 -5 15+ps O 0
0 0 -5 5 1 0

where p € p = [8,12] x [4,8] x [8,12] x [8,12].
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Example Il

Example (Popova and Kramer, 2008)

30 ~10 ~10 10 0 1
~10 10+ py + p2 —p1 0 0 0

A(p) = | —10 —p1 15+p+ps -5 O0f,bp)=]|0],
~10 0 -5 15+ ps O 0
0 0 -5 5 1 0

where p € p = [8,12] x [4,8] x [8,12] x [8,12].

Initial enclosure by the Parametric Interval Gauss—Seidel Method with
midpoint inverse preconditioner:

@ direct version: 15% of the width on average reduced

@ residual form: 0% of the width on average reduced
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Conclusion

Summary

@ Optimal preconditioning matrix for the parametric interval
Gauss—Seidel iterations.

o |t can be computed effectively by linear programming.

@ Preliminary results show that sometimes can reduce overestimation of
the standard enclosures.

v
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Conclusion

Summary

@ Optimal preconditioning matrix for the parametric interval
Gauss—Seidel iterations.

@ It can be computed effectively by linear programming.

@ Preliminary results show that sometimes can reduce overestimation of
the standard enclosures.

v

Directions for Further Research

@ Other types of optimality of preconditioners (S-preconditioners,
pivoting preconditioners, etc.)

@ Optimal preconditioners for other methods than the parametric
interval Gauss—Seidel one.
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