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Object Problem

For linear system,
Ax = b, (1)

we can efficiently obtain a computed solution x̃ by some numerical
algorithm. In general, however, we do not know how accurate the
computed solution is.

Aim

In this talk, we aim to calculate error bounds of x̃ of Ax = b to the
exact solution x∗ := A−1b such that

|x̃i − x∗i | ≤ ϵi, (i = 1, 2, · · · , n)

by the use of verified numerical computations.
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previous work

Several Verification Method

Several Verification Method have been proposed. For example,

Neumaier [1]

Rump [2]

In particular, we’ll consider [2].

[1] : A. Neumaier. A simple derivation of the
Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval
equations. Reliable Computing, 5:131―136, 1999
[2] : S. M. Rump, Accurate solution of dense linear systems, Part II:
Algorithms using directed rounding, J. Comp. Appl. Math., 242
(2013), 185–212.
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Propose

Modification of Rump’s method [2]

We propose two simple modified methods.

Rump’s method

Implementation as verifylss in INTLAB 7

Computational complexity is O(n2)

INTLAB

The Matlab toolbox for reliable computing and self-validating
algorithms.
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Notation

Let I denote the n× n identity matrix

Let O denote the n× n matrix of all zeros

For real n× n matrices A = (aij) and B = (bij),

The notation A ≤ B means aij ≤ bij for all (i, j)

The notation |A| means |A| = (|aij |) ∈ Rn×n

Similar notation is applied to real vectors.
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Definition

monotone

A real n× n matrix A is called monotone if Ax ≥ 0 implies x ≥ 0 for
x ∈ Rn.

Z-matrix

Let A = (aij) be a real n× n matrix with aij ≤ 0 for i ̸= j. Then A is
called a Z-matrix.

M-matrix

If a Z-matrix A is monotone, then A is called an M-matrix.
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Definition

comparison matrix

The comparison matrix ⟨A⟩ = (âij) of A is defined by

âij =

{
|aij | (i = j)
−|aij | (i ̸= j)

.

H-matrix

If ⟨A⟩ is an M-matrix, then A is called an H-matrix.
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Property of M-matrix and H-matrix

Theorem (Fiedler-Pták)

Let an Z-matrix A ∈ Rn×n be given. Then the following conditions are
equivalent:

1 A is nonsingular and A−1 ≥ O (i.e., A is an M-matrix).

2 There exists v ∈ Rn with v > 0 satisfying Av > 0.

Theorem (well-known)

If A is an H-matrix, then

|A−1| ≤ ⟨A⟩−1.
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Theorem 1 (Rump [2, Theorem 2.1])

Let A ∈ Rn×n and b, x̃ ∈ Rn be given. Assume v ∈ Rn with v > 0
satisfies u := ⟨A⟩v > 0. Let ⟨A⟩ = D − E denote the splitting of ⟨A⟩
into the diagonal part D and the off-diagonal part −E, and define
w ∈ Rn by

wk := max
1≤i≤n

Gik

ui
for 1 ≤ k ≤ n,

where G := I − ⟨A⟩D−1 = ED−1 ≥ O. Then A is nonsingular, and

|A−1b− x̃| ≤ (D−1 + vwT )|b−Ax̃|. (2)
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Proof

From the definition of u and w, it follows

O ≤ I − ⟨A⟩D−1 ≤ uwT . (3)

Multiplying (3) from the left by ⟨A⟩−1 yields

⟨A⟩−1 −D−1 ≤ ⟨A⟩−1uwT = ⟨A⟩−1⟨A⟩vwT

and
⟨A⟩−1 ≤ D−1 + vwT . (4)

Using |A−1| ≤ ⟨A⟩−1 and (4),

|A−1b− x̃| ≤ |A−1||b−Ax̃| ≤ ⟨A⟩−1|b−Ax̃|
≤ (D−1 + vwT )|b−Ax̃|.
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Modification of Rump’s theorem

Theorem 2

Let A, b, x̃, u, v, w be defined as in Theorem 1. Define Ds := diag(s)
where s ∈ Rn with

sk := ukwk for 1 ≤ k ≤ n.

Then,

|A−1b− x̃| ≤ (D−1 + vwT )(I +Ds)
−1|b−Ax̃|. (5)

Moreover,

|A−1b− x̃| ≤ βv + (D−1 + vwT )(I +Ds)
−1(|b−Ax̃| − βu), (6)

where β := min1≤i≤n
|b−Ax̃|i

ui
.
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Proof

From the definition of u and w, it follows

I − ⟨A⟩D−1 ≤ uwT .

Since diag(I − ⟨A⟩D−1) = 0, we have

I − ⟨A⟩D−1 +Ds ≤ uwT

and
I +Ds ≤ ⟨A⟩D−1 + uwT . (7)
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Proof

From the assumption, A is an H -matrix, so that ⟨A⟩−1 ≥ O.
Multiplying (7) from the left by ⟨A⟩−1 yields

⟨A⟩−1(I +Ds) ≤ D−1 + ⟨A⟩−1uwT = D−1 + vwT .

Since (I +Ds)
−1 ≥ O, we have

⟨A⟩−1 ≤ (D−1 + vwT )(I +Ds)
−1. (8)

Using |A−1| ≤ ⟨A⟩−1 and (8),

|A−1b− x̃| ≤ |A−1||b−Ax̃| ≤ ⟨A⟩−1|b−Ax̃|
≤ (D−1 + vwT )(I +Ds)

−1|b−Ax̃|.
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Proof

From the definition of β and the property of H-matrix,

|A−1b− x̃| ≤ |A−1||b−Ax̃|
≤ ⟨A⟩−1|b−Ax̃|
= β⟨A⟩−1u+ ⟨A⟩−1(|b−Ax̃| − βu)

= βv + ⟨A⟩−1(|b−Ax̃| − βu).

Using (8),

|A−1b− x̃| ≤ βv + ⟨A⟩−1(|b−Ax̃| − βu)

≤ βv + (D−1 + vwT )(I +Ds)
−1(|b−Ax̃| − βu).
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Numerical Result

Test Matrix : randmat function (INTLAB function)

Matrix Size : 100

ϵr : Error bounds based on (2) in Theorem 1

|A−1b− x̃| ≤ (D−1 + vwT )|b−Ax̃|
ϵm1 : Error bounds based on (5) in Theorem 2

|A−1b− x̃| ≤ (D−1 + vwT )(I +Ds)
−1|b−Ax̃|

ϵm2 : Error bounds based on (6) in Theorem 2

|A−1b− x̃| ≤ βv + (D−1 + vwT )(I +Ds)
−1(|b−Ax̃| − βu)
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Numerical Result

The inclusion of RA :
[fl▽(RA), fl▽(RA) + γ2n|R||A|+ n ∗ 2−1022 ∗ eeT ]
ratio := median(ϵM ./ϵR)

R : Approximate inverse of A
fl▽(RA) : setround(−1);R ∗A
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Numerical Result 2

The inclusion of RA : [fl▽(RA),fl△(RA)]

ratio := median(ϵM ./ϵR)

R : Approximate inverse of A
fl▽(RA) : setround(−1);R ∗A, fl△(RA) : setround(1);R ∗A
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Conclusion 1

Theorem 2 requires O(n) floating-point operations more than original
theorem.

The inclusion of RA :
[fl▽(RA), fl▽(RA) + γ2n|R||A|+ n ∗ 2−1022 ∗ eeT ]

We improved accuracy.

The inclusion of RA : [fl▽(RA),fl△(RA)]

We improved accuracy a little.
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Theorem 3

Let A, b, x̃, u, v, w be defined as in Theorem 1. Define
∆ := uwT − ED−1 and c := |b−Ax̃|. Then,

|A−1b− x̃| ≤ (D−1 + vwT )(c−∆(I −∆)c).

Moreover,

|A−1b− x̃| ≤ βv + (D−1 + vwT )((c− βu)−∆(I −∆)(c− βu)),

where β := min1≤i≤n
ci
ui
.
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Theorem 3

Let A, b, x̃, u, v, w be defined as in Theorem 1. Define
∆ := uwT − ED−1 and c := |b−Ax̃|. Then,

|A−1b− x̃| ≤ (D−1 + vwT )(c−∆(I −∆)c).

Moreover,

|A−1b− x̃| ≤ βv + (D−1 + vwT )((c− βu)−∆(I −∆)(c− βu)),

where β := min1≤i≤n
ci
ui
.

|A−1b−x̃| ≤ βv+(D−1+vwT )min((c−βu), ((c−βu)−∆(I−∆)(c−βu)))
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Theorem 3

Let A, b, x̃, u, v, w be defined as in Theorem 1. Define
∆ := uwT − ED−1 and c := |b−Ax̃|. Then,

|A−1b− x̃| ≤ (D−1 + vwT )(c−∆(I −∆)c). (9)

Moreover,

|A−1b− x̃| ≤ βv + (D−1 + vwT )((c− βu)−∆(I −∆)(c− βu)), (10)

where β := min1≤i≤n
ci
ui
.

|A−1b− x̃| ≤
βv+min((D−1+vwT )(c−βu), (D−1+vwT )((c−βu)−∆(I−∆)(c−βu)))
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Proof

From the definition of ∆, it follows

I − ⟨A⟩D−1 +∆ = uwT . (11)

Multiplying (11) from the left by ⟨A⟩−1 yields

⟨A⟩−1(I +∆) = D−1 + vwT . (12)

Multiplying (12) from the right by I −∆+∆2 yields

⟨A⟩−1(I +∆3) = (D−1 + vwT )(I −∆+∆2). (13)
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Proof

From ∆ ≥ O, we have

⟨A⟩−1 ≤ ⟨A⟩−1(I +∆3) (14)

and
⟨A⟩−1 ≤ (D−1 + vwT )(I −∆+∆2). (15)

Using (15),

|A−1b− x̃| ≤ |A−1||b−Ax̃|
≤ ⟨A⟩−1|b−Ax̃|
≤ (D−1 + vwT )(I −∆+∆2)|b−Ax̃|
= (D−1 + vwT )(c−∆(I −∆)c).
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Proof

From the definition of β and the property of H-matrix,

|A−1b− x̃| ≤ |A−1||b−Ax̃|
= βv + ⟨A⟩−1(|b−Ax̃| − βu).

Using (4) and (15),

|A−1b− x̃| ≤ βv + (D−1 + vwT )(c− βu).

and

|A−1b− x̃| ≤ βv + (D−1 + vwT )((c− βu)−∆(I −∆)(c− βu)).

Thus,
|A−1b− x̃| ≤
βv+min((D−1+vwT )(c−βu), (D−1+vwT )((c−βu)−∆(I−∆)(c−βu))).
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Numerical Result

Test Matrix : randmat function (INTLAB function)

Matrix Size : 100

ϵr : Error bounds based on Theorem 1

|A−1b− x̃| ≤ (D−1 + vwT )|b−Ax̃|
ϵm3 : Error bounds based on (9) in Theorem 3

|A−1b− x̃| ≤ (D−1 + vwT )(c−∆(I −∆)c)

ϵm4 : Error bounds based on (10) in Theorem 3

|A−1b− x̃| ≤ βv + (D−1 + vwT )((c− βu)−∆(I −∆)(c− βu))
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Numerical Result 3

The inclusion of RA : [fl▽(RA),fl△(RA)]

ratio := median(ϵM ./ϵR)

R : Approximate inverse of A
fl▽(RA) : setround(−1);R ∗A, fl△(RA) : setround(1);R ∗A
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Conclusion

We proposed two simple modified methods

We improved accuracy if a given matrix is an ill-conditioned
matrix.

Proposed methods is implemented in INTLAB 8.
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